DOI 10.32615/ps.2025.009 PHOTOSYNTHETICA 63 (1): 73-80, 2025

Determination of rice (Oryza sativa L.) drought stress levels based
on chlorophyll a fluorescence through independent component analysis

Q. XIA", H. TANG™, J.L. TAN™, S.I. ALLAKHVERDIEV?, and Y. GUO™*

School of Electrical Engineering and Automation, Changshu Institute of Technology, 215500 Changshu, China”
Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University,
214122 Wuxi, China™

Department of Chemical & Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA™
Timiryazev Institute of Plant Physiology, RAS, Moscow, Russia*

Abstract

Sensing rice drought stress is crucial for agriculture, and chlorophyll a fluorescence (ChlIF) is often used. However,
existing techniques usually rely on defined feature points on the OJIP induction curve, which ignores the rich
physiological information in the entire curve. Independent Component Analysis (ICA) can effectively preserve
independent features, making it suitable for capturing drought-induced physiological changes. This study applies
ICA and Support Vector Machine (SVM) to classify drought levels using the entire OJIP curve. The results show that
the 20-dimensional ChIF features obtained by ICA provide superior classification performance, with Accuracy,
Precision, Recall, Fl-score, and Kappa coefficient improving by 18.15%, 0.18, 0.17, 0.17, and 0.22, respectively,
compared to the entire curve. This work provides a rice drought stress levels determination method and highlights
the importance of applying dimension reduction methods for ChlF analysis. This work is expected to enhance stress
detection using ChlF.
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Introduction

As the global population rises, the demand for rice
increases (van Dijk ez al. 2021, Mohidem et al. 2022), but
water scarcity worsened by climate change threatens rice
cultivation and food security (Lopez-Pacheco et al. 2019).
Detecting and mitigating drought stress in rice is essential

for sustainable food production. Photosynthesis, crucial
for plant survival, is affected by water status, with drought
stress reducing photosynthetic efficiency (Xu et al. 2021).
Real-time monitoring of crop drought stress is challenging
due to the lack of universal detection techniques.
Chlorophyll @ fluorescence (ChlF), a noninvasive and
reliable tool, offers valuable insights into plant health,
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photosynthetic efficiency, and stress conditions (Maxwell
and Johnson 2000), making it widely used for evaluating
plant responses to environmental stresses, including
drought (Krause and Weis 1991, Guo and Tan 2015).

Among them, OJIP induction is a commonly used
protocol for measuring ChIF. The OJIP induction is very
complex and contains much information, which can
provide abundant information, especially when exploring
the details and nonlinear response of photosynthetic
systems. Substantial transient changes in ChlF were
observed in plants under different types of environmental
stress (Chen ef al. 2021). Under drought conditions,
water supply is limited, leading to the closure of plant
stomata and decreasing CO, absorption, thereby affecting
photosynthesis and electron transfer efficiency. It can also
cause damage to plants, such as the destruction of PSII
structure, which affects the emission of fluorescence.
The OJIP curve under drought stress may show a delay
between O and J points, indicating hindered electron
transfer, while the P point may decrease, indicating
a decrease in cooperative ability (Cornic 2000, Colom
and Vazzana 2003, Zargar et al. 2017). By capturing
photosynthesis and physiological responses, the OJIP curve
provides a new approach for studying the mechanisms of
rice response to drought and identifying resistant varieties.

The ChIF induction features are considered as
a simplified and standardized description of the OJIP
induction (Horaczek et al. 2020, Zagorchev et al. 2021),
many studies on drought stress detection based on ChlF
rely on a few defined feature values (O, J, 1, and P values)
on the ChIF induction and the features obtained through
algebraic operations based on O, J, I, and P values for
statistical analysis (Rastogi et al. 2020, Lima-Moro ef al.
2022, Spanié et al. 2023, Chegini et al. 2024). However,
the issue lies in overlooking the high-dimensional nature of
OJIP data, which contains numerous features, and failing
to consider the potential physiological information related
to rice drought stress that may exist in the residual values
of the entire OJIP curve, leading to reduced accuracy in
stress identification. There is limited attempt to use the
entire OJIP induction for drought stress detection, resulting
in a large amount of information on the OJIP induction
being abandoned. This may limit the potential of ChlF for
rice drought stress detection. Therefore, in-depth research
on the whole OJIP induction for rice detection should be
paid more attention.

