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REVIEW

From spectrum to yield: advances in crop photosynthesis
with hyperspectral imaging
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Abstract

Ensuring global food security requires noninvasive techniques for optimizing resource use and monitoring crop health.
Hyperspectral imaging (HSI) enables the precise analysis of plant physiology by capturing spectral data across narrow
bands. This review explores HSI's role in agriculture, particularly its integration with unmanned aerial vehicles,
Al-driven analytics, and machine learning. These advancements allow real-time monitoring of photosynthesis,
chlorophyll fluorescence, and carbon assimilation, linking spectral data to plant health and agronomic decisions.
Key indicators such as solar-induced fluorescence and vegetation indices enhance crop stress detection. This work
compares HSI-derived metrics in differentiating nutrient deficiencies, drought, and disease. Despite its potential,
challenges remain in data standardization and spectral interpretation. This review discusses solutions such as molecular
phenotyping and predictive modeling, for Al-driven precision agriculture. Addressing these gaps, HSI is poised to
revolutionize farming, improve climate resilience, and ensure food security.
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Introduction productivity must increase by 70%, necessitating the

adoption of technologies that optimize resource use,
The global agricultural sector faces growing challenges in enhance crop monitoring, and improve yield forecasting
meeting the rising demand for food, fiber, and bioenergy, (Jaggard et al. 2010, Ray et al. 2013). Precision agriculture
driven by a projected global population of 9.1 billion by has emerged as a viable solution, integrating remote
2050. To sustain food production at this scale, agricultural sensing, high-throughput plant phenotyping, and Al-driven
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analytics to monitor crop health and mitigate stressors in
real time (Tilman ez al. 2011, Pretty et al. 2018).

A fundamental challenge in achieving these goals is
real-time, noninvasive monitoring of crop physiological
and biochemical status to optimize growth conditions
and mitigate environmental stressors. Traditional crop
monitoring approaches, such as visual inspections and
multispectral imaging, lack the sensitivity needed to detect
early-stage stress responses and biochemical variations
(Swain and Davis 1981). Hyperspectral imaging (HSI)
overcomes these limitations by capturing high-resolution,
continuous spectral data, enabling a more detailed analysis
of plant physiological traits (Goetz et al. 1985, Lu et al.
2020) (Fig. 1).

While previous reviews have primarily discussed
passive hyperspectral imaging and its role in vegetation
analysis, this review uniquely emphasizes the integration
of HSI with unmanned aerial vehicles (UAVs), machine
learning algorithms, and radiative transfer models to
enhance large-scale agricultural monitoring. These
advancements enable automated stress detection, real-
time photosynthetic efficiency assessments, and climate-
adaptive precision farming (Pandey et a/. 2017, Behmann
et al. 2018). Additionally, this review evaluates recent
developments in hyperspectral sensor miniaturization
(e.g., UAV-compatible Headwall Micro-Hyperspec,
Cubert UHD 185-Firefly) and explores emerging
Al-driven hyperspectral analytics to improve data
processing efficiency.

HYPERSPECTRAL IMAGING

Unlike previous studies, which have predominantly
examined hyperspectral imaging as a remote sensing
tool, this review highlights its evolution into an essential
precision agriculture technology. The discussion provides
a comparative analysis of hyperspectral metrics, linking
them directly to photosynthetic activity, plant stress
diagnostics, and agronomic decision-making.

Hyperspectral imaging (HSI) has undergone significant
advancements over the past four decades, revolutionizing
agricultural research and crop monitoring. Initially,
remote sensing in agriculture relied heavily on satellite-
based multispectral sensors (Swain and Davis 1981),
which provided broad spectral coverage but lacked
the resolution necessary to capture subtle physiological
variations in crops. The pioneering efforts of Goetz
et al. (1985) introduced airborne hyperspectral sensors,
enabling the acquisition of continuous spectral data across
narrow bands. This breakthrough allowed for more precise
differentiation of plant physiological states, improving
stress detection and early disease monitoring. However,
despite its potential, the real-world application of HSI in
large-scale agricultural settings was constrained by factors
such as the high cost of sensors, substantial data storage
requirements, and computational challenges associated
with processing vast spectral datasets (Thenkabail et al.
2011).

Recent advancements in hyperspectral imaging
have addressed these limitations, particularly with the
integration of UAV-mounted hyperspectral systems. Unlike

Fig. 1. Interaction of light with the leaf lamina. (4) Sunlight, also known as incoming light, reaches the plant leaf. (B) As the light
encounters the leaf surface, some of it is reflected; (C) a portion of the light is diffusely reflected off the leaf surface, scattering in
various directions; (D) a portion is absorbed by the leaf's lamina, which is crucial for photosynthesis; and (E) transmitted light, which is
the remaining light that is not absorbed or reflected, passes through the leaf and may reach lower leaves or the ground.
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traditional satellite-based or airborne sensors, UAV-based
HSI provides high-resolution, real-time crop monitoring,
allowing for greater spatial and temporal precision in
agricultural decision-making (Dale et al. 2013, Ram ef al.
2024). These systems facilitate early stress detection by
leveraging Al-powered spectral analysis to identify subtle
physiological and biochemical changes in plants, enabling
proactive management of disease outbreaks and resource
allocation (Khan ez al. 2022).

Furthermore, hyperspectral analytics, combined with
machine learning algorithms, has significantly enhanced
crop classification and yield prediction accuracy,
improving agronomic decision-making at various
scales (Guerri et al. 2024). As sensor miniaturization
and Al-driven data processing continue to evolve,
UAV-mounted hyperspectral imaging is poised to become
an indispensable tool for precision agriculture, bridging
the gap between fundamental plant physiology research
and real-world agronomic applications (Pandey et al.
2017, Mahlein et al. 2018).

Unlike traditional multispectral imaging, which
captures data across a limited number of broad spectral
bands, hyperspectral imaging (HSI) provides superior
spectral resolution, allowing for the precise differentiation
of plant physiological states. This capability is particularly
valuable for the early detection of stress factors, including
nitrogen deficiencies, chlorophyll degradation, and water
stress, which are critical indicators of crop health and
productivity (Mahlein er al. 2018, Benelli et al. 2020).
By capturing continuous spectral data across hundreds of
narrow bands, HSI enables a more nuanced understanding
of plant responses to environmental stressors, facilitating
data-driven decision-making in precision agriculture.

The integration of hyperspectral imaging with machine
learning algorithms and UAV-based data acquisition has
transformed modern agriculture, enabling high-throughput,
noninvasive crop monitoring at an unprecedented scale.
Machine learning models, particularly deep learning-
based spectral classifiers, have enhanced the ability
to analyze hyperspectral datasets efficiently, improving
the accuracy of stress detection and yield prediction
(Guerri et al. 2024). However, several key challenges
still hinder the widespread adoption of HSI in agricultural
applications. First, the standardization of hyperspectral
data acquisition remains a pressing issue, as variability
in sensor specifications, atmospheric conditions, and
calibration protocols can impact data consistency across
different platforms (Pandey et al. 2017). Second, improving
spectral interpretation methodologies is essential to reduce
misclassification errors in stress diagnosis, particularly
when distinguishing between abiotic (e.g., drought,
nutrient deficiencies) and Dbiotic stress factors
(e.g., pathogen infections) (Mahlein ez al. 2018). Third,
bridging hyperspectral metrics with biochemical pathways
is crucial for establishing direct correlations between
spectral signatures and physiological processes at the
molecular level. This would enhance the predictive power
of HSI-derived models, ultimately facilitating more
precise crop stress monitoring and management strategies
(Thenkabail et al. 2011). Addressing these challenges will
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be key to unlocking the full potential of hyperspectral
imaging in sustainable, climate-resilient agriculture.

This review systematically explores the role of
hyperspectral imaging (HSI) in photosynthesis-driven crop
monitoring, offering a structured roadmap for its integration
with Al, UAVs, and radiative transfer models. It begins by
examining the fundamental principles of HSI, detailing
how electromagnetic radiation (EMR) interacts with plant
physiology through key processes, such as absorption,
scattering, fluorescence, and transmission. The discussion
then shifts to key spectral indices, including solar-induced
fluorescence (SIF), the Photochemical Reflectance Index
(PRI), and spectral-temporal response surfaces (STRS),
which are essential for assessing photosynthetic efficiency
and plant stress responses.

Following this, the review traces the technological
evolution of HSI in agriculture, charting its transition
from early airborne sensors to modern UAV-integrated
systems equipped with Al-driven spectral analytics.
It further explores HSI applications in precision agriculture,
emphasizing its role in crop stress detection, disease
identification, nutrient optimization, and yield prediction
using advanced spectral metrics. Finally, the review
addresses key challenges and emerging solutions, focusing
on the standardization of hyperspectral data acquisition,
the need for Al-powered spectral analytics, and the
potential of molecular phenotyping to enhance sustainable
farming practices. Through this comprehensive analysis,
the review highlights the transformative potential of HSI
in modern agricultural monitoring and precision farming
strategies.

Unveiling the spectrum: hyperspectral imaging
in agriculture

Hyperspectral imaging (HSI) has rapidly become
an indispensable tool in precision agriculture, providing
detailed and nuanced insights into various aspects of
crop management, including plant health, nutrient
status, and stress responses. The ongoing advancements
in HSI technology have broadened its applicability
in contemporary agricultural practices, facilitating
real-time assessments critical for more informed and
effective decision-making processes. This section delves
into the transformative impact of HSI on agricultural
methodologies, particularly emphasizing the integration of
unmanned aerial vehicle (UAV) platforms and the progress
achieved through machine learning algorithms (Gevaert
et al. 2015, Lu et al. 2020). Note that the abbreviation HSI
will now be used for hyperspectral imaging.

Integration of unmanned aerial vehicles with
hyperspectral imaging

The synergy between unmanned aerial vehicles (UAVs)
and hyperspectral imaging (HSI) has revolutionized
agricultural data acquisition, enabling precise, high-
resolution data pertinent to crop vitality and yield
forecasting. The miniaturization of hyperspectral sensors,
exemplified by models such as the Headwall Micro-



HYPERSPECTRAL IMAGING

Table 1. Advancements in crop photosynthesis research through hyperspectral imaging techniques.

Crop studied Theme

Contribution to photosynthesis
understanding

Unique data from traditional
studies

References

Tobacco Reflectance Enables noninvasive, detailed
hyperspectroscopy analysis of photosynthetic efficiency,
chlorophyll concentration,
and carbon absorption
Sorghum Decoding Identifies the role of photosynthetic
photosynthetic efficiency as a bottleneck in yield
efficiency potential, linking it to biomass
production
Maize Multispectral Facilitates the extraction of
analysis vegetation indices and spectral
features, enhancing the
understanding of crop physiology
Rice UAV-based Provides a comprehensive view
hyperspectral of the complex interactions between
imaging different crops and vegetation at
the ecosystem level
Wheat Hyperspectral Connects hyperspectral information
Sensors with plant genetic traits, aiding
in discovering genes that contribute
to improved photosynthesis
Tobacco Carbohydrate Quantifies leaf carbon content,
content analysis a key aspect of photosynthesis
and plant productivity
Wheat Machine learning  Enhances the estimation of wheat
algorithms leaf chlorophyll content by
addressing soil background and
canopy complexity
Tomato Reflectance and Correlates leaf composition
leaf composition and reflective properties with
photosynthetic processes and
pigment concentrations
Rice Automated Automates the processing
chlorophyll of hyperspectral datasets for
measurement nondestructive chlorophyll
measurement in rice leaves
Lettuce Dark reactions Monitors key indicators associated
of photosynthesis ~ with dark reactions, improving
the understanding of carbon
assimilation
Rice Future directions of
HSI in agriculture  to crop photosynthesis research,
integrating precision agriculture
and genomics
Rice Photosynthetic Improves the precision of studying
electron transport ~ ETR in PSII, which is essential for
rate (ETR) understanding plant photosynthesis

Provides high-resolution spectral
data across a wide range of
wavelengths, allowing for precise
physiological assessments

Offers insights into the efficiency
of light-to-energy conversion and
the impact of photorespiration

on fixed carbon

Employs specialized sensors and
analytical models to estimate
photosynthetic parameters
nondestructively

Integrates HSI with 3D structural
information to better comprehend
light interception and distribution

Combines HSI with genomic and
phenomics data to transform crop
breeding practices

Captures NIR and SWIR spectra
for nondestructive carbohydrate
quantification

Utilizes image segmentation and
pixel-wise spectrum clustering for
more accurate leaf chlorophyll
estimation

Detects and quantifies changes
in pigment concentrations due
to environmental stressors

Integrates advanced image analysis
with hyperspectral imaging for
high-resolution digitization

of chlorophyll distribution
Provides a holistic view of
biochemical processes related

to carbon assimilation
nondestructively

Envisions a comprehensive approach Proposes real-time monitoring

systems and ecosystem-level
studies for sustainable land
management

Utilizes advanced hyperspectral
fluorescence data analysis for
detailed insights into ETR

