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Abstract

Two sugar beet cultivars, Beta 356 and KWS9147, were grown in field trials at four different nitrogen contents (0, 75, 
150, and 225 kg ha−1), and each fertilizer treatment was divided into four applications (100% prior to seeding; 70% prior 
to seeding and 30% at canopy development; 50% prior to seeding and 50% at canopy development; 30% prior to seeding 
and 70% at canopy development) in two consecutive growing seasons. Leaf chlorophyll fluorescence (ChlF) parameters 
and leaf nitrogen content were measured simultaneously at different growth stages, establishing an evaluation model 
of leaf nitrogen nutrition. The results showed that the correlation between ChlF parameters and leaf nitrogen content 
reached 0.7099** (canopy development), 0.8266** (storage root development) and 0.8607** (sugar accumulation stage). 
We conclude that the ChlF parameters can provide a decision-making method for N diagnosis and regulation in field 
production.
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et al. 2016, Colaco et al. 2018, Bracke et al. 2019). SPAD 
instrument (Konica Minolta, Japan) has been successfully 
applied to corn, Macadamia, potato, and other crops by 
measuring the Chl content of plant leaves to reflect the 
nitrogen nutrition of crops (Edalat et al. 2019, Galanti et al. 
2019, Li et al. 2019). The digital imaging technology 
reflects the nitrogen nutrition status of crops, which is 
also related to wheat, coffee, and other crops (Elsayed 
et al. 2018, Putra and Soni 2018). Hyperspectral remote 
sensing technology has been shown to be a promising tool 
to rapidly monitor crop growth status, it has been used for 
nitrogen nutrition monitoring of soybean, rice, and other 
crops (Bi et al. 2018, Chlingaryan et al. 2018, Zhou et al. 
2018). SPAD monitoring of plant nitrogen nutrition 
is easily affected by crop varieties and growth period. 
Digital imaging technology, GreenSeeker technology, 
and hyperspectral remote sensing technology are three 
technologies that have the drawback of providing a mixed 
measurement of signal originating from both the plants 
and the soil (Feng et al. 2015).

As an active remote sensing technology, chlorophyll 
fluorescence (ChlF) has a major advantage that fluorescence 
signals originate only from the plants. ChlF detection has 
been successfully used to monitor the health and growth 
of plants. Presently, there have been few reports on ChlF 

Nitrogen (N) is involved in the synthesis of amino acids, 
proteins, chlorophyll (Chl), and other substances in plants; 
it is one of the essential nutrients for growth, yield, and 
quality in crop (Choi et al. 2016, Jay et al. 2017). Yield 
and quality all increased with increasing N (within limits) 
application levels in cotton, maize, and so on. Excessive 
nitrogen fertilization may cause plant lodging, undesirable 
delayed senescence at later stages of growth, an increase 
in the incidence of pests and diseases, deterioration of crop 
yield and quality, and damage to the environment (Yang 
et al. 2012, Cordero et al. 2019). Timely diagnosis and 
timely quantitative fertilization are of great significance 
for crop growth. The traditional nitrogen management 
needs destructive sampling, which not only takes time 
and effort, but also delays the fertilization period. Fast, 
nondestructive, accurate monitoring and diagnosis of 
crop nitrogen nutritional status become more and more 
important and will help to determine the best management 
strategy and dynamic regulation of nitrogen use in crop.

Recently, the use of nondestructive plant phenotype 
technology has attracted much attention in crop nitrogen 
nutrition diagnosis and recommendation of nitrogen appli-
cation. Recently, a Greenseeker (N Tech, USA) meter has 
been applied to chrysanthemum, cotton, grass, and other 
crops to evaluate crop nitrogen status (Jia et al. 2014, Bu 



870

C. FEI et al.

and the quantitative relationship with plant N status. The 
primary aim of this work was to evaluate the suitability 
of ChlF to accurately determine the plant N status in 
crops (sugar beet) using a hand-held device under field 
conditions. The anticipated results can provide technical 
support and a theoretical basis for diagnosing N nutrition 
and for recommending fertilization of the crop using the 
ChlF technique.