OIJIP data is usually high-dimensional data containing
a large number of features. With the rapid development
of computer technology, artificial intelligence technology
can process high-dimensional data and is adept at
discovering complex patterns and correlations between
data. Dimensionality reduction methods can simplify data
structures, reduce redundant information, extract the most
representative features, and thus improve the generalization
ability and accuracy of models. Artificial intelligence
technology plays a significant role in ChIF data analysis
(Chen et al. 2022, Bartold and Kluczek 2023, Xia ef al.
2023a,b), and even in making use of the information on
the whole OJIP induction. For example, Xia et al. (2022)
demonstrated that the entire OJIP induction contains
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more information on plant physiological states. The SVM
model can be used as an effective tool for rice drought
stress identification. By combining artificial intelligence
technology and feature dimensionality reduction methods,
OJIP data can be effectively processed and analyzed,
more effectively mining information related to rice
drought stress, and helping researchers understand the
biological significance behind the data. Therefore, there
is a need to find suitable feature dimensionality reduction
methods to extract the main photosynthetic features from
the OJIP curve and capture the key dynamic changes in
the photosynthetic process of rice under drought conditions.
However, only a limited number of feature extraction
methods have been applied to OJIP curve analysis until
now (Shomali ef al. 2023). Existing approaches primarily
focus on the application of single methods, these methods
vary in their data processing capabilities, noise sensitivity,
and biological interpretability, with little systematic
research comparing their effectiveness. Thus, conducting
comparative studies on the effectiveness of feature
extraction techniques is essential for optimizing OJIP
curve analysis, enhancing accuracy, and enabling broader
applications.

In this paper, various dimensionality reduction methods
were applied to the OJIP induction curves of rice under
different drought stress levels to preserve ChlF information
while reducing data complexity. Independent Component
Analysis (ICA) was initially used to analyze the ChlF data
due to its ability to preserve data independence, separate
non-Gaussian signals, and enhance signal interpretability,
which focuses on the independence of data components,
enabling the identification of multiple independent
physiological processes in rice under drought stress.
ICA also reduces redundancy and noise, simplifying
the data and improving analysis accuracy. Additionally,
it is particularly effective for handling complex temporal
data, revealing physiological changes in rice over time
and providing deeper insights into stress responses and
adaptation mechanisms. Subsequently, a Support Vector
Machine (SVM) was applied to classify drought stress
levels in rice based on the reduced OJIP data. Through
a comparison of different dimensionality reduction
methods, this study identifies new ChlF features related
to drought stress, offering an efficient and cost-effective
approach for assessing drought stress in rice.

Materials and methods

Experimental samples: The experimental samples were
rice plants grown for 40 d, and their growth area was
Huai'an, Jiangsu, China. To achieve the same level of water
status, the rice roots were fully immersed in water for 2 h
before ChlF was measured (control group). The rice roots
were then placed in a concentration of 20% polyethylene
glycol-600 (PEG-600) for different drought stress level
treatments (Awan et al. 2021, PerSi¢ et al. 2022): rice
drought stress treatment for 0 h — DO, rice drought stress
treatment for 1 h — D1, rice drought stress treatment for
2 h — D2, and rice drought stress treatment for 4 h — D4.
The number of rice plant samples treated with drought



stress levels for 0, 1, 2, and 4 h were 1,335, 1,093, 1,322,
and 1,146, respectively.

Fluorescence measurement: The ChlF of the same rice
leaf under different drought stress levels (DO, D1, D2,
and D4) after 20 min of dark adaptation was measured by
using the OJIP mode in FluorPen, PSI, Photon Systems
Instruments, Czech Republic. The light intensity of
exciting the ChlF was 2,400 umol(photon) m~=2s™.