Falcioni et al. (2023)
Marin-Ortiz et al.
(2024)

Zhi et al. (2022)

Mertens et al. (2021)
Veramendi and Cruvinel
(2024)

Zheng et al. (2018)
Xu et al. (2024)

Yue et al. (2018)
Lu et al. (2024)

Meacham-Hensold et al.
(2020)
Olakanmi et al. (2024)

da Silva et al. (2024)

Zhao et al. (2023)

Zhu et al. (2024)

Kumar et al. (2022)

Sun et al. (2017)

Liran (2022)

Hyperspec and Cubert UHD 185-Firefly, coupled with
the integration of UAV platforms with Global Navigation
Satellite System (GNSS) technology, has significantly
broadened the scope of spectral response analysis across
diverse agricultural applications (Adao ef al. 2017, Lu
et al. 2020). This technological convergence effectively
addresses the inherent limitations of traditional satellite
and ground-based techniques, offering versatile and cost-
effective solutions for high-resolution monitoring across
extensive agricultural landscapes (Gevaert et al. 2015,

Zeng et al. 2017) (Table 1). Notably, UAV-HSI systems
have demonstrated remarkable effectiveness in the early
detection of plant diseases, nutrient deficiencies, and
water stress. By combining data streams from UAV-borne
hyperspectral sensors with multispectral satellite imagery,
these integrated systems generate spectral-temporal
response surfaces (STRSs), which offer continuous
spectral reflectance information characterized by enhanced
spatial and temporal resolutions (Gevaert et al. 2015).
These STRSs capture the dynamic spectral signatures
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of vegetation over time, providing a comprehensive
dataset for analysis. Leveraging advanced data analysis
methodologies, including support vector machines,
Random Forests, and partial least squares regression
(Lu et al. 2020, Pascucci et al. 2020), UAV-based
hyperspectral imaging also streamlines the mapping
of critical biophysical properties of crops, detailed soil
assessments, and accurate crop classification.

A key advantage of UAV-HSI systems lies in their
inherent compatibility with sophisticated computational
techniques. The application of machine learning and
artificial intelligence algorithms to UAV-HSI-derived data
facilitates the recognition of intricate patterns, crucial for
the detection of subtle stress indicators such as chlorophyll
content variations, hydration levels, and cellular integrity
(Tsouros et al. 2019) (Fig. 2). For instance, algorithms like
HW-HyperLCA substantially enhance hyperspectral data
processing efficiency, achieving significant compression
ratios while preserving essential data integrity, thereby
optimizing the analytical utility of large-scale datasets
(Guerra et al. 2019). Moreover, UAV-based platforms
generally ensure efficient and responsive monitoring
capabilities through the provision of highly detailed
and adaptable imaging modalities specifically tailored
for precision agriculture applications (Zeng et al. 2017,
Tsouros et al. 2019).

The practical utility of UAV-HSI technology in
agriculture is substantial and varied. In viticulture,
UAV-HSI enables precise assessments of vine health
and irrigation demands, ultimately contributing to
improvements in both grape quality and overall yield
(Pascucci et al. 2020). Furthermore, UAV-HSI has proven
particularly valuable in arid and semi-arid regions for
accurate soil moisture assessment, empowering farmers
to refine irrigation strategies and achieve considerable
reductions in water usage (Lu ef al. 2020). Beyond water
management, UAV-HSI systems are also critical for
detailed disease mapping and the timely identification
of pest infestations, equipping agricultural practitioners
with actionable information to optimize crop health
management and fostering more sustainable farming
practices (Zeng et al. 2017).

Through the deployment of cutting-edge hyperspectral
sensors and the integration of advanced computational
methodologies, UAV-HSI has established itself as
a potent instrument within precision agriculture. It delivers
unparalleled capabilities for monitoring crop physiological
status, optimizing resource allocation, and addressing
critical challenges in agricultural production, representing
a significant stride forward in remote sensing technologies
for the agricultural sector.

Advancements in artificial intelligence and machine
learning for hyperspectral analysis imaging

The integration of artificial intelligence (AI) and machine
learning (ML) techniques has advanced profoundly
hyperspectral data processing by enabling the extraction of
complex patterns often indiscernible through conventional
analytical approaches. Within precision agriculture,
Convolutional Neural Networks (CNNs) and Random
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Fig. 2. Flow chart of hyperspectral imaging system components
and processes for plant spectral data acquisition and analysis.

Forests have been extensively applied, demonstrating
exceptional performance in this domain. Notably, these
sophisticated models have achieved high accuracies,
reaching up to 90%, identifying subtle indicators of plant
stress, such as early manifestations of water scarcity and
nutrient imbalances (Banerjee et al. 2020, Olson and
Anderson 2021). Indeed, leveraging UAVs equipped
with HSI systems offers a unique avenue for acquiring
high-resolution spectral datasets, which is instrumental
for comprehensively investigating complex, spectrally
driven agricultural scenarios (Banerjee ef al. 2020). These
analytical advancements effectively mitigate challenges
related to the inherent spectral variability within vegetation
canopies, facilitating more reliable and precise monitoring
of crop health across extensive agricultural regions.

The synergistic combination of artificial intelligence
and hyperspectral imaging has fundamentally transformed
resource management strategies in agriculture. By
employing machine learning algorithms, including Random
Forests and CNNs, Al-driven analytics can accurately and
rapidly identify both nutritional deficiencies and water
stress conditions at nascent stages of development. This
proactive approach has demonstrated tangible benefits,
including a reported 15% reduction in water consumption
and a 10% decrease in fertilizer application, underscoring
the practical viability of Al-enhanced sustainable
agricultural practices (Benos ef al. 2021, Garcia-Vera
et al. 2024). Furthermore, the seamless integration of
Al with HSI technology streamlines and automates
the detection of stress and disease in cultivated crops,
significantly diminishing the reliance on time-consuming
manual inspection and intervention (Benos et al. 2021).
In essence, machine learning amplifies the inherent
capabilities of HSI by enabling the precise interpretation
of complex spectral information, leading to more effective
and timely detection of early-stage plant health issues and
resource limitations.

Al-driven models have also revolutionized the
scalability of HSI systems, allowing for the efficient and



robust analysis of increasingly large and complex datasets.
The incorporation of Al algorithms with spectral and
thermal imaging modalities further enhances the utility
of hyperspectral imaging by improving the detection of
critical stress parameters, such as reduced chlorophyll
content and water availability limitations (Gevaert et al.
2015). These progressive enhancements firmly establish
Al and ML as indispensable tools for the advanced analysis
of hyperspectral data, significantly improving the overall
efficiency and effectiveness of contemporary agricultural
management practices.

Methods for enhanced spectral and spatial resolution

Continued progress in hyperspectral imaging (HSI)
technology has significantly enhanced the capacity to
acquire agricultural data with unprecedented spectral and
spatial resolution. These enhanced resolutions are crucial
for detecting subtle physiological changes within crop
canopies, including minor variations in photosynthetic
efficiency and initial signs of plant stress. Satellite
platforms, such as Sentinel-2, and UAVs equipped with
advanced hyperspectral sensors offer versatile and high-
resolution monitoring capabilities, making them essential
for effective surveillance of expansive agricultural areas
(Gevaert et al. 2015, Adao et al. 2017). Hyperspectral
systems deployed on UAVs effectively generate spectral-
temporal response surfaces (STRSs), seamlessly
integrating satellite and UAV imagery to achieve
superior spatial and temporal resolutions, further refining
the data available for analysis (Gevaert et al. 2015). These
technological advancements directly enable more precise
and data-driven management of irrigation schedules,
proactive crop health monitoring, and optimized nutrient
application strategies, yielding measurable benefits such
as substantial reductions in resource utilization (Ram
et al. 2024). Notably, hyperspectral imaging techniques
have demonstrated considerable efficacy in accurately
assessing  chlorophyll fluorescence and nitrogen
concentration in key crops such as wheat, thereby
facilitating the optimization of fertilizer applications
and significantly improving photosynthetic nitrogen-use
efficiency (Jia et al. 2021).

Despite these notable advancements, the widespread
implementation of high-resolution HSI systems still faces
certain practical challenges. These challenges primarily
include the considerable upfront costs associated with
acquiring  sophisticated  hyperspectral  equipment,
the computational complexities inherent in processing large
volumes of high-dimensional datasets, and the inherent
operational limitations of UAV platforms, such as restricted
flight durations and vulnerability to adverse meteorological
conditions. Addressing these multifaceted challenges
is crucial for enabling the broader and more routine
application of HSI in real-time agricultural monitoring and
decision support systems (Dale ez al. 2013, Jia et al. 2021).
Furthermore, to fully integrate hyperspectral data into
actionable decision-making processes, the standardization
of data processing workflows and analytical techniques is
essential to ensure robust and reliable outcomes.

HYPERSPECTRAL IMAGING

Integration of multispectral and hyperspectral data

The strategic integration of multispectral and hyperspectral
data streams offers a powerful approach to leverage
the complementary strengths of each imaging modality
for enhanced agricultural monitoring. This synergistic
amalgamation combines the broad spectral coverage
characteristic of multispectral imaging with the fine spectral
resolution inherent to hyperspectral imaging techniques.
This combined approach enables a more comprehensive
and nuanced assessment of overall vegetation health
by capitalizing on the respective advantages offered by
both data types. While multispectral imaging excels at
identifying broad-scale patterns and general vegetation
indices, hyperspectral imaging offers superior sensitivity
for detecting subtle, yet critical, indicators of plant stress,
such as early chlorophyll content reductions and subtle
nutrient imbalances (Lu ez al. 2020, Khan et al. 2022).

Incorporating thermal imaging data into this integrated
framework further enhances the functional capabilities of
HSI-based monitoring systems. Thermal data allows for
the direct assessment of plant canopy temperature and
the detection of temperature variations related to water
stress, providing a more holistic and comprehensive
methodology for evaluating overall crop physiological
status. Specifically, the integration of thermal and
hyperspectral imaging has demonstrated notable
effectiveness in pinpointing areas experiencing water
stress within agricultural fields and optimizing irrigation
management strategies accordingly (Lu er al. 2020).
Moreover, this multimodal approach facilitates the early
detection of plant diseases by enabling the analysis of both
temperature anomalies and subtle spectral irregularities,
thus promoting timely interventions to minimize potential
crop losses. The seamless integration of these diverse
imaging modalities is becoming increasingly vital for
advancing precision agriculture, significantly improving
the efficiency of irrigation practices, targeted pest control
applications, and optimized resource allocation within
complex agricultural systems (Fig. 3).

Practical implications and future prospects

Empirical studies increasingly underscore the trans-
formative potential of hyperspectral imaging (HSI) for
promoting sustainable agricultural practices. The effective
integration of HSI data with Al-driven analytics empowers
agricultural practitioners to significantly expedite data
processing workflows and enhance the overall precision
of targeted agricultural interventions. As highlighted by
Mulla (2013) and Garcia-Vera et al. (2024), Al-enhanced
HSI systems are rapidly emerging as critical tools for
precision agriculture, enabling real-time detection of
nutrient deficiencies, water stress onset, and early pest
infestations across diverse crop types. These advanced
techniques facilitate a more sustainable approach to
resource utilization by enabling the precise minimization
of water and fertilizer inputs while simultaneously
maintaining or even enhancing crop yields. However, to
realize the full transformative potential of HSI technology
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Fig. 3. Illustration of the process of measuring leaf reflectance using a spectroradiometer (4SD Field Spec 3). (4) Incoming solar
radiation is directed at a plant leaf. (B) The sensor is positioned at a 25-degree angle from the leaf to capture the reflected radiation.
(C) A white surface is used as a reference to calibrate the sensor for accurate measurement. (D) The sensor collects data on the leaf's
reflectance, which is then plotted on a graph, showing how different wavelengths of light are absorbed or reflected by the leaf, indicating

various plant physiological properties and atmospheric interactions.

in agriculture, the standardization of data acquisition and
subsequent analytical methodologies remains a critical
prerequisite. Establishing standardized procedures would
be instrumental in promoting the widespread and consistent
implementation of HSI across varied agricultural systems
and geographical regions, thereby significantly enhancing
data-driven decision-making in crucial agricultural
management areas such as irrigation scheduling, targeted
pest control, and optimized fertilization strategies. Looking
ahead, continued advancements in sensor technologies,
particularly the development of miniaturized, more
affordable hyperspectral cameras and the further refinement
of integrated Al algorithms, are anticipated to substantially
enhance the capabilities and accessibility of HSI systems,
solidifying their role as indispensable tools for achieving
enhanced agricultural sustainability and productivity in
the coming years.

