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Sensing rice drought stress is crucial for agriculture, and chlorophyll a fluorescence (ChlF) is often used. However, 
existing techniques usually rely on defined feature points on the OJIP induction curve, which ignores the rich 
physiological information in the entire curve. Independent Component Analysis (ICA) can effectively preserve 
independent features, making it suitable for capturing drought-induced physiological changes. This study applies 
ICA and Support Vector Machine (SVM) to classify drought levels using the entire OJIP curve. The results show that  
the 20-dimensional ChlF features obtained by ICA provide superior classification performance, with Accuracy, 
Precision, Recall, F1-score, and Kappa coefficient improving by 18.15%, 0.18, 0.17, 0.17, and 0.22, respectively, 
compared to the entire curve. This work provides a rice drought stress levels determination method and highlights 
the importance of applying dimension reduction methods for ChlF analysis. This work is expected to enhance stress 
detection using ChlF.

Highlights

● Dimensionality reduction was applied to extract OJIP induction
● Dimensionality reduction may keep more information than the defined OJIP
    induction
● Dimensionality reduction improves rice drought stress level determination

Introduction

As the global population rises, the demand for rice 
increases (van Dijk et al. 2021, Mohidem et al. 2022), but 
water scarcity worsened by climate change threatens rice 
cultivation and food security (López-Pacheco et al. 2019). 
Detecting and mitigating drought stress in rice is essential 

for sustainable food production. Photosynthesis, crucial 
for plant survival, is affected by water status, with drought 
stress reducing photosynthetic efficiency (Xu et al. 2021). 
Real-time monitoring of crop drought stress is challenging 
due to the lack of universal detection techniques. 
Chlorophyll a fluorescence (ChlF), a noninvasive and 
reliable tool, offers valuable insights into plant health, 
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photosynthetic efficiency, and stress conditions (Maxwell 
and Johnson 2000), making it widely used for evaluating 
plant responses to environmental stresses, including 
drought (Krause and Weis 1991, Guo and Tan 2015).

Among them, OJIP induction is a commonly used 
protocol for measuring ChlF. The OJIP induction is very 
complex and contains much information, which can 
provide abundant information, especially when exploring 
the details and nonlinear response of photosynthetic 
systems. Substantial transient changes in ChlF were 
observed in plants under different types of environmental 
stress (Chen et al. 2021). Under drought conditions, 
water supply is limited, leading to the closure of plant 
stomata and decreasing CO2 absorption, thereby affecting 
photosynthesis and electron transfer efficiency. It can also 
cause damage to plants, such as the destruction of PSII 
structure, which affects the emission of fluorescence.  
The OJIP curve under drought stress may show a delay 
between O and J points, indicating hindered electron 
transfer, while the P point may decrease, indicating  
a decrease in cooperative ability (Cornic 2000, Colom 
and Vazzana 2003, Zargar et al. 2017). By capturing 
photosynthesis and physiological responses, the OJIP curve 
provides a new approach for studying the mechanisms of 
rice response to drought and identifying resistant varieties.

The ChlF induction features are considered as  
a simplified and standardized description of the OJIP 
induction (Horaczek et al. 2020, Zagorchev et al. 2021), 
many studies on drought stress detection based on ChlF 
rely on a few defined feature values (O, J, I, and P values) 
on the ChlF induction and the features obtained through 
algebraic operations based on O, J, I, and P values for 
statistical analysis (Rastogi et al. 2020, Lima-Moro et al. 
2022, Španić et al. 2023, Chegini et al. 2024). However, 
the issue lies in overlooking the high-dimensional nature of 
OJIP data, which contains numerous features, and failing 
to consider the potential physiological information related 
to rice drought stress that may exist in the residual values 
of the entire OJIP curve, leading to reduced accuracy in 
stress identification. There is limited attempt to use the 
entire OJIP induction for drought stress detection, resulting 
in a large amount of information on the OJIP induction 
being abandoned. This may limit the potential of ChlF for 
rice drought stress detection. Therefore, in-depth research 
on the whole OJIP induction for rice detection should be 
paid more attention.

