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Estimation of total nitrogen content in sugar beet leaves based
on chlorophyll fluorescence parameters
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Abstract

Two sugar beet cultivars, Beta 356 and KWS9147, were grown in field trials at four different nitrogen contents (0, 75,
150, and 225 kg ha™'), and each fertilizer treatment was divided into four applications (100% prior to seeding; 70% prior
to seeding and 30% at canopy development; 50% prior to seeding and 50% at canopy development; 30% prior to seeding
and 70% at canopy development) in two consecutive growing seasons. Leaf chlorophyll fluorescence (ChlF) parameters
and leaf nitrogen content were measured simultaneously at different growth stages, establishing an evaluation model
of leaf nitrogen nutrition. The results showed that the correlation between ChlF parameters and leaf nitrogen content
reached 0.7099" (canopy development), 0.8266™ (storage root development) and 0.8607*" (sugar accumulation stage).
We conclude that the ChlF parameters can provide a decision-making method for N diagnosis and regulation in field

production.
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Nitrogen (N) is involved in the synthesis of amino acids,
proteins, chlorophyll (Chl), and other substances in plants;
it is one of the essential nutrients for growth, yield, and
quality in crop (Choi et al. 2016, Jay et al. 2017). Yield
and quality all increased with increasing N (within limits)
application levels in cotton, maize, and so on. Excessive
nitrogen fertilization may cause plant lodging, undesirable
delayed senescence at later stages of growth, an increase
in the incidence of pests and diseases, deterioration of crop
yield and quality, and damage to the environment (Yang
et al. 2012, Cordero et al. 2019). Timely diagnosis and
timely quantitative fertilization are of great significance
for crop growth. The traditional nitrogen management
needs destructive sampling, which not only takes time
and effort, but also delays the fertilization period. Fast,
nondestructive, accurate monitoring and diagnosis of
crop nitrogen nutritional status become more and more
important and will help to determine the best management
strategy and dynamic regulation of nitrogen use in crop.
Recently, the use of nondestructive plant phenotype
technology has attracted much attention in crop nitrogen
nutrition diagnosis and recommendation of nitrogen appli-
cation. Recently, a Greenseeker (N Tech, USA) meter has
been applied to chrysanthemum, cotton, grass, and other
crops to evaluate crop nitrogen status (Jia et al. 2014, Bu
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et al. 2016, Colaco et al. 2018, Bracke et al. 2019). SPAD
instrument (Konica Minolta, Japan) has been successfully
applied to corn, Macadamia, potato, and other crops by
measuring the Chl content of plant leaves to reflect the
nitrogen nutrition of crops (Edalat et al. 2019, Galanti et al.
2019, Li et al. 2019). The digital imaging technology
reflects the nitrogen nutrition status of crops, which is
also related to wheat, coffee, and other crops (Elsayed
et al. 2018, Putra and Soni 2018). Hyperspectral remote
sensing technology has been shown to be a promising tool
to rapidly monitor crop growth status, it has been used for
nitrogen nutrition monitoring of soybean, rice, and other
crops (Bi et al. 2018, Chlingaryan et al. 2018, Zhou et al.
2018). SPAD monitoring of plant nitrogen nutrition
is easily affected by crop varieties and growth period.
Digital imaging technology, GreenSeeker technology,
and hyperspectral remote sensing technology are three
technologies that have the drawback of providing a mixed
measurement of signal originating from both the plants
and the soil (Feng et al. 2015).

As an active remote sensing technology, chlorophyll
fluorescence (ChlF) has amajor advantage that fluorescence
signals originate only from the plants. ChlF detection has
been successfully used to monitor the health and growth
of plants. Presently, there have been few reports on ChlF
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Abbreviations: ChlF — chlorophyll fluorescence; ETR . — maximum electron transport rate; F,' — maximum fluorescence under light;
F, — fluorescence in stable state; F./F,, — maximum efficiency of PSII photochemistry under dark adaptation; F,/F, — potential activity of
PSII; LNC — leaf nitrogen content; qnx — nonphotochemical quenching.
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and the quantitative relationship with plant N status. The
primary aim of this work was to evaluate the suitability
of ChlIF to accurately determine the plant N status in
crops (sugar beet) using a hand-held device under field
conditions. The anticipated results can provide technical
support and a theoretical basis for diagnosing N nutrition
and for recommending fertilization of the crop using the
ChlIF technique.