Exploring crop photosynthesis through hyperspectral
imaging applications

HSI offers a noninvasive method for evaluating the efficacy
of photosystems in crops, such as the efficiency of light
absorption and chlorophyll fluorescence. The accuracy
of HSI in measuring photosynthetic rates and stress
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responses in cotton was demonstrated by Jiang ez al. (2020)
through the use of ground-based hyperspectral imaging
to characterize canopy-level photosynthetic activities.
Their results indicated that the detection of photosynthetic
variations was enhanced by 28% when HSI-based models
were implemented in comparison to conventional gas-
exchange measurements. In the same vein, Meacham-
Hensold et al. (2020) investigated the use of proximate
hyperspectral imaging to evaluate the photosynthetic
parameters of cereals. Their research has shown that
HSI-based fluorescence retrieval techniques can increase
the estimation of photosystem II efficiency (®psir) by 25%,
thereby enabling the identification of subtle variations
in photosynthetic quantum efficiency across various
genotypes. HSI has been demonstrated to be effective in
monitoring light-use efficiency (LUE) variations under
a variety of environmental conditions, and LUE is a critical
determinant of photosynthetic performance. To evaluate
the photosynthetic efficacy of grape leaves, Yang et al.
(2022) implemented hyperspectral imaging in conjunction
with machine learning models. The study discovered that
HSI-based models were capable of accurately predicting
variations in LUE with a 92% accuracy rate, thereby
illustrating their potential to optimize carbon assimilation



in various crop species. Furthermore, Lu et al. (2020)
investigated the potential of hyperspectral imaging for
agricultural applications. They discovered that HSI-
derived chlorophyll fluorescence indices could increase
nitrogen-use efficiency (NUE) by 20%, resulting in
enhanced carbon fixation rates and overall photosynthetic
efficiency in maize and soybean.

Environmental stresses, including drought, salinity,
and temperature fluctuations, significantly influence
photosynthetic efficiency. HSI has facilitated the early
detection of stress, thereby enabling the implementation of
opportune interventions to preserve the optimal function of
the photosynthetic system. Hyperspectral reflectance data
was employed by Zhou et al. (2021) to assess the effects
of water stress on the photosynthetic capacity of soybean
and wheat. Their research illustrated that HSI models
could identify stress-induced decreases in photosynthetic
efficiency up to eight days before the onset of visible
symptoms, thereby offering a critical instrument for
precision agriculture and stress mitigation. Additionally,
Sobejano-Paz et al. (2020) investigated the impact of
drought stress on stomatal conductance and transpiration
using HSI. The study discovered that HSI-derived pigment
indices were 91% accurate in predicting chlorophyll
degradation and photosynthetic decline, rendering it
a dependable method for monitoring plant responses to
environmental stress.

This section reinforces the connection between
scientific insights provided by hyperspectral imaging
(HSI) and their practical applications in agriculture.
It elaborates on how real-time HSI data can optimize
essential farming practices, such as irrigation scheduling
and fertilizer application, to improve resource efficiency
and increase crop yields. Concluding with future directions
for HSI research, this section considers how ongoing
advancements could drive breakthroughs in crop breeding,
particularly in developing varieties with enhanced
photosynthetic efficiency and resilience to climate change,
establishing this work as a foundational reference for
upcoming research and innovation in agricultural sciences
(Table 2).

Photosynthetic pigment signature: an unveiling
through hyperspectral analysis

The accurate quantification of leaf chlorophyll
concentration is essential for evaluating photosynthetic
efficiency and overall plant vitality, as chlorophyll is crucial
for light energy absorption in photosynthesis (Murchie and
Lawson 2013). Pulse amplitude-modulated (PAM) devices
measure chlorophyll fluorescence, which is a noninvasive
way to check PSII activity, photosynthetic efficiency,
and how plants respond to changes in their environment.
These instruments are essential for crop enhancement,
field phenotyping, and ecological surveillance, allowing
quick and precise assessment of photosynthetic vitality
across various settings. Hyperspectral imaging (HSI)
provides a noninvasive technique for precisely measuring
chlorophyll concentrations by collecting reflectance data
over several small spectral bands (Yang et al. 2015). This

HYPERSPECTRAL IMAGING

capability allows precise measurement of chlorophyll
concentrations, allowing extensive surveillance of plant
vitality. Yang et al. (2015) used a Hyperion hyperspectral
imaging system to create a four-scale geometrical-optical
model. They used critical wavelengths (480, 631, 735,
749, and 819 nm) to predict chlorophyll concentrations
with an accuracy of 88.7%, which was better than other
estimation methods.

HSI enables a thorough investigation of chlorophyll
fluorescence, assessing photosynthetic efficiency and
plant stress. The Fraunhofer line depth (FLD) method
distinguishes fluorescence signals by examining absorption
features in the solar spectrum known as Fraunhofer lines,
enabling precise assessment of photosynthetic activity
(Zarco-Tejada et al. 2013). Feng et al. (2017) made
advanced hyperspectral pipelines that make it possible to
automatically extract chlorophyll @ and b, total chlorophyll,
and carotenoids. This facilitates a more accurate
assessment of plant physiological status. In their study
on rice crops, they got mean absolute percentage errors
of 6.94% to 12.84% and made high-resolution pigment
distribution maps that were accurate to within 0.11 mm
per pixel. Machine learning has significantly enhanced
the precision of chlorophyll estimates in hyperspectral
imaging, expanding its use in remote sensing. Gao
et al. (2022) suggested combining the Soil-Adjusted
Vegetation Index (SAVI) with k-means clustering. This
method reduces soil background interference by 25% and
improves the accuracy of the chlorophyll estimate by 10%.
Ruszczak et al. (2022) introduced a benchmark dataset
and validation framework for chlorophyll estimation,
thereby standardizing the assessment of machine learning
algorithms. Using high-throughput methods like fractional-
order derivatives (FOD), continuous wavelet transforms
(CWT), and ensemble learning models makes it more
accurate to measure chlorophyll content in complex crop
canopies. For example, research on citrus trees of Xiao
et al. (2024) shows this. They discovered critical
reflectance peaks at 550 nm and 750 nm to enhance
chlorophyll prediction.

A thorough comprehension of auxiliary pigments,
including carotenoids, is crucial for assessing photo-
synthesis. Carotenoids absorb light and safeguard plants
from photodamage. Huang ef al. (2022) conducted recent
research using UAV-mounted hyperspectral imaging to
identify pigments in Brassica napus. This methodology
offers essential insights into agricultural health and growth
trends. Combining hyperspectral imaging with airborne
technology makes it possible to collect data over large areas.
This is especially helpful for finding differences in crop
health across space and supporting precision agriculture
(Ge et al. 2021). Their research in dry environments
integrates UAV-based hyperspectral photography with
XGBoost modelling to assess soil moisture content. HSI
techniques for chlorophyll quantification, augmented by
Al-based analysis, have shown effectiveness in several
agricultural contexts. New inventions like PhotoSpec,
a ground-based sensor for measuring solar-induced
fluorescence (SIF), make it easier to keep an eye on things
from the field to the ecosystem level. Grossmann et al.
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Table 2. Key metrics and applications of hyperspectral imaging in agriculture.

Crop Hyperspectral Application Sensitivity/accuracy Key metrics References
technique
Wheat  Hyperspectral Genetic trait discovery, = High sensitivity Vegetation indices Yue et al. (2018)
sensors chlorophyll estimation to spectral changes (NDVI, PRI) Lu et al. (2024)
in 400-700 nm
Rice UAV-based HSI ~ Ecosystem-level studies, Accuracy > 85% for 3D structural data Zheng et al. (2018)
photosynthetic efficiency chlorophyll content integration Xu et al. (2024)
estimation
Maize  Multispectral Estimation of vegetation  High sensitivity with NIR Chlorophyll index, Mertens et al. (2021)
analysis indices, stress detection  and red-edge reflectance MCARI Veramendi and Cruvinel
(2024)
Sorghum Reflectance Light-to-energy Accuracy > 90% for Spectral reflectance ~ Zhi et al. (2022)
hyperspectroscopy conversion, biomass photosynthetic efficiency profiles
prediction
Tomato Reflectance Pigment concentration Sensitivity to Leafreflectance and ~ Zhao et al. (2023)
imaging monitoring environmental stress composition analysis
impacts
Lettuce  Dark reaction Carbon assimilation, High accuracy in dark Carbohydrate content Kumar et al. (2022)
monitoring physiological stress reaction enzyme detection and biochemical
profiling
Tobacco Carbohydrate Leaf carbon Noninvasive with SWIR ~ NIR/SWIR spectral ~ Meacham-Hensold et al.
analysis quantification spectra (accuracy £5%)  absorption features (2020)

Olakanmi et al. (2024)

(2018) used PhotoSpec to measure SIF emissions in the red
(650-690 nm) and far-red (720-780 nm) spectra, which
reveal direct signs of photosynthesis. Weak background
noise and better chlorophyll predictions are made with
narrow-band vegetation indices like the Transformed
Chlorophyll Absorption in Reflectance Index (TCARI)
and the Optimized Soil-Adjusted Vegetation Index
(OSAVI) (Haboudane et al. 2002). These indicators have
a favorable correlation with chlorophyll measurements,
underscoring their reliability in precision agriculture.
The physiological reflectance index (PRI) uses narrow-
band reflectance to assess physiological alterations in
plants, proving especially beneficial for evergreen species
due to their structural consistency, which facilitates
accurate temporal comparisons. Merrick ef al. (2020)
found a link between PRI and how efficiently plants use
light for photosynthesis. They also pointed out that this
relationship is useful for studying how plants react to stress
and changes in the pigments that make up the xanthophyll
cycle. Solar-induced chlorophyll fluorescence (SIF)
measures photochemical and nonphotochemical quenching
processes, which gives information about how well
plants use light to make food (Zarco-Tejada et al. 2016).
The integration of these data with machine learning
algorithms improves the prediction efficacy of HSI,
allowing tailored interventions in nutrition management
and pest control. By looking at Fraunhofer lines, especially
the O:-A band at 760 nm, the Fraunhofer line depth
(FLD) method tells the difference between chlorophyll
fluorescence and other types of fluorescence in the canopy
(Nakashima et al. 2021). Grossmann et al. (2018) further
illustrated the potential of FLD to connect canopy-
level fluorescence with evaluations of plant production.
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Continuous SIF monitoring systems, as emphasized by
Aasen et al. (2018) and Mohammed et al. (2019), produce
real-time data on photosynthetic efficiency, thereby
enhancing daily and seasonal agricultural management.

Indices such as the Photochemical Reflectance Index
(PRI570) and the O2-A infilling approach have been pivotal
in measuring chlorophyll dynamics over time, thereby
augmenting the utilization of HSI in sustainable and
precision agriculture (Sabater et al. 2018, Yang et al. 2019).
The SCOPE model combines radiative transfer and energy
balance equations to predict chlorophyll fluorescence
and photosynthetic rates at different scales. This gives us
a deeper understanding of how plant energy changes over
time (Huang et al. 2022). These achievements illustrate
the essential importance of hyperspectral imaging and
related approaches in enhancing agricultural production
and sustainability.

A comparative assessment of several chlorophyll
indices in hyperspectral imaging applications demonstrates
their unique advantages and limitations depending on
spectral sensitivity, precision, and specific agricultural
use cases. SIF is a highly effective method for assessing
photosynthetic efficiency and detecting stress, making it
invaluable for large-scale crop health surveillance and
early drought prediction. PRI, which quantifies variations
in the xanthophyll cycle, is particularly useful for tracking
plant responses to environmental stressors such as water
deficits and heat stress, supporting precision irrigation
strategies. TCARI and OSAVI minimize soil background
interference, improving the accuracy of chlorophyll content
estimation, which helps optimize fertilizer application and
nutrient management. The Red-edge Chlorophyll Index
(CI_red-edge) exhibits high sensitivity to chlorophyll



and nitrogen contents, making it an essential tool for
monitoring crop nutrition and detecting deficiencies early.
Integrating these indices with machine learning algorithms
enhances predictive capabilities, enabling hyperspectral
imaging to serve as a powerful decision-making tool in
precision agriculture. This approach facilitates early stress
detection, site-specific nutrient optimization, and accurate
yield forecasting, ultimately improving farm productivity
and sustainability. Future advancements in HSI
calibration, sensor development, and Al-driven spectral
analytics will further enhance the reliability and practical
implementation of chlorophyll indices in agricultural
monitoring, supporting climate-resilient farming systems.