OJIP data is usually high-dimensional data containing 
a large number of features. With the rapid development 
of computer technology, artificial intelligence technology 
can process high-dimensional data and is adept at 
discovering complex patterns and correlations between 
data. Dimensionality reduction methods can simplify data 
structures, reduce redundant information, extract the most 
representative features, and thus improve the generalization 
ability and accuracy of models. Artificial intelligence 
technology plays a significant role in ChlF data analysis 
(Chen et al. 2022, Bartold and Kluczek 2023, Xia et al. 
2023a,b), and even in making use of the information on 
the whole OJIP induction. For example, Xia et al. (2022) 
demonstrated that the entire OJIP induction contains 

more information on plant physiological states. The SVM 
model can be used as an effective tool for rice drought 
stress identification. By combining artificial intelligence 
technology and feature dimensionality reduction methods, 
OJIP data can be effectively processed and analyzed, 
more effectively mining information related to rice 
drought stress, and helping researchers understand the 
biological significance behind the data. Therefore, there 
is a need to find suitable feature dimensionality reduction 
methods to extract the main photosynthetic features from 
the OJIP curve and capture the key dynamic changes in  
the photosynthetic process of rice under drought conditions. 
However, only a limited number of feature extraction 
methods have been applied to OJIP curve analysis until 
now (Shomali et al. 2023). Existing approaches primarily 
focus on the application of single methods, these methods 
vary in their data processing capabilities, noise sensitivity, 
and biological interpretability, with little systematic 
research comparing their effectiveness. Thus, conducting 
comparative studies on the effectiveness of feature 
extraction techniques is essential for optimizing OJIP 
curve analysis, enhancing accuracy, and enabling broader 
applications.

In this paper, various dimensionality reduction methods 
were applied to the OJIP induction curves of rice under 
different drought stress levels to preserve ChlF information 
while reducing data complexity. Independent Component 
Analysis (ICA) was initially used to analyze the ChlF data 
due to its ability to preserve data independence, separate 
non-Gaussian signals, and enhance signal interpretability, 
which focuses on the independence of data components, 
enabling the identification of multiple independent 
physiological processes in rice under drought stress. 
ICA also reduces redundancy and noise, simplifying  
the data and improving analysis accuracy. Additionally, 
it is particularly effective for handling complex temporal 
data, revealing physiological changes in rice over time 
and providing deeper insights into stress responses and 
adaptation mechanisms. Subsequently, a Support Vector 
Machine (SVM) was applied to classify drought stress 
levels in rice based on the reduced OJIP data. Through  
a comparison of different dimensionality reduction 
methods, this study identifies new ChlF features related 
to drought stress, offering an efficient and cost-effective 
approach for assessing drought stress in rice.

Materials and methods

Experimental samples: The experimental samples were 
rice plants grown for 40 d, and their growth area was 
Huai'an, Jiangsu, China. To achieve the same level of water 
status, the rice roots were fully immersed in water for 2 h 
before ChlF was measured (control group). The rice roots 
were then placed in a concentration of 20% polyethylene 
glycol-600 (PEG-600) for different drought stress level 
treatments (Awan et al. 2021, Peršić et al. 2022): rice 
drought stress treatment for 0 h – D0, rice drought stress 
treatment for 1 h – D1, rice drought stress treatment for  
2 h – D2, and rice drought stress treatment for 4 h – D4. 
The number of rice plant samples treated with drought 
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stress levels for 0, 1, 2, and 4 h were 1,335, 1,093, 1,322, 
and 1,146, respectively.

Fluorescence measurement: The ChlF of the same rice 
leaf under different drought stress levels (D0, D1, D2, 
and D4) after 20 min of dark adaptation was measured by 
using the OJIP mode in FluorPen, PSI, Photon Systems 
Instruments, Czech Republic. The light intensity of 
exciting the ChlF was 2,400 µmol(photon) m–2s–1.