This experiment was conducted at the experiment 
station of Agricultural College, Shihezi University, China 
(44°20'N, 88°30'E) in 2017–2018 growing seasons. Sugar 
beet seeds (Beta356, Beta Seed Company, USA) were sown 
on 18 April, 2017 and 21 April, 2018 with a row spacing 
of 20 cm and a plant spacing of 50 cm. Sugar beet seeds 
(KWS9147, KWS Seed Company, Germany) were sown 
on 21 April, 2018 with a row spacing of 20 cm and a plant 
spacing of 50 cm. It was used to verify the reliability of the 
model. There were four N [CO(NH2)2] (46% N) treatments 
(0, 75, 150, and 225 kg(N) ha–1, as N0, N75, N150, and 
N225), and each fertilizer treatment was divided into four 
applications (100% prior to seeding as R1; 70% prior to 
seeding and 30% at canopy development as R2; 50% prior 
to seeding and 50% at canopy development as R3; 30% 
prior to seeding and 70% at canopy development as R4). 
Irrigation (7,500 m3 ha–1) was applied during the entire 
growth, with one drip irrigation tape laid between two 
rows of sugar beets. P and K fertilizers (P2O5: 345 kg ha–1; 
K2O: 210 kg ha–1) were applied once as base fertilizers.

After all N fertilizer was applied, functional leaves 
[at the canopy development stage (the 10th leaf measured  
50 d after emergence), at the storage root development 
stage (the 15th leaf measured 75 d after emergence), and 
at the sugar accumulation stage (the 35th leaf measured 
91 d after emergence)] were selected to measure the fast 
light response curve by using the PAM-2500 chlorophyll 
fluorometer (Walz, Germany). First, leaves were dark-
adapted for 30 min using PAM-2500s (Walz, Germany) 
leaf clamp. The light intensity was set at 0, 9, 34, 67, 104, 
144, 201, 366, 622, 984; 1,163; and 1,666 μmol(photon) 
m–2 s–1; and data were obtained after stabilization. The 
maximum electron transport rate (ETRmax) was obtained 
by the instrument according to equation:

  xβPAR/ETRmaxαPAR/ETRma
max 1ETRETR  ee                  (1)

where ETR is the electron transfer rate [μmol(e–) m–2 s–1]; 
ETRmax is maximum electron transfer efficiency [μmol(e–) 
m–2 s–1]; PAR is the photosynthetic active radiation 
[μmol(photon) m–2 s–1]; α is the initial slope of the 
curve (dimensionless); β is photoinhibition parameter 
(dimensionless). Leaf nitrogen concentration (LNC [%]) 
is the ratio between the total nitrogen accumulation in 
the leaves and the corresponding total dry mass at each 
period. All sample components were placed in a forced-air 
oven, killed for 30 min at 105°C, and dried to a constant 
mass at 80°C. The samples were ground, and the Kjeldahl 
method was used to determine the leaf nitrogen content 
(Bao 2000):

N = (V × 0.05 × 14 × 100)/(1,000 × M)                          (2)

where N is the leaf nitrogen content [%]; V is the volume 
of HCl consumed [ml]; M is the mass of the sample [g].

The plant nitrogen nutrition index (NNI) was calculated 
according to Ata-Ul-Karim et al. (2014):
NNI = Na/Nopt                                                                  (3)

where Na is the measured value of the nitrogen concen-
tration [%] in the leaf; Nopt is the optimum nitrogen 
concentration obtained by the sugar yield nitrogen response 
model [%] across the no-N treatment and the excessive-N 
treatment.

Statistical analyses were conducted with experimental 
data of three years using SPSS 12.0 software (SPSS Inc., 
Chicago, USA). Correlation analyses were conducted 
between ChlF parameters and leaf and plant N concen-
trations to determine the relationship between ChlF 
parameters and nitrogen concentration in leaves and 
plants. Plotting was completed with software Origin 8.5 
(OriginLab, USA).

Regression analysis showed that at the canopy develop- 
ment, storage root development, and sugar accumulation 
stage, the relationships between ETRmax and leaf N 
concentration (LNC) had a unified regression equation. 
The relationship of LNC and ETRmax exhibited a greater 
difference between canopy development, storage root 
development, and sugar accumulation stage, so the 
regression equations were established separately based on 
growth stages (Fig. 1A–C). At the canopy development, 
storage root development, and sugar accumulation stage, 
the differences in ETRmax can reflect changes in LNC. There 
was a significant positive correlation between ETRmax 
and LNC in three growth periods, and the coefficient 
of determination (R2) was 0.7099 (P<0.001), 0.8266 
(P<0.001), and 0.8607 (P<0.001), respectively. There 
was a significant positive correlation between measured 
value and analog value in three growth periods, and the 
correlation coefficient (r) was 0.906** (P<0.001), 0.946** 
(P<0.001), and 0.930** (P<0.001), respectively (Fig. 1D–F). 
The best fit equation for LNC at different growth stages vs. 
sugar yield was parabolic, and the determination coefficient 
of R2>0.8086 (Fig. 2). It can be seen from the curve that 
when the LNC exceeds a certain value in different growth 
periods, the sugar production decreases. According to the 
equation, we obtained the optimal LNC of three growth 
periods, which were 4.44, 3.32, and 4.01%.