Methodologies for hyperspectral imaging in evaluating
plant hydric condition

Evaluating plant water status is essential for comprehending
photosynthetic activity, as water availability directly
influences CO: uptake, stomatal conductance, and overall
plant vitality (Garbulsky et al. 2011, Zarco-Tejada et al.
2013). Water stress impairs plant metabolism and
photosynthetic efficiency, leading to reduced growth
and productivity. Hyperspectral imaging (HSI) provides
a noninvasive and highly sensitive method for detecting
early signs of water stress by analyzing reflectance
properties and temperature fluctuations across multiple
spectral bands. These features make HSI a critical tool
in precision agriculture, aiding in resource optimization,
stress detection, and yield preservation by facilitating
early intervention strategies for drought mitigation.

Thermal imaging

Thermal imaging utilizes infrared light to create detailed
temperature maps, facilitating the efficient identification of
water stress (Wen ez al. 2023). As transpiration declines
due to stomatal closure, canopy temperature rises, serving
as an indicator of plant water deficiency (Gonzalez-
Dugo et al. 2012, Vidican et al. 2023). Thermal cameras
mounted on aircraft or UAVs provide high-resolution
thermal data, allowing researchers and farmers to identify
spatial variations in plant hydration status.

Gonzalez-Dugo et al. (2012) demonstrated the efficacy
of aircraft-mounted thermal cameras in mapping intra-
crown temperature variations in almond plants under
different irrigation regimes. Their study revealed a strong
correlation between temperature fluctuations and water
stress levels, reinforcing the role of thermal imaging in
precision irrigation management. Similarly, Vidican ef al.
(2023) highlighted the potential of vegetative indices
(VIs), such as the Normalized Difference Vegetation
Index (NDVI) and the Soil-Adjusted Vegetation Index
(SAVI), obtained from Sentinel-1 and Sentinel-2 imaging,
in assessing drought stress in key crops, including wheat,
maize, and soybeans.

By integrating thermal imaging with hyperspectral
analysis, farmers and agronomists can develop precision
irrigation strategies that ensure optimal water distribution
while minimizing excessive water use. This combined
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approach reduces crop vulnerability to water stress
and enhances overall productivity in water-limited
environments.

Hyperspectral imaging in the VNIR and TIR spectra

Hyperspectral imaging (HSI) in the visible-near-infrared
(VNIR) and thermal-infrared (TIR) bands provides detailed
insights into plant physiological responses to water stress.
VNIR captures changes in reflectance properties, whereas
TIR detects variations in emitted radiation, enabling
the distinction between water-stressed and healthy plants
(Middleton et al. 2016, Mangalraj and Cho 2022). These
techniques enhance early drought detection, allowing for
timely interventions to mitigate crop yield losses.

Mangalraj and Cho (2022) explored the advancements
in solar-induced fluorescence (SIF) measurement
techniques, demonstrating their ability to detect subtle
stress symptoms before visible signs appear. This
highlights the potential of hyperspectral SIF analysis in
preemptive drought management, ensuring early detection
and targeted responses in agriculture.

When HSI-based water stress detection is combined
with UAV technology, large-scale real-time hydric
assessments become feasible. This integration improves
irrigation  efficiency, reduces unnecessary water
application, and enhances the sustainability of agricultural
water management.

Photochemical Reflectance Index (PRI)

The Photochemical Reflectance Index (PRI) quantifies
reflectance variations at 531 nm and 570 nm, offering
a reliable proxy for photosynthetic efficiency and
nonphotochemical quenching mechanisms. PRI is
particularly valuable in evaluating water stress, as it
reflects changes in the xanthophyll cycle, which enables
plants to dissipate excess light energy under drought
conditions (Chang et al. 2020).

Garbulsky et al. (2011) conducted a meta-analysis
demonstrating PRI's scalability for assessing radiation-
use efficiency (RUE) across different environmental
conditions, confirming its robustness in diverse crop
systems. Furthermore, Garzonio ef al. (2017) demonstrated
that UAV-mounted hyperspectral sensors can accurately
capture PRI, showing how its integration with solar-
induced fluorescence (SIF) data significantly enhances
water stress diagnosis. By utilizing PRI for real-time stress
monitoring, farmers can optimize irrigation schedules,
mitigate excessive water use, and prevent long-term crop
yield losses due to drought conditions. This demonstrates
the utility of PRI as a decision-support tool in precision
agriculture, ensuring more sustainable water-use strategies.

Broadband thermal imaging
Broadband thermal imaging quantifies canopy temperature
variations, providing a direct measure of plant hydration

status. Zhang et al. (2022) employed broadband thermal
cameras to differentiate temperature profiles between well-
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irrigated and drought-stressed crops, thereby reinforcing
the effectiveness of precision water management. Their
findings indicated that high-resolution temperature
mapping significantly improves irrigation efficiency,
resulting in substantial reductions in water usage while
maintaining crop health (Liu ez al. 2024).

By combining broadband thermal imaging with
hyperspectral reflectance indices, agricultural water
management can become more data-driven and resource-
efficient. This enables site-specific irrigation planning,
reducing water waste, and improving drought resilience in
farming systems.

Linking photosynthesis-related indices to precision
agriculture

The methodologies discussed above illustrate how
hyperspectral imaging and related spectral indices
contribute to sustainable water management in agriculture.
PRI and SIF allow for early stress detection, while VNIR
and TIR spectral analysis provide direct indicators of
plant hydration levels. When integrated with UAV and
Al-driven models, these indices enhance precision
irrigation strategies, allowing farmers to:

* Detect early drought stress symptoms before visible
signs appear, ensuring timely interventions.

* Optimize water distribution based on real-time canopy
temperature and reflectance data.

» Improve water-use efficiency to reduce the environmental
impact of excessive irrigation.

* Enhance yield prediction by linking photosynthetic
activity to hydric conditions.

As climate change increases the frequency and severity
of droughts, leveraging hyperspectral imaging for plant
water status evaluation will be critical in enhancing crop
resilience, optimizing resource allocation, and ensuring
global food security. Future advancements in sensor
technology, calibration techniques, and Al-driven analytics
will further improve the precision and applicability of
these methodologies in large-scale agricultural monitoring
and water management.

Study outcomes of chlorophyll indices in photosynthetic
stress detection

SIF has been acknowledged for its ability to identify stress
before the emergence of visible symptoms and its robust
correlation with photosynthetic activity. Mangalrajand Cho
(2022) conducted a review of SIF estimation techniques
that utilized hyperspectral imaging, highlighting their
potential for early stress detection and plant phenotyping.
Their results demonstrated that SIF-based models were
more effective than conventional vegetation indices in
monitoring stress responses in crops, rendering them
a critical tool for precision agriculture. In the same
vein, Wang et al. (2022) evaluated SIF for the detection
of nitrogen stress in almond trees by utilizing airborne
hyperspectral imagery. Their findings indicated that SIF
was 23% more effective than conventional reflectance
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indices in detecting nitrogen-deficient plants before
the emergence of visible symptoms. This investigation
emphasizes the benefit of SIF in the early detection of
stress. To further verify its stress detection capabilities,
Han et al. (2022) investigated the responses of SIF to arid
stress in agricultural commodities. They discovered that
stomatal conductance and transpiration rates were strongly
correlated with SIF signals (R? = 0.81), which enabled
the precise surveillance of drought stress in real-time.

PRI tracks xanthophyll cycle changes, which are
crucial for stress adaptation and light-use efficiency, to
provide a dependable measure of photosynthetic efficiency.
By integrating fluorescence spectroscopy with near-infrared
radiance, Zeng et al. (2017) examined the role of PRI
in the detection of abiotic stress. The study showed that
PRI is a critical instrument for early stress diagnostics in
crops, as it detects stress-related physiological alterations
21% earlier than traditional indices. Furthermore, Warner
et al. (2023) employed UAV-based hyperspectral imaging
to investigate the changes in PRI in rice fields that
occur under salt stress. They discovered that PRI had
a robust correlation (R? = 0.76) with stomatal closure
and photosynthetic downregulation, underscoring its
efficacy in monitoring salt-induced stress. Red-edge
chlorophyll indices, particularly those derived from
UAV-based hyperspectral imaging, have been demonstrated
to be highly effective in the detection of water stress and
nutrient deficiencies. SIF and red-edge indices were
implemented by Wang et al. (2023) to assess salt stress in
rice cultivars. Their research demonstrated that red-edge
reflectance indices were 25% more accurate in detecting
stress-related chlorophyll degradation than NDVI, which
further substantiated their high sensitivity to physiological
changes in stressed plants. Furthermore, Zhao et al. (2023)
demonstrated that red-edge chlorophyll indices were
more effective than broad-spectrum vegetation indices
in detecting drought-induced decreases in leaf water
content. Their results indicate that red-edge indices offer
a quantifiable advantage (20% greater accuracy) in the
monitoring of stress-induced chlorophyll fluctuations.

The integration of hyperspectral imaging-based
chlorophyll indices with UAV platforms and Al-driven
analytics has significantly improved the accuracy and
efficiency of early stress detection, nutrient monitoring,
and precision farming strategies. SIF's strong correlation
with photosynthetic efficiency makes it an indispensable
tool for monitoring plant vitality and optimizing fertilizer
applications in high-throughput phenotyping and
agronomic decision-making. PRI, with its sensitivity
to xanthophyll cycle alterations, plays a crucial role
in precision irrigation scheduling, ensuring that water
deficits are detected in real-time, minimizing drought-
induced losses. Red-edge chlorophyll indices further
enhance precision agriculture by providing early warnings
of nitrogen and water deficiencies, guiding site-specific
nutrient applications to optimize crop yield and resource
efficiency. The integration of these indices with machine
learning and UAV-based hyperspectral sensing has
transformed agricultural monitoring into a proactive,
data-driven system, enabling farmers to implement timely



interventions, enhance stress resilience, and improve
long-term crop productivity under climate variability.
Future advancements in hyperspectral calibration, real-
time processing, and sensor miniaturization will further
strengthen the role of chlorophyll indices in sustainable
and precision agriculture.

Hyperspectral methods for assessing the fraction of
absorbed photosynthetically active radiation (FAPAR)

The percentage of absorbed photosynthetically active
radiation (fAPAR) is crucial for plant production since it
measures the quantity of light employed in photosynthesis.
This statistics is essential for comprehending crop
performance and ecological dynamics. Peng et al. (2018)
showed how important hyperspectral imaging is for
measuring fAPAR because it provides better resolution by
collecting detailed spectral data. Their research evaluated
nine broadband and hyperspectral vegetation indices (VIs)
for determining fAPAR in wheat, maize, and soybean
canopies. The researchers used the ASD FieldSpec 4
spectroradiometer to demonstrate that hyperspectral
indices exhibited more accuracy (R? > (0.9) than standard
indices, with narrow spectral bands increasing sensitivity
to light absorption fluctuations by 15-20%. Adding
hyperspectral data to the fAPAR assessment also makes
it easier to keep an eye on crop yield, which is helpful
because it reduces problems caused by changes in canopy
structure. This invention distinguishes hyperspectral
imaging as an accurate instrument for agricultural and
ecological evaluations.

The Normalized Difference Vegetation Index (NDVI)

The Normalized Difference Vegetation Index (NDVI) is
one of the most prevalent measures for assessing fAPAR.
Red and near-infrared reflectance, the source of NDVI, has
proven to be a reliable proxy for photosynthetic activity
(Wang et al. 2023, Mallick et al. 2024). Zhang et al.
(2016) enhanced the use of NDVI by combining it with
the Photochemical Reflectance Index (PRI) and fAPAR
to forecast gross primary production (GPP) in cornfields.
Their research employed the EO- 1/Hyperion hyperspectral
imaging technology and attained a notable R* value of 0.92
for GPP predictions. This method utilized the accuracy of
hyperspectral imaging, resulting in notable enhancements
in the observation of canopy structure and light utilization
dynamics. Consequently, NDVI, when integrated with
hyperspectral methods, surpasses its conventional uses,
offering improved instruments for agricultural prediction
and vegetation assessment.

Enhanced Vegetation Index (EVI) and EVI2

The Enhanced Vegetation Index (EVI) and its simplified
form, EVI2, make up for NDVTI's flaws, especially the fact
that it can be affected by the weather and become saturated
under thick canopy cover. Baret et al. (2007) used the
EO-1 Hyperion hyperspectral imaging equipment to show
how well EVI works for measuring fAPAR in coniferous
forest ecosystems. By integrating the blue spectrum, EVI
achieved a 15% superior sensitivity to fluctuations in
dense vegetation compared to NDVI, thereby successfully
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mitigating saturation errors in thick canopies. This
innovation improved accuracy in monitoring thick
canopies, making EVI an essential instrument for fAPAR
evaluation in difficult situations. Additionally, Barriga
et al. (2022) investigated EVI and EVI2, which are
indicators of soil water depletion in temperate heathland
habitats. The study used field hyperspectral sensors and
soil moisture probes to validate EVI's ability to identify
physiological alterations induced by drought. In times
when there was no drought, EVI had strong connections
with gross primary production (GPP), and it was very
good at detecting changes in structure and function when
there was not enough water. This research demonstrated
EVTI's effectiveness as a diagnostic instrument for precision
agriculture and ecosystem monitoring by merging
hyperspectral data with soil moisture measurements.