Data analysis: The involved ChlF datasets include  
(1) the OJIP induction (457 values) and (2) the ChlF 
induction parameters (Fo, Fj, Fi, Fm, Fv, Vj, Vi, Fm/Fo,  
Fv/Fo, Fv/Fm, Mo, Area, Fix Area, Sm, Ss, N, φPo, ψo, 
φEo, φDo, φPav, PIABS, ABS/RC, TRo/RC, ETo/RC, and  
DIo/RC, as shown in Appendix, Stirbet and Govindjee 
2011, Rachoski et al. 2015). This ChlF data has been 
analyzed in previous studies, confirming its effectiveness 
(Xia et al. 2022, 2023a,b). ChlF datasets need to be 
normalized according to Z-score standardization before 
analysis for all levels of drought stress. The Z-score 
normalization formula is Z = (x – μ)/σ, where x is the 
value of the ChlF data point, µ is the mean of the ChlF 
dataset, and σ is the standard deviation of the ChlF 
dataset. Principal Component Analysis (PCA), Isometric 
Feature Mapping (Isomap), Singular Value Decomposition 
(SVD), Local Linear Embedding (LLE), and Independent 
Component Analysis (ICA) were used to perform feature 
dimensionality reduction on the OJIP induction and 
identify the optimal dimensionality reduction method by 
comparing different approaches within the same dataset. 
An SVM model was used to classify rice plants under 
different drought stress levels (Xia et al. 2022). 80% of 
the samples were randomly selected as the training dataset 
and the remaining 20% as the testing dataset. The kernel 
function of SVM was the Gaussian kernel function (RBF), 
the penalty factor (C) was 10, and Gamma was the default 
value. The data analysis process was conducted on  
Python 3.6.

One-way analysis of variance (ANOVA) was performed 
on the ChlF data under different drought stress levels, and 
Tukey's Honestly Significant Difference test (Tukey HSD) 
was performed with a p-value of 0.05 or 0.01 to test for 
significant differences in the data between different drought 
stress levels in SPSS (IBM SPSS Amos 21, Armonk, NY).

Evaluating indicators: Accuracy is a measure of the 
correct classification ratio of the SVM model on rice 
drought stress levels, usually used to evaluate the overall 
performance of the SVM model. The calculation formula 
for Accuracy is: 

Accuracy = Numture/Numall                                                 (1)

The Numture represents the number of rice samples under 
drought stress level correctly classified by the SVM model, 
and Numall represents the total number of rice samples.

Precision represents the proportion of rice samples 
correctly classified by the SVM model under a specific 
drought stress level, which is used to measure the 

correctness of the model for a group. The calculation 
formula for Precision is:

Precision = TP/(TP + FP)                                              (2)

The TP represents the number of rice samples under  
a specific drought stress level that the SVM model 
correctly classified, and the FP represents the number 
of rice samples under a specific drought stress level that  
the SVM model incorrectly classified.

Recall refers to the ratio of the number of rice samples 
successfully classified by the SVM model for a certain 
drought stress level to the actual total number of samples 
in that category, which is used to measure whether  
the model can capture all instances of a certain drought 
stress level in rice. The calculation formula for Recall is:

Recall = TP/(TP + FN)                                                   (3)

The TP represents the number of rice samples correctly 
identified by the SVM model for a certain drought stress 
level, and the FN represents the number of rice samples 
incorrectly identified by the SVM model for other drought 
stress levels, but belonging to that drought stress level. 
The range of Recall is between 0 and 1, and the higher  
the value, the better the model performs in capturing 
samples of that drought stress level. The SVM model can 
better avoid misclassifying the real rice samples of that 
drought stress level as other drought stress level.

The F1-score comprehensively considers the Accuracy 
and Recall of the SVM model, and is the harmonic average 
of Accuracy and Recall. The calculation formula for  
F1-score is:

F1-score = 2 × Precision × Recall/(Precision + Recall)  (4)

The F1-score ranges from 0 to 1, and the higher the value, 
the better the classification performance of the SVM model 
at a certain drought stress level.

In this work, after the Precision, Recall, and F1-score 
were calculated for each drought stress level, the macro 
average method was used to integrate the Precision, Recall, 
and F1-score. Firstly, for each rice drought stress level, 
the Recall and F1-score for that drought stress level were 
calculated separately. Then, the Precision, Recall, and 
F1-score for all drought stress categories were averaged, 
without considering the number of rice samples for each 
drought stress category.

Cohen's Kappa (abbreviated as Kappa) coefficient 
is a statistical indicator that can be used to measure  
the consistency between model identification and actual 
observation.