Data analysis: The involved ChIF datasets include
(1) the OJIP induction (457 values) and (2) the ChIF
induction parameters (F,, F;, F, Fn, F,, V;, Vi, F./F,,
F./F,, FJ/Fn, M,, Area, Fix Area, S., Ss, N, 0P, W,
¢E,, ¢D,, ¢Pav, Pl gs, ABS/RC, TR/RC, ET/RC, and
DI/RC, as shown in Appendix, Stirbet and Govindjee
2011, Rachoski er al. 2015). This ChlF data has been
analyzed in previous studies, confirming its effectiveness
(Xia et al. 2022, 2023a,b). ChIF datasets need to be
normalized according to Z-score standardization before
analysis for all levels of drought stress. The Z-score
normalization formula is Z = (x — p)/o, where x is the
value of the ChlIF data point, p is the mean of the ChlF
dataset, and o is the standard deviation of the ChIF
dataset. Principal Component Analysis (PCA), Isometric
Feature Mapping (Isomap), Singular Value Decomposition
(SVD), Local Linear Embedding (LLE), and Independent
Component Analysis (ICA) were used to perform feature
dimensionality reduction on the OJIP induction and
identify the optimal dimensionality reduction method by
comparing different approaches within the same dataset.
An SVM model was used to classify rice plants under
different drought stress levels (Xia et al. 2022). 80% of
the samples were randomly selected as the training dataset
and the remaining 20% as the testing dataset. The kernel
function of SVM was the Gaussian kernel function (RBF),
the penalty factor (C) was 10, and Gamma was the default
value. The data analysis process was conducted on
Python 3.6.

One-way analysis of variance (ANOVA) was performed
on the ChlIF data under different drought stress levels, and
Tukey's Honestly Significant Difference test (7Tukey HSD)
was performed with a p-value of 0.05 or 0.01 to test for
significant differences in the data between different drought
stress levels in SPSS (IBM SPSS Amos 21, Armonk, NY).

Evaluating indicators: Accuracy is a measure of the
correct classification ratio of the SVM model on rice
drought stress levels, usually used to evaluate the overall
performance of the SVM model. The calculation formula
for Accuracy is:

Accuracy = Numye/ Numy €))

The Num.. represents the number of rice samples under
drought stress level correctly classified by the SVM model,
and Num,y represents the total number of rice samples.
Precision represents the proportion of rice samples
correctly classified by the SVM model under a specific
drought stress level, which is used to measure the
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correctness of the model for a group. The calculation
formula for Precision is:

Precision = TP/(TP + FP) 2)

The TP represents the number of rice samples under
a specific drought stress level that the SVM model
correctly classified, and the FP represents the number
of rice samples under a specific drought stress level that
the SVM model incorrectly classified.

Recall refers to the ratio of the number of rice samples
successfully classified by the SVM model for a certain
drought stress level to the actual total number of samples
in that category, which is used to measure whether
the model can capture all instances of a certain drought
stress level in rice. The calculation formula for Recall is:

Recall = TP/(TP + FN) 3)

The TP represents the number of rice samples correctly
identified by the SVM model for a certain drought stress
level, and the FN represents the number of rice samples
incorrectly identified by the SVM model for other drought
stress levels, but belonging to that drought stress level.
The range of Recall is between 0 and 1, and the higher
the value, the better the model performs in capturing
samples of that drought stress level. The SVM model can
better avoid misclassifying the real rice samples of that
drought stress level as other drought stress level.

The FI-score comprehensively considers the Accuracy
and Recall of the SVM model, and is the harmonic average
of Accuracy and Recall. The calculation formula for
Fl-score is:

Fl-score =2 x Precision x Recall/(Precision + Recall) (4)

The FI-score ranges from 0 to 1, and the higher the value,
the better the classification performance of the SVM model
at a certain drought stress level.

In this work, after the Precision, Recall, and F1-score
were calculated for each drought stress level, the macro
average method was used to integrate the Precision, Recall,
and Fl-score. Firstly, for each rice drought stress level,
the Recall and FI-score for that drought stress level were
calculated separately. Then, the Precision, Recall, and
Fl-score for all drought stress categories were averaged,
without considering the number of rice samples for each
drought stress category.