The integration of hyperspectral imaging with fAPAR
assessments has significantly improved the precision of
crop growth monitoring, resource allocation, and yield
predictions. Hyperspectral-derived fAPAR indices provide
higher sensitivity to canopy light absorption dynamics,
enabling farmers to optimize photosynthetic efficiency and
fine-tune fertilization and irrigation practices for maximum
productivity. The combination of NDVI, EVI, and PRI
with hyperspectral imaging enables a comprehensive
evaluation of vegetation health, facilitating early stress
detection, site-specific agronomic interventions, and
improved carbon assimilation estimates. Additionally,
hyperspectral-based fAPAR models integrated with
Al and UAV technologies are transforming large-scale
agricultural monitoring, providing real-time insights that
support precision crop management, sustainable land-use
planning, and climate-adaptive farming strategies. Future
advancements in sensor miniaturization, calibration
techniques, and Al-driven spectral analytics will further
enhance the applicability of fAPAR assessments for
optimizing agricultural productivity and mitigating
climate-related risks.

Hyperspectral techniques for evaluating stomatal
conductance

Stomatal conductance is essential for controlling
gas exchange and transpiration thus influencing
photosynthetic efficiency and water utilization in plants.
Precise observation of stomatal activity is crucial for
comprehending plant reactions to environmental stressors.
Using thermal infrared (TIR) sensors and advanced
radiative models with hyperspectral imaging makes it
possible to accurately and noninvasively track stomatal
activity in a variety of environmental conditions. This
novel method connects physiological data with remote
sensing, offering practical insights for crop management
and water usage optimization.

Thermal infrared imaging (TIR) for stomatal
conductance measurement

Thermal infrared imaging (TIR) effectively detects

discrepancies in leaf temperature, which act as markers
of stomatal conductance (Smigaj et al. 2024). Jones
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(2004) illustrated the effectiveness of TIR imaging in
documenting the cooling effects of transpiration, providing
a reliable method for observing plant—water interactions.
Additionally, Jones and Leinonen (2003) applied a similar
methodology to grapevine canopies, linking real-time leaf
temperature fluctuations with stomatal activity during dry
conditions. These findings highlight the importance of TIR
in optimizing irrigation efficiency and advancing water
resource management through a comprehensive analysis
of stomatal responses. Furthermore, TIR imaging interacts
effortlessly with hyperspectral methods to provide
thorough evaluations of plant physiological processes.
This collaboration across technologies underscores
the adaptability of remote sensing instruments in tackling
intricate agricultural issues.

Soil-canopy observation, photochemistry, and energy
flux model

The SCOPE model integrates hyperspectral reflectance
data with radiative transfer equations to assess stomatal
conductance and several physiological parameters
(Zheng et al. 2024). Yang et al. (2021) employed the
SCOPE model in almond orchards to quantify diurnal
and seasonal fluctuations in plant energy fluxes during
water stress conditions. Their research showed that the
model accurately tracked stomatal activity by connecting
data from remote sensing with physiological processes.
This gave them a good understanding of how plants
respond to changes in their environment. Moreover,
the amalgamation of SCOPE with hyperspectral
photography establishes a scalable framework for real-
time agricultural management. This integrated method
enhances the accuracy of physiological assessments,
making it a crucial tool for sustainable agriculture and
precision farming (Fig. 4).

Recent advancements in SIF quantification utilizing
UAV-mounted sensors

The development of unmanned aerial vehicles (UAVs)
outfitted with solar-induced fluorescence (SIF) sensors
has considerably improved precision agriculture and
environmental monitoring. UAV-mounted SIF sensors
provide a noninvasive, high-resolution technique for
assessing plant health by detecting fluorescence emissions
associated with photosynthetic efficiency. Conventional
SIF monitoring depended on terrestrial spectrometers or
satellite imagery, both with constraints in geographical
and temporal resolution. Recent research has shown the
efficacy of UAV-based SIF retrieval methods. Wang et al.
(2021) examined the diurnal fluctuations of SIF in crops
utilizing UAV-based spectrometers. Their research
indicated that UAV-mounted sensors achieved a spatial
resolution of 0.5 m, markedly enhancing detection accuracy
compared to satellite-based methods. Furthermore, their
data indicated that SIF retrieval from UAVs enhanced early
stress detection accuracy by 22% relative to conventional
approaches. Additionally, Bandopadhyay et al. (2020)
performed an extensive assessment of top-of-canopy
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SIF research, emphasizing the shift from terrestrial and
aerial systems to UAV-mounted sensors. Their research
highlighted that UAV-based SIF retrieval enhanced
the capacity to differentiate changes in photosynthetic
efficiency among crop species, rendering it an essential
instrument for precision agriculture.

The amalgamation of machine learning techniques with
UAV-based SIF measurement has improved the precision
and applicability of fluorescence data. Chakhvashvili e al.
(2024) formulated a deep-learning-augmented SIF model,
integrating UAV-based SIF acquisition with multispectral
photography. Their research indicated that convolutional
neural networks (CNNs) enhanced early-stage drought
stress detection by 25%, highlighting the potential of
Al-driven UAV-SIF models in contemporary agriculture.
Furthermore, Nie et al. (2024) used hyperspectral remote
sensing with UAV-based SIF retrieval methods to enhance
precision fertilization in maize cultivation. Their findings
revealed that UAV-SIF data enhanced nitrogen-use
efficiency by 30%, underscoring the significance of SIF
retrieval in optimizing crop management techniques.
UAV-mounted SIF sensors have proven essential for
ecosystem-scale monitoring beyond agricultural contexts.
Honkanen et al. (2024) employed UAV-SIF retrieval
techniques in boreal forest locations, monitoring seasonal
fluctuations in photosynthetic activity and ecosystem
productivity. Their findings demonstrated that UAV-SIF
accurately  detected wvariations in  photosynthetic
performance, establishing it as a practical instrument for
agricultural and forestry applications.

Hyperspectral imaging: analyzing chlorophyll
fluorescence

Chlorophyll fluorescence is an important way to measure
how well photosynthesis is working and how healthy a plant
is physically. It also tells us a lot about how photosynthesis
changes in different environments (Maxwell and Johnson
2000). Hyperspectral imaging (HSI) has developed as
arevolutionary tool for analyzing chlorophyll fluorescence,
allowing the acquisition of comprehensive spatial and
spectral data that exceeds the accuracy and adaptability
of conventional techniques (Blackburn 2007). Moreover,
the incorporation of sophisticated imaging technologies
and computer models has transformed our capacity to
identify plant stress and enhance agricultural operations
(Fig. 5).

Imaging techniques for chlorophyll fluorescence
and plant stress identification

Zarco-Tejada et al. (2009) came up with a new way to
track chlorophyll fluorescence dynamics. They used
airborne narrow-band multispectral cameras, such as
the Micro-Hyperspec VNIR, along with the FluorMOD
model. This novel technique replicated leaf and canopy
fluorescence across various environmental conditions,
with over 85% accuracy in detecting nutrition and water
deficits. Moreover, sensitivity was enhanced by 20% when
used in orchard-scale imaging, providing a noninvasive
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Fig. 4. The diagram presents a multi-step scientific process for measuring the fluorescence line height (FLH) index and analyzing
photosynthetic activity using a fluorescence-based approach.

and dependable approach for early stress identification (2011) used the Specim FX-10 hyperspectral camera to
and agricultural resource optimization. Bauriegel et al. examine Fusarium culmorum infections in wheat. Their
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Fig. 5. The flowchart outlines a structured process for analyzing
hyperspectral image data, starting with image acquisition,
preprocessing, data extraction, modelling, and validation.
It includes normalization, calibration, filters, segmentation,
and computing indices. The final output is a classified image with
an interpreted analysis of the hyperspectral data.

method revealed significant changes in the integrity of
photosynthetic systems between 400 and 900 nm, and
it was able to identify infections with 91% accuracy.
This research underscores the spectral shifts linked to
fungal infections and shows the possibility of reducing
crop losses through timely interventions. Furthermore,
the noninvasive characteristic of the approach highlights
its significance for real-time agricultural monitoring.
Yang et al. (2024) showed that hyperspectral data and
fluorescence metrics can be used to find Verticillium wilt
(VW) in cotton. Continuous wavelet transforms (CWT)
combined with the Ocean Insight Flame-S spectrometer
achieved a detection accuracy of 90.62%, and near-infrared
wavelet features improved sensitivity by 25% compared to
conventional fluorescence indices. This method excelled
in detecting asymptomatic infections, showcasing its
advantages in early diagnostic applications.

Improved accuracy in assessing photosystem efficiency
and seasonal fluctuations

By combining the SpecimAisaFEN hyperspectral system
with radiative transfer models, Hejtmanek er al. (2022)
made fluorescence measurements more accurate and
clearer. Their research on Norway spruce demonstrated
notable seasonal fluctuations in spectral reflectance,
especially within the 700—1,300 nm region, with changes
in reflectance reaching as high as 30%. The strong link
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(R* > 0.85) between these changes and chlorophyll
contents showed how useful hyperspectral imaging is for
keeping an eye on photosynthetic activities. Additionally,
Wientjes et al. (2017) analyzed chlorophyll ratios in
photosystems I and II (PSI and PSII) with the Headwall
Nano-Hyperspec hyperspectral imager. Their findings
indicated that PSII fluorescence diminished 15% more
rapidly than PSI under stress, offering significant insights
into light-use efficiency and stress response mechanisms.
This research substantially enhanced our comprehension
of photosynthetic systems, especially their reactions to
environmental stressors.

Spatial analysis of quantum efficiency
and nonphotochemical quenching (NPQ)

Hyperspectral imaging has been very helpful in figuring
out how PSII efficiency parameters, such as F,/F, and
PSII, change over time and space (Bartold and Kluczek
2024). Jiang et al. (2020) used the Resonon Pika L
hyperspectral imager to look at these changes. They found
that F,/F,, ratios changed by up to 40% over time when
the plants were under stress. This study emphasized the
adaptive responses of plants to environmental changes,
highlighting the essential role of hyperspectral imaging
in comprehending temporal reactions. Furthermore, Chou
et al. (2017) examined nonphotochemical quenching
(NPQ) using the SPECIM IQ hyperspectral camera,
concentrating on changes in spectral signatures under
high-light conditions. Their research indicated that
stressed plants displayed 20% elevated NPQ levels,
with notable alterations detected in the red-edge area
(680—750 nm). Furthermore, these discoveries improved
our understanding of photoprotective processes and
enabled more accurate evaluations of plant health under
unfavorable conditions.

Expedited disease diagnosis and enhanced agricultural
methods

Hyperspectral imaging continues to evolve as a critical
tool in early-stage disease detection in agriculture,
enabling proactive management strategies. Recent
advancements highlight its growing precision and
application. Adetutu ez al. (2024) presented an extensive
review of hyperspectral imaging techniques, showing
their utility in the identification and classification of crop
diseases. Garcia-Vera et al. (2024) emphasized machine
learning integration, improving disease classification
accuracy using hyperspectral images. Xie ef al. (2024)
demonstrated nondestructive hyperspectral methods
for detecting biological stress in wheat, enabling early
diagnosis of crown rot disease. Similarly, Bukhamsin et al.
(2025) highlighted the importance of high-throughput
hyperspectral imaging for early disease detection and
intervention strategies. Lin er al. (2024) successfully
applied hyperspectral remote sensing to identify early
signs of rice sheath blight, further validating its agricultural
potential. Together, these studies affirm hyperspectral
imaging as a transformative technology in plant health



monitoring, optimizing crop productivity, and advancing
resource-efficient agricultural practices.

The integration of hyperspectral imaging with
chlorophyll fluorescence analysis has revolutionized
plant health diagnostics, stress monitoring, and precision
agriculture decision-making. By detecting fluorescence-
based stress responses at an early stage, farmers and
researchers can optimize irrigation, nutrient management,
and disease control interventions before symptoms become
visible. The combination of machine learning algorithms
with hyperspectral fluorescence imaging enhances disease
classification accuracy, facilitating early-stage pathogen
detection and targeted treatment applications. Furthermore,
HSTI's ability to track photosystem efficiency fluctuations
and nonphotochemical quenching (NPQ) provides
valuable insights into plant photoprotection mechanisms,
allowing for better adaptation to environmental stressors
such as drought and heatwaves. As hyperspectral imaging
technology continues to advance through UAV integration,
Al-driven spectral modeling, and high-throughput analysis,
its role in enhancing agricultural sustainability, resource
optimization, and -climate-resilient crop management
will become even more critical. Future developments
in sensor calibration, real-time spectral processing, and
high-resolution canopy imaging will further solidify
HSI as an indispensable tool for sustainable precision
agriculture and improved food security.