Results

OJIP induction under different drought levels:  
The mean of rice OJIP induction under different drought 
stress levels is shown in Fig. 1S (supplement). Although 
Fig. 1 shows that ChlF intensity (D1, D2, and D4) was 
higher under drought stress compared to non-drought 
conditions (D0), no significant difference in ChlF intensity 
(D1, D2, and D4) was observed across different drought 
durations.
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Drought stress classification from different ChlF datasets 
without dimensionality reduction: To compare the 
ability of two ChlF datasets (OJIP induction and induction 
features) to distinguish drought stress levels of rice,  
the computation was carried out through ten independent 
runs using the SVM model. Tables 1S (supplement)  
and 2S (supplement) show the maximum (Max), minimum 
(Min), and average evaluation indicators (Accuracy, 
Precision, Recall, F1-score, and Kappa) about different 
ChlF datasets in the training dataset and test dataset.  
There is not much difference in accuracy between  
the model on the training and testing sets in Tables 1S and 
2S, which indicates that the model has good generalization 
ability and can effectively maintain similar performance to 
the training dataset on the test dataset. It can be seen that 
the Accuracy, Precision, Recall, F1-score, and Kappa of 
drought stress level classification using the OJIP induction 
as the SVM model input were higher, i.e, 65.50%, 0.65, 
0.65, 0.65 and 0.54, respectively, and 12.86%, 0.12, 
0.13, 0.13, and 0.17 higher than the induction features as  
the input of the SVM model (Table 2S). 

The box plot in Fig. 1 shows the distribution of 
classification evaluation indicators for drought stress levels 
after ten independent runs of the SVM model on the two 
different ChlF datasets. It can be seen that the distribution 
of classification evaluation indicators of the SVM model 
was relatively concentrated under different ChlF datasets, 
indicating that the SVM model has good stability in  
the identification of rice drought stress levels.  
The Accuracy, Precision, Recall, F1-score, and Kappa 
of rice drought stress level classification using the OJIP 
induction as input of the SVM model was higher than that 
using the 26 ChlF induction features as input dataset of  
the SVM model.

The confusion matrix when using the SVM model to 
classify drought stress levels for the two different ChlF 
datasets (the OJIP induction and the induction features) is 
shown in Fig. 2S (supplement). Fig. 2SA and Fig. 2SB are 
based on the OJIP induction and the induction features, 
respectively. The values in the confusion matrix represent 
the probability of classifying the true drought stress levels 

in rice represented by the vertical axis into the identified 
drought stress level of rice represented by the horizontal 
axis using the SVM model. The larger the diagonal value 
in the confusion matrix, the higher the classification 
accuracy. Comparing Fig. 2SA and Fig. 2SB, we can see 
that the classification accuracy of each drought stress level 
based on the OJIP induction was higher than that based on 
the induction features.

Drought classification based on the OJIP induction 
with dimensionality reduction: To map the whole OJIP 
induction to a new low dimensional feature space to reduce 
the dimensionality of the OJIP induction, create a new 
feature space, and retain the information of the original 
OJIP induction as much as possible, the original OJIP 
induction was processed linearly or nonlinearly to obtain 
new ChlF features. PCA, SVD, ICA, Isomap, and LLE 
were used to reduce the dimensionality of the original OJIP 
induction to obtain new ChlF features. Based on the new 
ChlF features obtained after the dimensionality reduction 
methods, SVM was used to identify different drought stress 
levels. The evaluation indicators (Accuracy, Precision, 
Recall, F1-score, and Kappa) of the classification of 
different drought stress levels using SVM based on  
the new ChlF features obtained after feature dimensionality 
reduction are shown in Tables 1–5.

It can be seen that the new ChlF features obtained after 
dimensionality reduction of the original OJIP induction 
based on ICA has higher classification Accuracy, Precision, 
Recall, F1-score, and Kappa coefficient than PCA, SVD, 
IOPMAP, and LLE (Tables 1–5). The SVM model can 
achieve optimal evaluation indicators for identifying 
drought stress levels based on the new ChlF features with 
20 dimensions obtained by ICA; the Accuracy, Precision, 
Recall, F1-score, and Kappa coefficient were 83.68%, 
0.83, 0.82, 0.82, and 0.77, respectively (Tables 1–5).