Cohen's Kappa (abbreviated as Kappa) coefficient
is a statistical indicator that can be used to measure
the consistency between model identification and actual
observation.

Results

OJIP induction under different drought levels:
The mean of rice OJIP induction under different drought
stress levels is shown in Fig. 1S (supplement). Although
Fig. 1 shows that ChIF intensity (D1, D2, and D4) was
higher under drought stress compared to non-drought
conditions (D0), no significant difference in ChlF intensity
(D1, D2, and D4) was observed across different drought
durations.
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Fig. 1. Distribution of the evaluation indicators for different
levels of rice drought stress classification based on different ChIF
datasets. n = 10.

Droughtstress classification from different ChlF datasets
without dimensionality reduction: To compare the
ability of two ChlIF datasets (OJIP induction and induction
features) to distinguish drought stress levels of rice,
the computation was carried out through ten independent
runs using the SVM model. Tables 1S (supplement)
and 2S (supplement) show the maximum (Max), minimum
(Min), and average evaluation indicators (Accuracy,
Precision, Recall, Fl-score, and Kappa) about different
ChlF datasets in the training dataset and test dataset.
There is not much difference in accuracy between
the model on the training and testing sets in Tables 1S and
2S, which indicates that the model has good generalization
ability and can effectively maintain similar performance to
the training dataset on the test dataset. It can be seen that
the Accuracy, Precision, Recall, Fl-score, and Kappa of
drought stress level classification using the OJIP induction
as the SVM model input were higher, i.e, 65.50%, 0.65,
0.65, 0.65 and 0.54, respectively, and 12.86%, 0.12,
0.13, 0.13, and 0.17 higher than the induction features as
the input of the SVM model (Table 2S).

The box plot in Fig. 1 shows the distribution of
classification evaluation indicators for drought stress levels
after ten independent runs of the SVM model on the two
different ChlF datasets. It can be seen that the distribution
of classification evaluation indicators of the SVM model
was relatively concentrated under different ChlF datasets,
indicating that the SVM model has good stability in
the identification of rice drought stress levels.
The Accuracy, Precision, Recall, Fl-score, and Kappa
of rice drought stress level classification using the OJIP
induction as input of the SVM model was higher than that
using the 26 ChlIF induction features as input dataset of
the SVM model.

The confusion matrix when using the SVM model to
classify drought stress levels for the two different ChlF
datasets (the OJIP induction and the induction features) is
shown in Fig. 2S (supplement). Fig. 2SA and Fig. 2SB are
based on the OJIP induction and the induction features,
respectively. The values in the confusion matrix represent
the probability of classifying the true drought stress levels
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in rice represented by the vertical axis into the identified
drought stress level of rice represented by the horizontal
axis using the SVM model. The larger the diagonal value
in the confusion matrix, the higher the classification
accuracy. Comparing Fig. 2S4 and Fig. 2SB, we can see
that the classification accuracy of each drought stress level
based on the OJIP induction was higher than that based on
the induction features.

Drought classification based on the OJIP induction
with dimensionality reduction: To map the whole OJIP
induction to a new low dimensional feature space to reduce
the dimensionality of the OJIP induction, create a new
feature space, and retain the information of the original
OJIP induction as much as possible, the original OJIP
induction was processed linearly or nonlinearly to obtain
new ChIF features. PCA, SVD, ICA, Isomap, and LLE
were used to reduce the dimensionality of the original OJIP
induction to obtain new ChlF features. Based on the new
ChIF features obtained after the dimensionality reduction
methods, SVM was used to identify different drought stress
levels. The evaluation indicators (Accuracy, Precision,
Recall, Fl-score, and Kappa) of the classification of
different drought stress levels using SVM based on
the new ChIF features obtained after feature dimensionality
reduction are shown in Tables 1-5.