This experiment was conducted at the experiment
station of Agricultural College, Shihezi University, China
(44°20'N, 88°30'E) in 20172018 growing seasons. Sugar
beet seeds (Beta356, Beta Seed Company, USA) were sown
on 18 April, 2017 and 21 April, 2018 with a row spacing
of 20 cm and a plant spacing of 50 cm. Sugar beet seeds
(KWS9147, KWS Seed Company, Germany) were sown
on 21 April, 2018 with a row spacing of 20 cm and a plant
spacing of 50 cm. It was used to verify the reliability of the
model. There were four N [CO(NH,),] (46% N) treatments
(0, 75, 150, and 225 kg(N) ha™!, as NO, N75, N150, and
N225), and each fertilizer treatment was divided into four
applications (100% prior to seeding as R1; 70% prior to
seeding and 30% at canopy development as R2; 50% prior
to seeding and 50% at canopy development as R3; 30%
prior to seeding and 70% at canopy development as R4).
Irrigation (7,500 m® ha™') was applied during the entire
growth, with one drip irrigation tape laid between two
rows of sugar beets. P and K fertilizers (P,Os: 345 kg ha!;
K>0: 210 kg ha™') were applied once as base fertilizers.

After all N fertilizer was applied, functional leaves
[at the canopy development stage (the 10" leaf measured
50 d after emergence), at the storage root development
stage (the 15" leaf measured 75 d after emergence), and
at the sugar accumulation stage (the 35" leaf measured
91 d after emergence)] were selected to measure the fast
light response curve by using the PAM-2500 chlorophyll
fluorometer (Walz, Germany). First, leaves were dark-
adapted for 30 min using PAM-2500s (Walz, Germany)
leaf clamp. The light intensity was set at 0, 9, 34, 67, 104,
144, 201, 366, 622, 984; 1,163; and 1,666 umol(photon)
m~2 s7'; and data were obtained after stabilization. The
maximum electron transport rate (ETRm.) was obtained
by the instrument according to equation:

ETR = ET R (1 - ¢ PARETRN® ) o BARE TR (1)

where ETR is the electron transfer rate [pmol(e”) m= s'];
ETRuax is maximum electron transfer efficiency [umol(e")
m? s']; PAR is the photosynthetic active radiation
[umol(photon) m s7']; a is the initial slope of the
curve (dimensionless); B is photoinhibition parameter
(dimensionless). Leaf nitrogen concentration (LNC [%])
is the ratio between the total nitrogen accumulation in
the leaves and the corresponding total dry mass at each
period. All sample components were placed in a forced-air
oven, killed for 30 min at 105°C, and dried to a constant
mass at 80°C. The samples were ground, and the Kjeldahl
method was used to determine the leaf nitrogen content
(Bao 2000):
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N =(V % 0.05 x 14 x 100)/(1,000 x M) ©)

where N is the leaf nitrogen content [%]; V is the volume
of HCI consumed [ml]; M is the mass of the sample [g].

The plant nitrogen nutrition index (NNI) was calculated
according to Ata-Ul-Karim et al. (2014):

NNI = N./Nop (3)

where N, is the measured value of the nitrogen concen-
tration [%] in the leaf; Ny, is the optimum nitrogen
concentration obtained by the sugar yield nitrogen response
model [%] across the no-N treatment and the excessive-N
treatment.

Statistical analyses were conducted with experimental
data of three years using SPSS /2.0 software (SPSS Inc.,
Chicago, USA). Correlation analyses were conducted
between ChIF parameters and leaf and plant N concen-
trations to determine the relationship between ChlF
parameters and nitrogen concentration in leaves and
plants. Plotting was completed with software Origin 8.5
(OriginLab, USA).