The evaluation indicators of different drought stress 
levels using SVM under different dimensionality reduction 
methods for the OJIP induction are shown in Fig. 3S 
(supplement). The Accuracy, Precision, Recall, F1-score, 
and Kappa coefficient were normalized to the maximum 
values in Fig. 3S. We can see from Fig. 3S that  
the classification Accuracy, Precision, Recall, F1-score, 
and Kappa coefficient of ICA dimensionality reduction 
were the highest, significantly better than PCA, SVD, 
Isomap, and LLE. When using ICA to reduce the 
dimensionality of the OJIP induction to 20 dimensions  
of the new ChlF features, the evaluation indicators were 
the highest (Fig. 3S).

To evaluate the performance of the new ChlF features 
derived from the OJIP induction after reducing the ChlF 
data to 20 dimensions using the ICA method, the heatmap 
in Fig. 4S (supplement) illustrates the contribution of  
the OJIP induction (457 features) to the new ChlF 
features. The results reveal that OJIP induction contributed  
a specific value to the new ChlF features.

The distribution of evaluation indicators for ten 
independent runs of rice drought stress level classification 
using SVM based on new ChlF features with 20 
dimensions after dimensionality reduction of the original 

Fig. 1. Distribution of the evaluation indicators for different 
levels of rice drought stress classification based on different ChlF 
datasets. n = 10.
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OJIP induction by ICA is shown in Fig. 2. It shows that  
the classification Accuracy, Precision, Recall, and F1-score 
were all above 0.80, and the Kappa coefficient was above 
0.74. 

The confusion matrix when the SVM model was used 
to classify the drought stress levels from the new ChlF 
features obtained by ICA dimension reduction is shown 
in Fig. 3. We found that the classification Accuracy of 
each drought stress level was above 81%, the overall 
classification Accuracy was 83.56% (the average 
classification Accuracy of each drought stress level).  
In addition, 7.73% of the rice samples under drought stress 
treatment for 1 h (D1) were incorrectly classified into 4 h 

of drought stress level treatment (D2), while 10.55% of 
the rice under drought stress treatment for 2 h (D2) was 
incorrectly classified into D4 (Fig. 3).

As shown in Fig. 5S (supplement), the new ChlF 
features obtained after ICA dimensionality reduction 
showed different changes with the extension of drought 
duration (the values in Fig. 5S were normalized to the 
maximum value). Table 3S (supplement) shows the p-value 
of the new ChlF features with 20 dimensions obtained after 
ICA dimension reduction for the OJIP induction between 

Table 1. Accuracy based on the new ChlF features. PCA – Principal 
Component Analysis; SVD – Singular Value Decomposition; 
ICA – Independent Component Analysis; Isomap – Isometric 
Feature Mapping; LLE – Local Linear Embedding. The bold font 
highlights the best value among all comparison indicators.

Dimension PCA 
[%]

SVD 
[%]

ICA 
[%]

Isomap 
[%]

LLE 
[%]

  5 48.67 45.05 56.70 37.87 31.70
10 60.39 48.10 75.81 39.24 32.08
15 62.76 48.43 79.78 39.66 33.09
20 62.86 48.41 83.68 39.95 33.53
25 62.95 48.38 82.22 40.45 34.47
30 62.95 48.37 80.49 40.36 34.76

Table 2. Precision based on the new ChlF features. PCA – Principal 
Component Analysis; SVD – Singular Value Decomposition; 
ICA – Independent Component Analysis; Isomap – Isometric 
Feature Mapping; LLE – Local Linear Embedding. The bold font 
highlights the best value among all comparison indicators.

Dimension PCA SVD ICA Isomap LLE

  5 0.48 0.45 0.57 0.38 0.29
10 0.60 0.48 0.76 0.39 0.32
15 0.62 0.48 0.80 0.40 0.33
20 0.63 0.48 0.83 0.40 0.34
25 0.63 0.48 0.82 0.40 0.35
30 0.63 0.48 0.80 0.40 0.36

Table 3. Recall based on the new ChlF features. PCA – Principal 
Component Analysis; SVD – Singular Value Decomposition; 
ICA – Independent Component Analysis; Isomap – Isometric 
Feature Mapping; LLE – Local Linear Embedding. The bold font 
highlights the best value among all comparison indicators.