It can be seen that the new ChlIF features obtained after
dimensionality reduction of the original OJIP induction
based on ICA has higher classification Accuracy, Precision,
Recall, Fl-score, and Kappa coefficient than PCA, SVD,
IOPMAP, and LLE (Tables 1-5). The SVM model can
achieve optimal evaluation indicators for identifying
drought stress levels based on the new ChlIF features with
20 dimensions obtained by ICA; the Accuracy, Precision,
Recall, Fl-score, and Kappa coefficient were 83.68%,
0.83, 0.82, 0.82, and 0.77, respectively (Tables 1-5).

The evaluation indicators of different drought stress
levels using SVM under different dimensionality reduction
methods for the OJIP induction are shown in Fig. 3S
(supplement). The Accuracy, Precision, Recall, F1-score,
and Kappa coefficient were normalized to the maximum
values in Fig. 3S. We can see from Fig. 3S that
the classification Accuracy, Precision, Recall, FI-score,
and Kappa coefficient of ICA dimensionality reduction
were the highest, significantly better than PCA, SVD,
Isomap, and LLE. When using ICA to reduce the
dimensionality of the OJIP induction to 20 dimensions
of the new ChIF features, the evaluation indicators were
the highest (Fig. 3S).

To evaluate the performance of the new ChlIF features
derived from the OJIP induction after reducing the ChlF
data to 20 dimensions using the ICA method, the heatmap
in Fig. 4S (supplement) illustrates the contribution of
the OJIP induction (457 features) to the new ChlF
features. The results reveal that OJIP induction contributed
a specific value to the new ChlF features.

The distribution of evaluation indicators for ten
independent runs of rice drought stress level classification
using SVM based on new ChIF features with 20
dimensions after dimensionality reduction of the original



Table 1. Accuracy based on the new ChlF features. PCA— Principal
Component Analysis; SVD — Singular Value Decomposition;
ICA — Independent Component Analysis; Isomap — Isometric
Feature Mapping; LLE — Local Linear Embedding. The bold font
highlights the best value among all comparison indicators.

DIMENSION REDUCTION METHODS IN CHLF ANALYSIS

Table 4. F1-score based on the new ChlF features. PCA - Principal
Component Analysis; SVD — Singular Value Decomposition;
ICA — Independent Component Analysis; Isomap — Isometric
Feature Mapping; LLE — Local Linear Embedding. The bold font
highlights the best value among all comparison indicators.

Dimension  PCA SVD ICA Isomap LLE
(%] (%] (%] (%] (%]

5 48.67  45.05 56.70 37.87 31.70
10 60.39  48.10 75.81 39.24 32.08
15 62.76  48.43 79.78 39.66 33.09
20 62.86  48.41 83.68 39.95 33.53
25 62.95 48.38 8222 4045 34.47
30 62.95 48.37 80.49  40.36 34.76

Table 2. Precision based on the new ChlF features. PCA—Principal
Component Analysis; SVD — Singular Value Decomposition;
ICA — Independent Component Analysis; Isomap — Isometric
Feature Mapping; LLE — Local Linear Embedding. The bold font
highlights the best value among all comparison indicators.

Dimension = PCA SVD ICA Isomap LLE

5 0.48 0.45 0.57 0.38 0.29
10 0.60 0.48 0.76 0.39 0.32
15 0.62 0.48 0.80 0.40 0.33
20 0.63 0.48 0.83 0.40 0.34
25 0.63 0.48 0.82 0.40 0.35
30 0.63 0.48 0.80 0.40 0.36

Table 3. Recall based on the new ChlF features. PCA — Principal
Component Analysis; SVD — Singular Value Decomposition;
ICA — Independent Component Analysis; Isomap — Isometric
Feature Mapping; LLE — Local Linear Embedding. The bold font
highlights the best value among all comparison indicators.

Dimension =~ PCA SVD ICA Isomap LLE
5 0.48 0.44 0.57 0.37 0.30
10 0.60 0.47 0.76 0.38 0.31
15 0.62 0.47 0.79 0.39 0.32
20 0.62 0.47 0.82 0.39 0.33
25 0.62 0.47 0.82 0.40 0.34
30 0.62 0.47 0.80 0.39 0.34

OJIP induction by ICA is shown in Fig. 2. It shows that
the classification Accuracy, Precision, Recall, and F'I-score
were all above 0.80, and the Kappa coefficient was above
0.74.