Regression analysis showed that at the canopy develop-
ment, storage root development, and sugar accumulation
stage, the relationships between ETR,.. and leaf N
concentration (LNC) had a unified regression equation.
The relationship of LNC and ETR,.« exhibited a greater
difference between canopy development, storage root
development, and sugar accumulation stage, so the
regression equations were established separately based on
growth stages (Fig. 14-C). At the canopy development,
storage root development, and sugar accumulation stage,
the differences in ETR .« can reflect changes in LNC. There
was a significant positive correlation between ETRgx
and LNC in three growth periods, and the coefficient
of determination (R?) was 0.7099 (P<0.001), 0.8266
(P<0.001), and 0.8607 (P<0.001), respectively. There
was a significant positive correlation between measured
value and analog value in three growth periods, and the
correlation coefficient (r) was 0.906™ (P<0.001), 0.946™
(P<0.001),and 0.930"* (P<0.001), respectively (Fig. 1 D-F).
The best fit equation for LNC at different growth stages vs.
sugar yield was parabolic, and the determination coefficient
of R>>0.8086 (Fig. 2). It can be seen from the curve that
when the LNC exceeds a certain value in different growth
periods, the sugar production decreases. According to the
equation, we obtained the optimal LNC of three growth
periods, which were 4.44, 3.32, and 4.01%.

Nitrogen (N) is a critical element for plant growth
and productivity that influences photosynthesis and Chl
fluorescence and LNC is a major biochemical parameter
for estimating photosynthetic efficiency and crop yields
(Yang et al. 2019). Previous studies have found that the
yield and quality of crops decrease when the amount of
nitrogen fertilizer exceeds a certain amount (Draycott
and Christenson 2003, Bagherzadeh et al. 2014, Fei et al.
2019). So nondestructive and timely monitoring of crop
structural and biochemical traits is of major importance
to assess the physiological and phenological status of the
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plants and to further understand their functioning over
time (Jay et al. 2019). The traditional methods of crop
nitrogen diagnosis mainly include soil mineral nitrogen,
plant total nitrogen, nitrate, and diphenylamine. Due to
the difference of heredity and stage and the time needed,
the application of these detection methods is restricted by
some factors, such as poor adaptability, long processing
time (Feng et al. 2015). Wang et al. (2020) pointed out
that although hyperspectral and digital cameras were
successfully applied to some crops, the results were very
vulnerable to environmental factors. Some other studies
have found that blue light-induced chloroplast movement
in the leaves affects the accuracy of SPAD value (Naus
et al. 2010). Meanwhile, SPAD instrument may also cause
irreversible damage to leaves. Chl fluorescence technology
is an important noninvasive technology, which is used
to evaluate and quantify the damage of photosynthetic
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development; (B) storage root development; (C) sugar
accumulation stage.

apparatus, especially the PSII activity under environmental
stress (Baker and Rosenqvist 2004). This method can avoid
the influence of chloroplast movement by dark adapta-
tion of the measurement area. Low-N stress significantly
decreased Chl content and rapid light-response curves
of F.', Fs, qn, F./Fn, F./Fy, and actual photochemical
efficiency of PSII of leaves in maize (Wu et al. 2019).
N fertilizer application significantly increased electron
donor and acceptor performance of the PSII reaction center
in winter wheat (Yang et al. 2018). Our results showed that
LNC in sugar beet and the corresponding ChlF parameters
varied significantly at different N levels, providing a rich
source of information and a theoretical basis for estimating
plant nitrogen status using the ChlF technique. There was
a significant correlation between LNC and ETR.x. The
overall accuracy of the simulation equation at leaf was high
(R*>0.7), indicating that estimating a diagnosis standard
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for plant N status by ETR.« measurement of a single leaf
was reliable (Fig. 14—C). Some studies have proposed
that if the NNI = 1, the nitrogen nutrition is appropriate.
If the NNI > 1, the nitrogen nutrition is excessive; if the
NNI < 1, the nitrogen nutrition is insufficient (Ma et al.
2018). Calculating the NNI according to Eq. 3, we can
make corresponding nitrogen management measures. Our
study confirmed that chlorophyll fluorescence parameters
can be used to monitor nitrogen nutrition of crops (sugar
beet). This model can significantly facilitate the estimation
of in-season crop (sugar beet) N requirement and provide
strong technical support for the precision management of
N fertilization.
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