Dimension PCA SVD ICA Isomap LLE

  5 0.48 0.44 0.57 0.37 0.30
10 0.60 0.47 0.76 0.38 0.31
15 0.62 0.47 0.79 0.39 0.32
20 0.62 0.47 0.82 0.39 0.33
25 0.62 0.47 0.82 0.40 0.34
30 0.62 0.47 0.80 0.39 0.34

Table 4. F1-score based on the new ChlF features. PCA – Principal 
Component Analysis; SVD – Singular Value Decomposition; 
ICA – Independent Component Analysis; Isomap – Isometric 
Feature Mapping; LLE – Local Linear Embedding. The bold font 
highlights the best value among all comparison indicators.

Dimension PCA SVD ICA Isomap LLE

  5 0.48 0.42 0.56 0.36 0.20
10 0.60 0.46 0.76 0.38 0.29
15 0.62 0.46 0.79 0.38 0.30
20 0.62 0.46 0.82 0.39 0.32
25 0.62 0.46 0.82 0.39 0.33
30 0.62 0.46 0.80 0.39 0.34

Table 5. Kappa based on the new ChlF features. PCA – Principal 
Component Analysis; SVD – Singular Value Decomposition; 
ICA – Independent Component Analysis; Isomap – Isometric 
Feature Mapping; LLE – Local Linear Embedding. The bold font 
highlights the best value among all comparison indicators.

Dimension PCA SVD ICA Isomap LLE

  5 0.31 0.26 0.42 0.16 0.07
10 0.47 0.30 0.68 0.18 0.08
15 0.50 0.31 0.73 0.19 0.10
20 0.50 0.31 0.77 0.19 0.10
25 0.50 0.30 0.76 0.20 0.12
30 0.50 0.30 0.74 0.20 0.12

Fig. 2. Distribution of classification evaluation indicators for 
different levels of rice drought stress classification based on new 
ChlF features with 20 dimensions. n = 10.
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different drought stress levels. The results indicate that 
most of the new ChlF features obtained by ICA were 
statistically different between different drought stress 
levels (Table 3S).

To investigate the correlation between known drought-
stress biomarkers (such as Fv/Fm, Fo/Fm, PIABS) and the new 
ChlF features derived from ICA dimensionality reduction, 
Fig. 6S (supplement) presents the correlation heatmap 
between these new features and OJIP induction parameters. 
Fig. 6S demonstrates that some new features obtained 
through dimensionality reduction show significant 
correlations with the OJIP induction parameters.

To further evaluate the drought classification 
performance of the new ChlF features derived from  
the dimensionality reduction of OJIP induction using ICA 
across three drought stress levels, Table 4S (supplement) 
presents the maximum (Max), minimum (Min), and 
average values of the evaluation indicators (Accuracy, 
Precision, Recall, F1-score, and Kappa) for classifying  
the three drought stress levels based on the new 
20-dimensional ChlF features obtained after ICA 
dimensionality reduction. From Table 4S, we see that using 
the new ChlF features with a dimension of 20 obtained 
after ICA dimensionality reduction, the mean values of 
classification Accuracy, Precision, Recall, F1-score, and 
Kappa can reach over 88%, 0.89, 0.87, 0.88, and 0.81, 
respectively.

The confusion matrix of three different drought stress 
levels based on the new ChlF features is presented in 
Fig. 7S (supplement). The classification Accuracy of 
each drought stress level was above 87%, and the overall 
classification Accuracy for D012, D014, and D024 were 
90.52, 88.37, and 83.56%, respectively (Fig. 7S).

Discussion

In plant physiology, the OJIP induction contains a large 
amount of plant physiological information, but high 

dimensionality leads to complex and time-consuming 
calculations. Machine learning methods have great 
advantages in processing large data and discovering key 
information, which helps reveal important features in plant 
physiological processes from ChlF OJIP induction.