Nitrogen (N) is a critical element for plant growth 
and productivity that influences photosynthesis and Chl 
fluorescence and LNC is a major biochemical parameter 
for estimating photosynthetic efficiency and crop yields 
(Yang et al. 2019). Previous studies have found that the 
yield and quality of crops decrease when the amount of 
nitrogen fertilizer exceeds a certain amount (Draycott 
and Christenson 2003, Bagherzadeh et al. 2014, Fei et al. 
2019). So nondestructive and timely monitoring of crop 
structural and biochemical traits is of major importance 
to assess the physiological and phenological status of the 
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plants and to further understand their functioning over 
time (Jay et al. 2019). The traditional methods of crop 
nitrogen diagnosis mainly include soil mineral nitrogen, 
plant total nitrogen, nitrate, and diphenylamine. Due to 
the difference of heredity and stage and the time needed, 
the application of these detection methods is restricted by 
some factors, such as poor adaptability, long processing 
time (Feng et al. 2015). Wang et al. (2020) pointed out 
that although hyperspectral and digital cameras were 
successfully applied to some crops, the results were very 
vulnerable to environmental factors. Some other studies 
have found that blue light-induced chloroplast movement 
in the leaves affects the accuracy of SPAD value (Nauš  
et al. 2010). Meanwhile, SPAD instrument may also cause 
irreversible damage to leaves. Chl fluorescence technology 
is an important noninvasive technology, which is used 
to evaluate and quantify the damage of photosynthetic 

apparatus, especially the PSII activity under environmental 
stress (Baker and Rosenqvist 2004). This method can avoid 
the influence of chloroplast movement by dark adapta-
tion of the measurement area. Low-N stress significantly 
decreased Chl content and rapid light-response curves 
of Fm', Fs, qN, Fv/Fm, Fv/F0, and actual photochemical 
efficiency of PSII of leaves in maize (Wu et al. 2019).  
N fertilizer application significantly increased electron 
donor and acceptor performance of the PSII reaction center 
in winter wheat (Yang et al. 2018). Our results showed that 
LNC in sugar beet and the corresponding ChlF parameters 
varied significantly at different N levels, providing a rich 
source of information and a theoretical basis for estimating 
plant nitrogen status using the ChlF technique. There was 
a significant correlation between LNC and ETRmax. The 
overall accuracy of the simulation equation at leaf was high 
(R2>0.7), indicating that estimating a diagnosis standard 

Fig. 1. Linear relationship between 
leaf nitrogen content (LNC) and 
maximum electron transport rate 
(ETRmax) in sugar beet and 1:1 linear 
regression between simulated value 
and measured value. (A,D) Canopy 
development; (B,E) storage root 
development; (C,F) sugar accumu-
lation stage.

Fig. 2. Regression curves between sugar yield and 
leaf N concentration at different developmental 
stages of sugar beet in 2017 and 2018. (A) Canopy 
development; (B) storage root development; (C) sugar 
accumulation stage. 
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for plant N status by ETRmax measurement of a single leaf 
was reliable (Fig. 1A–C). Some studies have proposed 
that if the NNI = 1, the nitrogen nutrition is appropriate. 
If the NNI > 1, the nitrogen nutrition is excessive; if the 
NNI < 1, the nitrogen nutrition is insufficient (Ma et al. 
2018). Calculating the NNI according to Eq. 3, we can 
make corresponding nitrogen management measures. Our 
study confirmed that chlorophyll fluorescence parameters 
can be used to monitor nitrogen nutrition of crops (sugar 
beet). This model can significantly facilitate the estimation 
of in-season crop (sugar beet) N requirement and provide 
strong technical support for the precision management of 
N fertilization. 
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