The confusion matrix when the SVM model was used
to classify the drought stress levels from the new ChlIF
features obtained by ICA dimension reduction is shown
in Fig. 3. We found that the classification Accuracy of
each drought stress level was above 81%, the overall
classification Accuracy was 83.56% (the average
classification Accuracy of each drought stress level).
In addition, 7.73% of the rice samples under drought stress
treatment for 1 h (D1) were incorrectly classified into 4 h

Dimension =~ PCA SVD ICA Isomap LLE

5 0.48 0.42 0.56 0.36 0.20
10 0.60 0.46 0.76 0.38 0.29
15 0.62 0.46 0.79 0.38 0.30
20 0.62 0.46 0.82 0.39 0.32
25 0.62 0.46 0.82 0.39 0.33
30 0.62 0.46 0.80 0.39 0.34

Table 5. Kappa based on the new ChlF features. PCA — Principal
Component Analysis; SVD — Singular Value Decomposition;
ICA — Independent Component Analysis; Isomap — Isometric
Feature Mapping; LLE — Local Linear Embedding. The bold font
highlights the best value among all comparison indicators.

Dimension  PCA SVD ICA Isomap LLE

5 0.31 0.26 0.42 0.16 0.07
10 0.47 0.30 0.68 0.18 0.08
15 0.50 0.31 0.73 0.19 0.10
20 0.50 0.31 0.77 0.19 0.10
25 0.50 0.30 0.76 0.20 0.12
30 0.50 0.30 0.74 0.20 0.12

Fig. 2. Distribution of classification evaluation indicators for
different levels of rice drought stress classification based on new
ChlF features with 20 dimensions. n = 10.

of drought stress level treatment (D2), while 10.55% of
the rice under drought stress treatment for 2 h (D2) was
incorrectly classified into D4 (Fig. 3).

As shown in Fig. 5S (supplement), the new ChIF
features obtained after ICA dimensionality reduction
showed different changes with the extension of drought
duration (the values in Fig. 5S were normalized to the
maximum value). Table 3S (supplement) shows the p-value
of the new ChlF features with 20 dimensions obtained after
ICA dimension reduction for the OJIP induction between
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Fig. 3. The confusion matrix based on the new ChlF features with
20 dimensions using ICA. D0, D1, D2, and D4 represent rice
drought stress treatment for 0 h, rice drought stress treatment for
1 h, rice drought stress treatment for 2 h, and rice drought stress
treatment for 4 h, respectively.

different drought stress levels. The results indicate that
most of the new ChIF features obtained by ICA were
statistically different between different drought stress
levels (Table 3S).

To investigate the correlation between known drought-
stress biomarkers (such as F./Fy, Fo/Fin, Plags) and the new
ChlIF features derived from ICA dimensionality reduction,
Fig. 6S (supplement) presents the correlation heatmap
between these new features and OJIP induction parameters.
Fig. 6S demonstrates that some new features obtained
through dimensionality reduction show significant
correlations with the OJIP induction parameters.

To further evaluate the drought -classification
performance of the new ChIF features derived from
the dimensionality reduction of OJIP induction using ICA
across three drought stress levels, Table 4S (supplement)
presents the maximum (Max), minimum (Min), and
average values of the evaluation indicators (Accuracy,
Precision, Recall, Fl-score, and Kappa) for classifying
the three drought stress levels based on the new
20-dimensional ChIF features obtained after ICA
dimensionality reduction. From Table 4S, we see that using
the new ChIF features with a dimension of 20 obtained
after ICA dimensionality reduction, the mean values of
classification Accuracy, Precision, Recall, Fl-score, and
Kappa can reach over 88%, 0.89, 0.87, 0.88, and 0.81,
respectively.

The confusion matrix of three different drought stress
levels based on the new ChIF features is presented in
Fig. 7S (supplement). The classification Accuracy of
each drought stress level was above 87%, and the overall
classification Accuracy for D012, D014, and D024 were
90.52, 88.37, and 83.56%, respectively (Fig. 7S).