The classification Accuracy of drought stress level 
using all data on the OJIP induction as the input dataset 
for the SVM model was higher than that only using the 
ChlF induction features as the input dataset for the SVM 
model (Table 2S). This result was expected, as OJIP 
measures dynamic changes in plants at various stages 
of photosynthesis, providing more comprehensive and 
integrated data information. In contrast, using only 
the O, J, I, and P feature points on the OJIP curve and 
the ChlF parameters obtained through mathematical 
operations based on these feature points may lose some 
key information, limiting the model's understanding of 
complex physiological states. The result further confirms 
that richer and more useful plant physiological information 
is hidden in the OJIP induction, which can help construct 
a more discriminative classification model for rice drought 
stress, making SVM models have stronger classification 
ability and robustness.

Applying the dimensionality reduction method in OJIP 
induction analysis is beneficial for better extracting ChlF 
information. This can be proven from the analysis results. 
Compared with the whole OJIP induction as the input 
dataset of the SVM model (Table 2S), the classification 
Accuracy, Precision, Recall, F1-score, and Kappa 
coefficient of the new ChlF feature projections with 20 
dimensions obtained by ICA dimensionality reduction 
were improved by 18.15%, 0.18, 0.17, 0.17, and 0.22 
(Table 2S vs. Tables 1–5), respectively. Dimensionality 
reduction reduces redundant information in the data, 
highlights key features of rice drought on the OJIP curve, 
and improves the accuracy of the SVM model in drought 
classification. This enables SVM classification to capture 
the characteristics of rice drought stress, reduces the 
risk of overfitting, improves the generalization ability of  
the model, and achieves more significant performance in 
drought classification. Compared to PCA, SVD, Isomap, 
LLE, and other methods, Tables 1–5 and Fig. 3S show 
that the best performance was achieved when classifying 
rice drought stress using the new ChlF features obtained 
through ICA dimensionality reduction. These feature 
dimensionality reduction methods (PCA, Isomap, SVD, 
LLE, ICA) differ fundamentally in their principles. 
PCA and SVD focus on linear dimensionality reduction 
by maximizing data variance, which is effective for 
capturing global variability in the data. In contrast, LLE 
and Isomap emphasize preserving the local structure of 
data, making them more suitable for nonlinear data. While 
PCA and SVD are well-suited for Gaussian data, they 
struggle to capture nonlinear and complex patterns. ICA, 
however, decomposes data into independent components, 
which is ideal for separating non-Gaussian signals and 
identifying independent physiological processes. This 
makes ICA particularly effective for analyzing complex 
biological signals. In the case of OJIP data, ICA enhances  
the identification of physiological changes in rice under 

Fig. 3. The confusion matrix based on the new ChlF features with 
20 dimensions using ICA. D0, D1, D2, and D4 represent rice 
drought stress treatment for 0 h, rice drought stress treatment for 
1 h, rice drought stress treatment for 2 h, and rice drought stress 
treatment for 4 h, respectively.
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drought stress by removing redundancy and noise, 
preserving key features, and improving classification 
accuracy. As a result, ICA typically outperforms 
other dimensionality reduction methods in OJIP data 
classification. In the classification of three different levels 
of rice drought stress (D0, D1, and D4), the Accuracy and 
Kappa coefficient of using the dimensionality reduction 
method in this paper is better than that of Xia et al. (2022) 
directly using the entire OJIP curve as the input of SVM 
model for drought level classification, with improvement 
of 6.29% and 0.08%, respectively. In addition, after ICA 
performs feature dimensionality reduction on the OJIP 
data, the new ChlF features obtained are statistically 
different between different drought levels (Table 3S). This 
shows that the features processed by ICA dimensionality 
reduction can better reflect the changes in the physiological 
state of vegetation under different drought levels, providing 
more distinguishing and significant information for the 
classification of drought levels, and helping improve 
drought monitoring and classification. In addition,  
the OJIP induction parameters serve as established 
biomarkers for drought stress, and the new chlorophyll 
fluorescence features, obtained after dimensionality 
reduction, are correlated with these parameters (Fig. 6S). 
Therefore, the new ChlF features can provide additional 
information for drought stress.