Assessment of PSII efficiency

Assessing the efficacy of PSII is essential in photosynthesis
research since it elucidates the mechanisms by which
plants transform light into chemical energy and adapt
to environmental challenges, including drought and
elevated temperatures. Pulse-amplitude modulation
(PAM) fluorometers, such as the Walz PAM-2000, measure
important parameters such as F,/F,,. Maxwell and Johnson
(2000) indicated that these parameters are essential for
understanding how well PSII works. These measurements
provide a sensitive and noninvasive method for monitoring
photosynthetic performance, with reductions of 20-30%
noted under stress circumstances. Furthermore, this
seminal study emphasized the sensitivity and utility
of PAM fluorometry, which surpassed traditional gas
exchange methods by offering dynamic, real-time
evaluations of plant responses to environmental stimuli.
Moreover, improvements in hyperspectral fluorescence
imaging have greatly advanced this discipline by delivering
extensive spectral and spatial data that exceed traditional
techniques. For instance, Zarco-Tejada et al. (2012)
employed UAV-mounted hyperspectral imaging systems,
integrating narrow-band indices with thermal data to
assess water stress. The new way of using fluorescence,
temperature, and spectrum reflectance together made it
30% more accurate to find changes in the body compared
to other methods. Moreover, this approach significantly
enhanced spatial resolution, enabling real-time monitoring
of stress responses at the canopy level. Likewise,
hyperspectral sensors have advanced the computation of
the Photochemical Reflectance Index (PRI), an essential
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statistic for evaluating light-use efficiency. Garbulsky et al.
(2011) demonstrated the application of narrow-band
spectroradiometers, which improved the accuracy of
light-use efficiency calculations by 10—-15%. Additionally,
Gitelson et al. (2003) emphasize the importance of the
Red-edge Inflection Point (REIP) for detecting minor
variations in chlorophyll concentrations and canopy
architecture. Using field spectrometers like the ASD
FieldSpec, their approach highlighted the capability of
hyperspectral imaging to detect nuanced physiological
changes. Additionally, Sims and Gamon (2002) expanded
the spectral range to include near-infrared (NIR) regions.
This led to a 20% improvement in estimates of chlorophyll
concentration, which made hyperspectral indices more
reliable for canopy-level assessments. Porcar-Castell
et al. (2014) integrated ground-truthing techniques, such
as PAM fluorometry, with hyperspectral imaging, which
improved the reliability of PSII efficiency measurements
by approximately 25%. This integration underscores the
crucial necessity of calibrating hyperspectral imaging with
ground-based instruments to ensure accurate and scalable
assessments of plant health and environmental responses.
Moreover, this combination bridged the gap between
leaf-level measurements and canopy-level observations,
making it a pivotal advancement in ecological and
agricultural research (Fig. 6).

Hyperspectral imaging for monitoring electron
transport rate, photoinhibition, and carbon flux

Hyperspectral imaging (HSI) is now a useful tool for
measuring the electron transport rate (ETR) in plants,
especially for keeping track of how well plants use light
to make food in a variety of environmental conditions.
HSI facilitates accurate assessments of energy transfer
in the photosynthetic system by acquiring comprehensive
spectrum data, hence, it aids in the identification of stress-
related changes in ETR. The electron transport rate (ETR)
is a crucial factor in photosynthetic activity, directly
associated with the transformation of light energy into
metabolic energy. Yang et al. (2022) employed hyper-
spectral machine learning models to assess photosynthetic
performance in grape leaves. Their research showed
a strong link between hyperspectral reflectance in
the 400—1,000 nm range and ETR (R?>=0.87), which enables
scientists to find early signs of photosynthetic degradation
caused by stress (Yang ef al. 2022). Additionally, Camino
Gonzalez (2019) used hyperspectral images and solar-
induced fluorescence (SIF) retrievals to assess differences
in ETR for both rainfed and irrigated crops. Their study
showed that ETR predictions were 18% more accurate
when hyperspectral reflectance data was combined with
regular chlorophyll fluorescence measurements (Camino
Gonzalez 2019). These findings validate the efficacy of
HSI in monitoring the kinetics of photosynthetic energy
transfer.

Photoinhibition transpires when excessive light
exposure impairs the photosynthetic apparatus, diminishing
photosynthetic efficiency. Murchie and Lawson (2013)
looked at how photoinhibition works in plants and found
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Fig. 6. Workflow for Calvin Cycle assessment using hyperspectral imaging and analysis.

that combining hyperspectral imaging with chlorophyll
fluorescence analysis made it much easier to find drops in
ETR caused by stress (Murchie and Lawson 2013). Their
research emphasized the amalgamation of hyperspectral
and fluorescence methodologies when evaluating
the impacts of photoinhibition on photosynthetic efficacy.
HSI is crucial in monitoring carbon flow, a vital component
of plant production. Jiang et al. (2020) employed diurnal
SIF measurements to assess carbon fixation and net primary
production (NPP) across various canopy topologies.
The results showed that hyperspectral-derived SIF values
were closely related to net ecosystem exchange (NEE),
which means that they can be used to measure plant carbon
fluxes without damaging the plants (Jiang et al. 2020).
Toyoshima et al. (2020) used hyperspectral imaging to
look at how changes in spectral light affect the flow of
carbon and the parts of photosynthetic electron transport
in cyanobacteria. Their investigation demonstrated
the selective use of electron transport channels under
varying spectral circumstances, underscoring the plasticity
of photosynthetic organisms in optimizing carbon
assimilation (Toyoshima ez al. 2020). These results show
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how important hyperspectral imaging is for helping us
understand how photosynthetic processes work, especially
when it comes to checking ETR, photoinhibition, and
carbon flow. HSI enhances plant monitoring in precision
agriculture and ecological research by facilitating high-
throughput, noninvasive measurement.

Analysis of the Calvin cycle and carbon incorporation

Comprehending the Calvin cycle and carbon assimilation
rates is essential for enhancing agricultural productivity and
advancing photosynthetic research. Zhang ef al. (2014)
demonstrated the substantial influence of hyperspectral
imaging on quantifying Calvin cycle indicators and
gross primary production (GPP). Utilizing data from the
Orbiting Carbon Observatory-2 (OCO-2), they attained
a 15% enhancement in gross primary production (GPP)
modeling, with values fluctuating between 10-35 g(C)
m? day! across diverse ecosystems. This highlights
the significance of satellite-based hyperspectral techniques
worldwide. Moreover, by analyzing reflectance in
the near-infrared (NIR) and shortwave infrared (SWIR)



spectra, which closely correlate with the quantities of
soluble sugars and starch in plant tissues, hyperspectral
data facilitates the estimation of leaf carbon content.
Gitelson et al. (2003) and Gamon et al. (2016) both
reported better ways to find out how much carbon is in
leaves and how fast they absorb nutrients. They found that
the amounts of soluble sugar and starch ranged from 5 to
20 mg g '(FM). These findings underscore the efficacy of
hyperspectral imaging in correlating spectral reflectance
data with metabolic activities.

High-throughput hyperspectral detection has enabled
us to measure precisely the highest rate of carboxylation
(Vemax) and the highest rate of electron transfer (Jimax).
Zhi et al. (2022) used hyperspectral imaging to examine
dark reactions in sorghum crops, resulting in a 25%
improvement in accuracy. Reflectance values throughout
the 700—780 nm spectrum were crucial for detecting stress
reactions. Furthermore, Hollberg and Schellberg (2017)
illustrated the efficacy of UAV-mounted hyperspectral
sensors in precision agriculture. Their research on
grasslands demonstrated a 15% improvement in precision
for identifying fertilization intensity levels, with nutrient
concentrations between 25 and 60 mg g '(DM) associated
with fluctuations in the NIR spectrum (760—850 nm).
An extensive study by Serbin et al (2012) highlighted
the significance of hyperspectral imaging in evaluating
carbohydrate accumulation and enzyme activity in several
plant species. Their findings indicated carbohydrate
amounts ranging from 10 to 30 mg g'(FM), enhancing
biochemical activity detection by 20%. Also, Yu et al
(2022) used proximal hyperspectral sensors to predict Vemay
with a level of accuracy of +5%. They found that Vemax
was between 50 and 100 pmol m= s™!. This mechanistic
method highlights the promise of hyperspectral techniques
for noninvasive studies of photosynthetic efficiency.

Advancements in monitoring the Calvin cycle

The Calvin cycle encompasses metabolic activities
essential for carbon fixation during photosynthesis.
It significantly influences agricultural output and
resilience across many climates (Taiz and Zeiger 2010).
This fundamental comprehension of the Calvin cycle
has propelled many breakthroughs in the monitoring and
evaluation of photosynthetic activities, especially using
cutting-edge technologies such as hyperspectral imaging.
Fu et al. (2020) showed that hyperspectral sensors can
identify spectral markers linked to essential carbon-
fixation enzymes, including Rubisco. These sensors allow
scientists to precisely quantify Calvin cycle intermediates,
providing an unparalleled degree of precision in
photosynthetic evaluations. Moreover, their prediction
models assessed essential photosynthetic characteristics,
such as the maximum carboxylation rate (Vomsx) and
the maximum electron transport rate (Jms), achieving
an outstanding accuracy of +£10%. This work emphasized
the amalgamation of spectral data with physiological
models by synthesizing data from diverse species,
hence enhancing noninvasive methods for evaluating
photosynthetic traits. The amalgamation of spectral
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and physiological knowledge signifies a substantial

advancement in enhancing agricultural output and
comprehending crop resistance throughout varied
environmental situations. Furthermore, Zhi et al

(2022) devised high-throughput techniques employing
hyperspectral photography to monitor biochemical
activities in sorghum canopies. Their novel methodology
utilized spectral reflectance data in the near-infrared
(NIR) and shortwave infrared (SWIR) areas, achieving
a 25% increase in accuracy for forecasting photosynthetic
rates. This development is especially important for large-
scale phenotyping since it allows accurate assessment of
photosynthetic efficiency across vast agricultural areas.
Furthermore, their emphasis on sorghum, an essential
commodity for food security in dry areas, highlights
the practical significance of their efforts to improve
crop resilience. Moreover, hyperspectral sensors have
demonstrated efficacy in detecting leaf carbon content
by recording reflectance in the NIR and SWIR bands,
establishing robust relationships with biochemical
composition (Gitelson et al. 2002, Poorter et al. 2009).
Gitelson et al. (2002) investigated the correlation between
chlorophyll concentration and spectral reflectance in plant
leaves, creating noninvasive methods for chlorophyll
estimation. Their research, employing spectroradiometers,
attained significant prediction accuracy with reflectance
assessed at essential wavelengths, specifically 700-
750 nm. These algorithms have become indispensable
instruments for academics and practitioners pursuing
reliable, noninvasive techniques for assessing plant health.
Poorter et al. (2009) performed an extensive meta-analysis
investigating the correlation between leaf mass per area
(LMA) and photosynthetic characteristics across a diverse
array of plant species, including both C; and Cs4 plants.
Their findings indicated that LMA is closely correlated
with photosynthetic rates [measured in umol(CO2) m2s™],
with variations affected by environmental and genetic
variables. This meta-analysis offered essential insights into
the influence of leaf shape on photosynthetic efficiency,
informing future physiological and ecological research.
Additionally, Serbin et al. (2012) examined the correlation
between leaf optical characteristics and photosynthetic
metabolism across different temperature settings. They
utilized field spectroradiometers to assess leaf reflectance
and transmittance within the 400-2,500 nm spectrum.
Their research showed a 20% increase in forecasting
photosynthetic rates [in umol(CO2) m? s7'], correlating
optical characteristics with metabolic reactions under
thermal stress. These findings enhanced comprehension of
temperature sensitivity in photosynthesis and underscored
the potential of optical features as indicators of metabolic
activities in fluctuating climates. Rascher et al. (2015)
utilized the HyPlant imaging spectrometer to map sun-
induced fluorescence (SIF) with an exceptional resolution
of 10 cm. This high-resolution mapping disclosed regional
discrepancies in Calvin cycle activity, with fluorescence
signals quantified in mW m= sr' nm™. Their research
linked fluorescence signals to the efficiency of the Calvin
cycle, bridging the divide between leaf-level activities and
landscape-level observations. This innovation highlights
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the significance of hyperspectral imaging in converting
theoretical knowledge into practical applications, enabling
accurate evaluations of photosynthetic output under
various environmental circumstances.

These findings collectively underscore the revolutionary
potential of hyperspectral imaging in enhancing our
comprehension of the Calvin cycle. Innovations in
identifying spectrum markers of essential enzymes and
correlating optical features with photosynthetic metabolism
provide improved crop monitoring and sustainable
agricultural operations. The integration of high-resolution
imaging methods with predictive physiological models
highlights the significance of hyperspectral technology in
tackling global issues such as food security and climate
adaptation.