Discussion

In plant physiology, the OJIP induction contains a large
amount of plant physiological information, but high
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dimensionality leads to complex and time-consuming
calculations. Machine learning methods have great
advantages in processing large data and discovering key
information, which helps reveal important features in plant
physiological processes from ChlF OJIP induction.

The classification Accuracy of drought stress level
using all data on the OJIP induction as the input dataset
for the SVM model was higher than that only using the
ChIF induction features as the input dataset for the SVM
model (Table 2S). This result was expected, as OJIP
measures dynamic changes in plants at various stages
of photosynthesis, providing more comprehensive and
integrated data information. In contrast, using only
the O, J, I, and P feature points on the OJIP curve and
the ChIF parameters obtained through mathematical
operations based on these feature points may lose some
key information, limiting the model's understanding of
complex physiological states. The result further confirms
that richer and more useful plant physiological information
is hidden in the OJIP induction, which can help construct
a more discriminative classification model for rice drought
stress, making SVM models have stronger classification
ability and robustness.

Applying the dimensionality reduction method in OJIP
induction analysis is beneficial for better extracting ChlF
information. This can be proven from the analysis results.
Compared with the whole OJIP induction as the input
dataset of the SVM model (Table 2S), the classification
Accuracy, Precision, Recall, Fl-score, and Kappa
coefficient of the new ChIF feature projections with 20
dimensions obtained by ICA dimensionality reduction
were improved by 18.15%, 0.18, 0.17, 0.17, and 0.22
(Table 2S vs. Tables 1-5), respectively. Dimensionality
reduction reduces redundant information in the data,
highlights key features of rice drought on the OJIP curve,
and improves the accuracy of the SVM model in drought
classification. This enables SVM classification to capture
the characteristics of rice drought stress, reduces the
risk of overfitting, improves the generalization ability of
the model, and achieves more significant performance in
drought classification. Compared to PCA, SVD, Isomap,
LLE, and other methods, Tables 1-5 and Fig. 3S show
that the best performance was achieved when classifying
rice drought stress using the new ChIF features obtained
through ICA dimensionality reduction. These feature
dimensionality reduction methods (PCA, Isomap, SVD,
LLE, ICA) differ fundamentally in their principles.
PCA and SVD focus on linear dimensionality reduction
by maximizing data variance, which is effective for
capturing global variability in the data. In contrast, LLE
and Isomap emphasize preserving the local structure of
data, making them more suitable for nonlinear data. While
PCA and SVD are well-suited for Gaussian data, they
struggle to capture nonlinear and complex patterns. ICA,
however, decomposes data into independent components,
which is ideal for separating non-Gaussian signals and
identifying independent physiological processes. This
makes ICA particularly effective for analyzing complex
biological signals. In the case of OJIP data, ICA enhances
the identification of physiological changes in rice under



drought stress by removing redundancy and noise,
preserving key features, and improving -classification
accuracy. As a result, ICA typically outperforms
other dimensionality reduction methods in OJIP data
classification. In the classification of three different levels
of rice drought stress (D0, D1, and D4), the Accuracy and
Kappa coefficient of using the dimensionality reduction
method in this paper is better than that of Xia et al. (2022)
directly using the entire OJIP curve as the input of SVM
model for drought level classification, with improvement
of 6.29% and 0.08%, respectively. In addition, after I[CA
performs feature dimensionality reduction on the OJIP
data, the new ChIF features obtained are statistically
different between different drought levels (Table 3S). This
shows that the features processed by ICA dimensionality
reduction can better reflect the changes in the physiological
state of vegetation under different drought levels, providing
more distinguishing and significant information for the
classification of drought levels, and helping improve
drought monitoring and classification. In addition,
the OJIP induction parameters serve as established
biomarkers for drought stress, and the new chlorophyll
fluorescence features, obtained after dimensionality
reduction, are correlated with these parameters (Fig. 6S).
Therefore, the new ChIF features can provide additional
information for drought stress.