These methods provide powerful tools to extract 
valuable information from large-scale and complex 
data. Artificial intelligence analysis methods are highly 
effective in handling complex nonlinear data, with 
strong adaptive capabilities that enable them to manage 
ChlF data under various environmental stresses, such as 
drought, temperature fluctuations, and light variations. 
These merits enhance the accuracy of OJIP curve analysis 
but also ensure its broad applicability across diverse 
environmental conditions. The ICA method in the field 
of OJIP curve analysis demonstrates its potential, but 
it also faces some challenges. As the size of the dataset 
increases, the scalability of the computational method 
becomes a key issue. In addition, it is necessary to conduct 
a thorough evaluation of the biological interpretation and 
effectiveness of the new ChlF feature projections obtained 
through ICA methods.

Dimensionality reduction techniques can help simplify 
large data, improve efficiency, and enhance model accuracy 
and generalization. We expect further development of 
dimensionality reduction techniques for OJIP curve 
analysis. This will address the computational challenges 
of larger datasets and facilitate the broader application 
of research findings in plant science. In future research, 
samples subjected to drought stress under natural field 
conditions could be used to validate the performance of the 
proposed method, while plants from diverse environmental 
and physiological conditions may provide insights into 
its generalizability. Ultimately, such advancements will 
impact the study and practical applications of plant growth, 
resistance, and adaptability.

Conclusion: In this work, feature dimensionality reduction 
methods were used to reduce the complexity of the OJIP 

induction, resulting in ChlF feature projection in  
the independent component spaces related to drought 
stress. These features outperformed traditional ChlF values 
and the entire OJIP induction in identifying rice under 
drought stress. This work presents a rice-physiological-
based method for determining drought stress levels but 
also emphasizes the importance of dimension reduction 
in ChlF induction analysis. By improving the ability to 
detect drought stress, this approach is expected to support 
real-time crop assessment in breeding and agricultural 
monitoring systems.
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Appendix. ChlF induction parameters and definitions.

OJIP parameters Definition

Fo Minimum ChlF under dark adaptation
Fj ChlF at J point
Fi ChlF at I point
Fm Maximum ChlF intensity
Fv = Fm – Fo Variable ChlF under dark adaptation
Vi = (Fi – Fo)/(Fm – Fo) Relative variable fluorescence intensity at the I step
Vj = (Fj – Fo)/(Fm – Fo) Relative variable fluorescence intensity at the J step
Fv/Fo = (Fm – Fo)/Fo Quantum efficiency of photosystem II
Fm/Fo Electron transport through photosystem II
Fv/Fm = (Fm – Fo)/Fm Maximum photochemical quantum yield of photosystem II in the dark
Mo = 4 × (F300 – Fo)/(Fm – Fo) Approximated initial slope (in ms–1) of the fluorescence transient
Area The area between the ChlF curve and Fm (minus background)
Fix Area Fluorescence curve area between F40μs and F1s

Ss ChlF enhancement complementary area standardized by O–J phase
Sm = Area/Fv The area between the OJIP induction curve and Fm after standardization
N = (Mo × Sm)/Vj The number of times QA is restored during the time period from the start of illumination to 

reaching Fm

φEo = 1 – (Fo/Fm) × (Fv/Fm) Quantum yield of electron transport
φPo = 1 – (Fo/Fm)(or Fv/Fm) Maximum quantum yield of PSII
φDo = 1 – φPo – (Fo/Fm) Quantum yield of energy dissipation
ψo = 1 – Vj The probability that a trapped exciton moves an electron further than QA

–

φPav = Po × (1 – Vj) The average quantum yield of primary photochemistry (from t0 to tFm)
ABS/RC = (Mo/Vj)(1/φPo) Absorption per reaction center
PIABS = 4[(F300 – Fo) × (Fm – Fj) ×Fm]/
[(Fm – Fo)(Fj – Fo) × Fo]

Performance index for energy conservation from exciton to the reduction of intersystem 
electron acceptors

ETo/RC = (Mo/Vj )(1 – Vj) Electron transport per reaction center
TRo/RC = Mo × (1/Vj) Trapped energy flux per reaction center
DIo/RC = ABS/RC – TRo/RC Dissipation per reaction center (at t = 0)
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