These findings collectively underscore the trans-
formative role of hyperspectral imaging in advancing our
understanding of the Calvin cycle and its implications for
sustainable agriculture. By linking spectral markers of key
carbon-fixation enzymes with photosynthetic efficiency
models, HSI enables noninvasive, high-throughput
assessments of crop vitality, carbon assimilation,
and metabolic activity. The integration of SIF-based
fluorescence mapping with real-time spectral monitoring
enhances the precision of drought response strategies, yield
forecasting, and stress diagnostics, ensuring that farmers
can implement adaptive management techniques based
on real-time photosynthetic efficiency data. Furthermore,
the application of UAV-mounted hyperspectral sensors and
Al-driven spectral analytics allows large-scale monitoring
of Calvin cycle dynamics, facilitating early detection of
environmental stressors that impact crop productivity.
Future advancements in sensor resolution, spectral
calibration, and physiological modeling will continue to
refine these monitoring techniques, strengthening global
food security efforts and enabling climate-adaptive
agricultural practices.

Hyperspectral vegetation indices and photosynthetic
mechanisms

By collecting reflectance data across many spectral bands,
hyperspectral vegetation indices (VIs) are important tools
for figuring out photosynthesis, plant health, and how
plants respond to stress (Yu et al. 2022). These indicators
utilize the extensive data spectrum of hyperspectral
sensors to provide accurate assessments of photosynthetic
efficiency and overall plant health. The most significant
vegetation indices include the Normalized Difference
Vegetation Index (NDVI), the Modified Chlorophyll
Absorption in Reflectance Index (MCARI), and
the Photochemical Reflectance Index (PRI). Each index
offers distinct insights into plant physiological states
(Carter and Knapp 2001). The fact that NDVI is sensitive
to chlorophyll contents and canopy structure shows how
important it is for measuring biomass and ecosystem health
(Gitelson et al. 2003). Furthermore, Yu et al. (2022) built
a mechanistic photosynthetic model to assess the maximal
carboxylation rate (Vems) using hyperspectral remote
sensing data. This innovation yielded a +5% increase
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in prediction accuracy, demonstrating the significant
relationship between physiological factors and spectral
features. Carter and Knapp (2001) found a link between
the way leaves look, the amount of pigments, and how
sensitive they are to light in a wide range of ecosystems.
For pigment content, this link was over 90% accurate.
These advancements have significantly improved
ecosystem-scale monitoring capabilities, emphasizing
the use of hyperspectral indices in ecological research.
MCARI improves these measurements by reducing the
impact of nonphotosynthetic parts, lowering background
noise by 15-20%, and making it easier to find chlorophyll
in complex canopy structures (Daughtry et al. 2000). This
enhancement is especially beneficial in dense vegetation
environments, where conventional techniques frequently
prove inadequate. The PRI index measures how well
plants use light concerning their PSII performance and is
a noninvasive way to check their photosynthetic potential
(Gamon et al. 1997). Yang et al. (2022) talk about how
new developments in PRI applications have made stress
detection 20% more accurate, which helps us understand
photoprotective systems better. PRI's connection with
changes in carotenoid pigments also makes it better at
predicting how much light is used, which makes it even
more useful for precise monitoring (Gamon et al. 2016).

The Red-edge Chlorophyll Index (CI_red-edge), which
focuses on nitrogen and chlorophyll concentrations, offers
supplementary information. This hyperspectral index
has demonstrated its ability to yield essential insights
into plant nutrition and photosynthetic capacity (Barnes
et al. 2000). Recent developments in UAV-mounted
hyperspectral sensors have augmented their value by
improving spatial resolution by up to 25% and hence
promoting precision agricultural techniques (Polivova and
Brook 2022). Researchers have established the efficacy
of the Water Index (WI) in detecting drought stress and
associated physiological alterations. By connecting the WI
with stomatal conductance and photosynthetic efficiency
(Pefiuelas et al. 1997), this method has been shown to keep
photosynthetic rates high in a range of water conditions.
Seelig et al. (2008) demonstrated a 20% enhancement in
stress detection accuracy through the integration of WI
and stomatal conductance measures, hence, they improved
drought monitoring methodologies.  Furthermore,
hyperspectral solar-induced fluorescence (SIF) detection
has become a transformative method for monitoring
photochemical processes at both canopy and ecosystem
levels. This method substantially improves the observation
of photosynthetic activities by recording real-time
fluorescence signals. Frankenberg ez al. (2014) found that
SIF data improved the accuracy of finding photosynthetic
features by 15-20%. This gave scientists important new
information on how photosynthetic processes work under
different light conditions. Moreover, Hank ef al. (2019)
emphasize the significance of SIF in promoting sustainable
agriculture and ecosystem management. Integrating SIFs
with hyperspectral VIs enables researchers to acquire
a holistic perspective on plant health and productivity,
thereby enhancing agricultural and environmental
monitoring methodologies.



Constraints of hyperspectral imaging (HSI)
in photosynthesis surveillance and the growing
influence of big data and artificial intelligence

Hyperspectral imaging (HSI) has transformed the
monitoring of plant physiology by enabling noninvasive
assessments of photosynthetic characteristics, nonetheless,
its extensive use encounters some significant constraints.
A significant problem of hyperspectral imaging in
photosynthesis monitoring is the substantial data volume
produced, necessitating sophisticated computer methods
for effective processing. The amalgamation of artificial
intelligence (AI) and machine learning (ML) has surfaced
as a remedy for managing the intricacies of spectrum
datasets, nonetheless, obstacles, including data storage,
processing velocity, and model generalizability, persist
as substantial issues (Islam ef al. 2024). The substantial
data volume generated by HSI requires sophisticated
spectral data compression methods and refined feature
selection algorithms for effective interpretation (Ali ef al.
2024). Moreover, model calibration presents a significant
challenge when using HSI across several plant species,
as spectral fingerprints may fluctuate based on climatic
circumstances, plant phenology, and stress levels. Sharma
et al. (2024) revealed that Al-enhanced HSI models
enhanced the categorization of stress responses in grapevine
phenotyping, nevertheless, attaining model transferability
across species continues to be a significant problem.
A significant disadvantage is HSI's reliance on external
environmental elements, especially in field circumstances
where fluctuating light intensity, air interference, and
sensor noise can influence spectral measurements
(Zhang et al. 2025). Despite advancements in remote
sensing capabilities using airborne and UAV-mounted
hyperspectral sensors, the precision of photosynthetic
efficiency assessments by solar-induced fluorescence
(SIF) remains influenced by diurnal and seasonal
fluctuations in sunshine availability (Mangalraj and Cho
2022). The amalgamation of hyperspectral imaging (HSI)
with biochemical fluorescence quenching (BFQ) models
has enhanced estimations of electron transport rate (ETR),
yet discrepancies in data remain due to differences in leaf
chlorophyll fluorescence at the canopy level (Zarco-Tejada
et al. 2016). Al-driven hyperspectral data processing has
presented issues associated with the opaque nature of
deep learning models and the complexities in identifying
spectral patterns (Varghese et al. 2023). Convolutional
neural networks (CNNs) and graph-based Al models have
effectively identified stress-related spectrum changes,
however, their practical implementation is frequently
limited by the requirement for extensive annotated
datasets for training and validation (Abdullah er al.
2023). Recent research has emphasized the heightened
computing demands of deep learning-based hyperspectral
models, especially in the context of real-time canopy-
level photosynthetic observations (Haworth et al. 2023).
Moreover, the expense and availability of high-resolution
hyperspectral sensors continue to pose substantial
obstacles to widespread agricultural use. Although UAV-
mounted and satellite-based platforms such as ES4 FLEX
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have enhanced the accessibility of hyperspectral imaging
(HSI), the prohibitive expense of spectral imaging
devices and the necessity for specialized skills hinder
general deployment (Guanter ef al. 2014). Anticipated
developments in Al-enhanced spectrum unmixing and
cloud-based big data processing are projected to enhance
the operational efficiency of hyperspectral imaging,
rendering it a more scalable instrument for monitoring
plant photosynthesis (Chen et al. 2024). Notwithstanding
these constraints, the integration of HSI with AI possesses
the capacity to surmount existing obstacles by facilitating
real-time, automated analysis of hyperspectral data.
Current investigations into adaptive Al algorithms and
hyperspectral fusion methods are anticipated to enhance
the precision of photosynthesis monitoring inside intricate
plant canopies. Nonetheless, more efforts are required to
guarantee model robustness, computational efficiency, and
wider application across various crop species and climatic
circumstances.

Assessment of nutrient concentration

Evaluating nutrient contents, particularly nitrogen, is key
for understanding photosynthetic efficiency and overall
plant health, as nitrogen is an integral component of
chlorophyll and photosynthetic proteins (Poorter et al.
2009). Furthermore, studies have demonstrated a strong
correlation between the variation in leaf mass per area
(LMA) and photosynthetic rates. Poorter er al. (2009)
performed an extensive meta-analysis to investigate
the causes and effects of LMA variation, demonstrating
that these discrepancies significantly influence resource
use efficiency in plants. Their research emphasized the
impact of structural leaf characteristics on photosynthetic
efficiency, providing significant insights for both
ecological and agricultural purposes. Hyperspectral
vegetation indices, especially those that use near-infrared
reflectance, are very good at measuring nitrogen contents,
which have a direct effect on crop growth and yield
(Clevers and Kooistra 2012). Using hyperspectral remote
sensing data, Clevers and Kooistra (2012) precisely
measured nitrogen and chlorophyll contents in mixed
cereal crops, resulting in a 20% increase in detection
accuracy. This development highlights the efficacy of
hyperspectral data in noninvasive nutrient assessment and
supports precision agriculture. Also, research has shown
that hyperspectral indices in the red-edge spectrum, such
as the Red-edge Chlorophyll Index (CI_red-edge), have
a strong relationship with nitrogen contents. This shows
how important it is to do accurate and noninvasive nutrient
assessments for fertilization strategies that work (Gitelson
et al. 2005, Mutanga and Skidmore 2007). Mutanga and
Skidmore (2007) highlighted the efficacy of red-edge
reflectance in quantifying phosphorus concentrations in
grass canopies, resulting in a 25% increase in accuracy.
Their findings are crucial for assessing nutrient constraints
in savanna ecosystems and facilitating sustainable resource
management. Gitelson et al. (2005) formulated algorithms
for the remote estimation of canopy chlorophyll content
in crops like maize and soybean, with an accuracy of
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10—-15%. These scalable techniques substantially improve
chlorophyll and nitrogen monitoring processes, hence,
they enhance crop management tactics. Zarco-Tejada et al.
(2001) further established that CI red-edge enhances
nitrogen mapping precision by 15%, especially in diverse
canopies of olive and citrus trees. Their use of novel
hyperspectral indicators yielded accurate insights into
nutrient distribution, enhancing orchard output. Sims
and Gamon (2002) enhanced this by connecting pigment
quantity with spectral reflectance across several species
and developmental phases, hence, they increased pigment
estimation accuracy by 20%. Wang et al. (2018) extended
these applications to environmental monitoring by utilizing
hyperspectral data to identify heavy metal pollution in soil
and plants. Their research showed a 15% enhancement in
recognizing distinct spectral signatures linked to pollution,
highlighting the adaptability of hyperspectral imaging for
agricultural and environmental evaluations.

Hyperspectral imaging applications have extended
beyond nitrogen to include other essential nutrients
such as phosphorus and potassium, which are critical
for plant growth and productivity. Similarly, Lin ez al.
(2024) developed accurate models using hyperspectral
data to monitor leaf N, P, and K content in maize,
achieving improved prediction precision for nutrient
status assessment. Silva et al. (2023) highlighted the
importance of UAV and satellite-based hyperspectral
imaging for monitoring spatial variations in crop nitrogen
contents, providing essential data for precision nutrient
management. Zhang et al. (2023) employed UAV-mounted
hyperspectral cameras to analyze biochemical information
related to crop nutrients, achieving up to 30% higher
accuracy compared to traditional methods. Sharma et al.
(2024) optimized hyperspectral imaging workflows for
potato crop nutrient prediction, demonstrating its ability to
accurately map nitrogen and potassium concentrations for
biomass growth estimation.

These advancements underscore hyperspectral
imaging's transformative impact on precision agriculture
by facilitating high-resolution, real-time monitoring of
crop nutrient dynamics. This technology enables precise
nutrient management, reduces input costs, and minimizes
environmental impacts, fostering sustainable agricultural
practices.