These methods provide powerful tools to extract
valuable information from large-scale and complex
data. Artificial intelligence analysis methods are highly
effective in handling complex nonlinear data, with
strong adaptive capabilities that enable them to manage
ChlIF data under various environmental stresses, such as
drought, temperature fluctuations, and light variations.
These merits enhance the accuracy of OJIP curve analysis
but also ensure its broad applicability across diverse
environmental conditions. The ICA method in the field
of OJIP curve analysis demonstrates its potential, but
it also faces some challenges. As the size of the dataset
increases, the scalability of the computational method
becomes a key issue. In addition, it is necessary to conduct
a thorough evaluation of the biological interpretation and
effectiveness of the new ChIF feature projections obtained
through ICA methods.

Dimensionality reduction techniques can help simplify
large data, improve efficiency, and enhance model accuracy
and generalization. We expect further development of
dimensionality reduction techniques for OIJIP curve
analysis. This will address the computational challenges
of larger datasets and facilitate the broader application
of research findings in plant science. In future research,
samples subjected to drought stress under natural field
conditions could be used to validate the performance of the
proposed method, while plants from diverse environmental
and physiological conditions may provide insights into
its generalizability. Ultimately, such advancements will
impact the study and practical applications of plant growth,
resistance, and adaptability.

Conclusion: In this work, feature dimensionality reduction
methods were used to reduce the complexity of the OJIP

DIMENSION REDUCTION METHODS IN CHLF ANALYSIS

induction, resulting in ChIF feature projection in
the independent component spaces related to drought
stress. These features outperformed traditional ChlF values
and the entire OJIP induction in identifying rice under
drought stress. This work presents a rice-physiological-
based method for determining drought stress levels but
also emphasizes the importance of dimension reduction
in ChIF induction analysis. By improving the ability to
detect drought stress, this approach is expected to support
real-time crop assessment in breeding and agricultural
monitoring systems.
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OJIP parameters Definition

F, Minimum ChlF under dark adaptation
F; ChlIF at J point

Fi ChlF at I point

Fn Maximum ChlIF intensity

F,=F.—F, Variable ChlF under dark adaptation

Vi = (Fi— Fo)/(Fu— F,)

Vi = (F; = Fo)/(Fn - Fo)

EJ/F, = (Fn — Fo)/F,

F./F,

FJ/Fn=(Fn—F,)/Fn

M, =4 X (Fs00— Fo)/(Fin — Fo)

Relative variable fluorescence intensity at the I step

Relative variable fluorescence intensity at the J step

Quantum efficiency of photosystem II

Electron transport through photosystem II

Maximum photochemical quantum yield of photosystem II in the dark
Approximated initial slope (in ms™) of the fluorescence transient

Area The area between the ChlF curve and F,, (minus background)

Fix Area Fluorescence curve area between F,s and F,

S ChlIF enhancement complementary area standardized by O—J phase

Sw = Area/F, The area between the OJIP induction curve and F,, after standardization

N =(M, x Sp)/V;
reaching F,

@E, =1 — (Fo/Fy) % (Fy/Fr)

oP, =1 — (F,/Fn)(or F./F,,)

oD, =1—¢P, — (F/Fy)

Yo=1-V;

@Pav =P, x (1 -V))

ABS/RC = (M./V;)(1/9P.)

Plass = 4[(F00 — Fo) X (Fin — Fj) xFin]/

[(Fm — Fo)(Fj = F,) x Fo]

ETJ/RC = My/V;)(1 -V;))

TRJ/RC =M, x (1/V))

DI/RC = ABS/RC — TR(/RC

electron acceptors

The number of times Q, is restored during the time period from the start of illumination to

Quantum yield of electron transport

Maximum quantum yield of PSII

Quantum yield of energy dissipation

The probability that a trapped exciton moves an electron further than Q-

The average quantum yield of primary photochemistry (from to to tem)

Absorption per reaction center

Performance index for energy conservation from exciton to the reduction of intersystem

Electron transport per reaction center
Trapped energy flux per reaction center
Dissipation per reaction center (at t = 0)
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