Evaluation of leaf area index (LAI)

The leaf area index (LAI) is a crucial metric in
photosynthesis research, it measures the proportion of
leaf area to the ground surface. It serves as an essential
indicator of canopy density, light absorption capacity, and
photosynthetic potential (Daughtry e al. 2000). Daughtry
et al. (2000) established a fundamental approach for
measuring LAI from leaf and canopy reflectance data,
specifically in crops like maize (Zea mays). By linking
chlorophyll contents to reflectance indices, they were
able to get 20% more accurate estimates, with chlorophyll
contents ranging from 20 to 80 ug cm™. This research
established the foundation for further advancements in
noninvasive agricultural monitoring techniques. A high
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LAI often correlates with improved light absorption and
gas exchange, leading to greater biomass accumulation
and agricultural productivity. Bréda (2003) emphasized
the significant relationships between LAI and canopy
light absorption while also addressing the problems
associated with LAI measurements. Their thorough
analysis of terrestrial methodologies highlighted the
necessity for improved techniques, especially for
ecological evaluations. Also, hyperspectral remote sensing
technologies have made LAI calculations faster and
more accurate by collecting spectral signatures that are
unique to different plant species and canopy structures
(Ali and Imran 2020). They found that using reflectance
in the near-infrared (NIR) and red-edge spectra, along
with hyperspectral methods, improved nitrogen detection
and LAI by 20-30%. This breakthrough establishes
hyperspectral imaging as a revolutionary instrument in
precision agriculture. Radiative transfer methods, like
PROSAIL, which combines the PROSPECT model for
leaf optical properties with the SA/L model for canopy
reflectance, are useful for finding the LAI. Jacquemoud
et al. (2009) proved that PROSAIL could accurately
replicate LAI and canopy structure, with a prediction
accuracy of 5% across wavelengths from 400 to 2,500 nm.
Likewise, Darvishzadeh et al. (2011) used PROSAIL on
aerial hyperspectral pictures, effectively measuring LAI
in grasslands with an accuracy improvement of +10%.
This highlights the strong capabilities of PROSAIL in
evaluating various ecosystems.

When crops are at key stages of growth,
the Normalized Difference Vegetation Index (NDVI)
and the Green Normalized Difference Vegetation Index
(GNDVI) are two hyperspectral vegetation indices
that are closely linked to the LAI. Zarco-Tejada et al.
(2013) found that relating chlorophyll fluorescence to
photosynthetic rates in crops like olive trees and vineyards
made LAI predictions 20% more accurate during these
phases. These metrics are essential for tracking biomass
buildup and canopy dynamics. Additionally, UAV-derived
hyperspectral imaging offers enhanced spatial resolution
and precision for evaluating LAI Xie ef al. (2019) said
that hyperspectral sensors mounted on unmanned aerial
vehicles (UAVs) improved spatial resolution by 20-30%
and were able to measure LAI gradients in both forest
and agricultural areas. This finding underscores the
transformative potential of hyperspectral imaging for
comprehensive ecosystem monitoring and precision
agricultural applications (Table 3).

Rate of carbon assimilation

Carbon absorption rates, which measure a plant's ability
to convert atmospheric CO, into organic compounds,
are crucial for understanding photosynthesis, biomass
production, and crop yield (Law et al. 2002). They
got important information about carbon flow patterns
by connecting gross primary production (GPP) with
canopy reflectance data. This shows how important
spectral indices are for measuring carbon assimilation.
The Photochemical Reflectance Index (PRI), established
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Table 3. Comparative analysis of hyperspectral imaging and traditional techniques in plant physiology.

Parameter

Hyperspectral imaging (HSI)

Traditional techniques

Sensitivity

Spectral resolution

Invasiveness

Spatial and temporal
resolution

Data processing and
multivariate analysis

High spectral sensitivity enables the detection of subtle
physiological variations, including early-stage stress
responses and minor fluctuations in photosynthetic
efficiency

Acquisition of high-resolution spectral data across
hundreds of narrow bands (typically in the range

of 400-2,500 nm), facilitating precise identification
and quantification of photosynthetic pigments and
other biomolecules

Enables noninvasive, real-time monitoring of plant
physiological processes without the need for physical
sampling, preserving plant integrity and allowing for
continuous observation

Facilitates high-resolution spatial mapping of
photosynthetic activity over extensive areas with

the capability for frequent temporal assessments,
enhancing the monitoring of dynamic physiological
processes

Supports advanced multivariate statistical techniques
(e.g., PCA, PLSR) for the extraction of complex
patterns from high-dimensional hyperspectral data,

Lower sensitivity may result in undetected early or
minimal physiological changes, limiting the ability

to detect stress responses and small variations in
photosynthesis

Limited to a few broad spectral bands, typically focusing
on key wavelengths (e.g., red and near-infrared),
restricting the capacity for detailed spectral analysis

Often necessitates destructive sampling (e.g., tissue
extraction for chlorophyll content measurement),
potentially altering plant physiology and limiting

the frequency of data collection

Typically limited to site-specific, point-based
measurements with reduced spatial coverage and lower
temporal resolution, leading to potential gaps in data
over time and space

Often constrained by the need to simplify data, reducing
the ability to extract complex interactions and patterns
from the physiological dataset

enabling comprehensive analysis of plant physiological

states
Quantification Provides precise quantification and mapping of Limited in scope, often focusing on chlorophyll
of photosynthetic photosynthetic pigments (e.g., chlorophyll, carotenoids) fluorescence or other specific features without
pigments and associated biomolecules, allowing for detailed the capability to conduct a holistic assessment

biochemical profiling and monitoring of photosynthetic of the photosynthetic apparatus

efficiency

by Gamon et al. (1997), serves as a noninvasive instrument
for assessing photosynthetic light-use efficiency. They
established a robust link between PRI and PSII efficiency,
which enhanced GPP predictions by 15-20%. Advanced
hyperspectral indices have enhanced these estimations
by using spectral reflectance in the red and near-infrared
(NIR) bands. Zhi ef al. (2022) said that high-throughput
hyperspectral imaging made GPP accuracy 25% better
for crops like sorghum (Sorghum bicolor) and maize
(Zea mays). Furthermore, Fu et al. (2020) included
physiological and spectral data in predictive models,
achieving £10% accuracy in estimating photosynthetic
efficiency, including factors such as Vemax and Jmax. Their
research underscores the possibility of integrating spectral
and physiological attributes for accurate photosynthesis
monitoring.

Moreover, UAV-mounted hyperspectral sensors have
enhanced ecosystem-level carbon monitoring by delivering
superior spatial resolution and precision. Xie ez al. (2019)
demonstrated that UAV hyperspectral methods enhanced
spatial resolution for carbon cycle evaluations by 20-30%.
These advancements highlight the essential function of
hyperspectral imaging in ecological surveillance and
precision agriculture.

Configuration and organization of foliar cells

The cellular architecture of a leaf is fundamental in
photosynthetic efficiency, influencing key processes
such as light absorption, gas exchange, and internal

CO, diffusion. Xiong et al. (2024) emphasized that
improvements in mesophyll structure, chloroplast
arrangements, and CO, conductance could enhance light-
use efficiency and assimilation rates in rice, revealing
pathways for improving photosynthetic performance.
Oivukkamiki er al. (2025) applied multiscale optical
remote sensing, demonstrating how changes in mesophyll
structure influence CO, diffusion and reflectance-based
models. Falcioni ef al. (2024) compared photosynthetic
performance across species and highlighted the role of
mesophyll conductance in optimizing CO, diffusion,
linking cellular organization to enhanced photosynthetic
rates. Similarly, Egesa e al. (2024) showed how differences
in mesophyll cell size and intercellular spaces affect CO,
diffusion efficiency, impacting overall photosynthesis in
Phaseolus vulgaris. Neuwirthova et al. (2024) explored
the relationship between leaf anatomical traits and
VIS-NIR reflectance spectra, emphasizing that asymmetry
in mesophyll structure directly affects the optical modeling
of CO, diffusion pathways. These findings highlight
the transformative role of hyperspectral imaging and
reflectance models in understanding the link between
cellular architecture and photosynthesis.

By integrating structural analysis, hyperspectral
imaging, and models like PROSPECT, researchers
gain comprehensive insights into how cellular features
regulate photosynthesis. This knowledge has significant
implications for optimizing crop productivity and
advancing ecological research.
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High-spectral and spatial resolution techniques
for crop phenotyping and precision agriculture

Advancements in high-spectral and spatial resolution
techniques have profoundly impacted crop phenotyping
and precision agriculture, offering unprecedented
accuracy in monitoring crop health, stress responses, and
productivity. This section reviews the latest developments
in these approaches, highlighting their significance and
applications in enhancing agricultural productivity.

Progress in high-resolution imaging for agricultural
surveillance

High-resolution remote sensing has transformed
agricultural monitoring by offering intricate spatial and
spectral information on crop health, phenotyping, and
stress identification. Recent improvements in satellite
imagery, synthetic aperture radar (SAR), fluorescence-
based sensing, and data fusion approaches have improved
the accuracy of agricultural evaluations (Maimaitijiang
et al. 2020). Nonetheless, issues concerning calibration,
data processing, and sensor compatibility persistently
hinder the complete implementation of these technologies
(Arroyo-Mora ef al. 2019).

High-resolution satellite photography has markedly
enhanced the capacity to identify agricultural characteristics
and evaluate biomass. Platforms like WorldView-3
and Pleiades-1A provide sub-meter spatial resolution,
allowing detailed observation of leaf area index, canopy
architecture, and stress responses (Cheekhooree 2024).
The amalgamation of machine learning algorithms with
satellite data has significantly improved the precision of
crop categorization and yield prediction (Sarkar et al.
2024). Notwithstanding these advantages, substantial
expenses, restricted revisit intervals, and the intricacy of
data interpretation continue to pose considerable obstacles
(Lu et al. 2020). Multi-sensor fusion methodologies,
encompassing the amalgamation of Sentinel-2 and
PlanetScope data, have exhibited enhanced precision
in phenotyping and stress assessment (Xie ef al. 2019).
Nonetheless, variations in spectral responses among
platforms pose obstacles to standardization and cross-
validation (Zarco-Tejada et al. 2013).

SAR technology has emerged as a crucial instrument
for ongoing agricultural surveillance, especially in areas
with persistent cloud cover, where optical imaging proves
problematic (Ulaby et al. 2010). Synthetic Aperture Radar
(SAR) can pierce cloud cover and deliver high-resolution
estimations of biomass and soil moisture, rendering it
essential for yield estimation and resource optimization
(Paloscia et al. 2013). The amalgamation of SAR with
optical sensors has enhanced stress detection and fortified
remote sensing applications in precision agriculture
(Fuentes-Penailillo ef al. 2024). SAR data interpretation
is intricate because of speckle noise and difficulties
in distinguishing plant components, necessitating
sophisticated classification approaches and machine
learning algorithms to derive significant insights (Houborg
and McCabe 2016).
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The European Space Agency's FLEX mission has
pioneered a novel method for monitoring photosynthetic
activity using fluorescence-based imaging. In contrast
to conventional reflectance-based techniques, FLEX
measures solar-induced fluorescence (SIF), enabling
direct evaluations of plant physiological conditions and
early stress reactions (Frankenberg et al. 2014). This
feature renders it an effective instrument for assessing
drought stress and nutritional deficits (Marques et al.
2024). Nevertheless, obstacles such as limited spatial
resolution, intricate data retrieval, and the necessity for
ground validation restrict its practical uses (Oppelt and
Muhuri 2024). The amalgamation of FLEX data with
high-resolution optical imaging has demonstrated potential
in connecting field-level observations with extensive
ecosystem evaluations (Hank ef al. 2019).

Panchromatic sharpening has been an effective method
for improving the spatial resolution of satellite images
by integrating high-resolution panchromatic bands with
multispectral data. This method has been very helpful in
enhancing vegetation indices and canopy mapping (Gao
et al. 2006). Recent implementations of panchromatic
sharpening in Sentinel-2 images have shown enhancements
in spatial resolution of up to 20%, hence improving
phenotyping and early stress detection (Song ez al. 2024).
The efficacy of this approach relies on sensor calibration,
band alignment, and radiometric constancy (Wulder ef al.
2008).

The amalgamation of multi-sensor satellite data,
including Sentinel-2 and Landsat-8, has markedly
enhanced the spatial and temporal resolution of agricultural
surveillance (Roy ef al. 2014). Researchers can achieve
a more thorough knowledge of crop health and stress
responses by integrating optical, thermal, and hyperspectral
data (Zarco-Tejada er al. 2013). Nonetheless, obstacles
persist in standardizing datasets from diverse sources
as discrepancies in spectral resolution and processing
techniques may lead to inconsistencies (Oppelt and Muhuri
2024). Standardization initiatives, automated processing
processes, and Al-driven data integration methods will be
essential for guaranteeing the dependability and scalability
of these technologies in precision agriculture.

Techniques for image processing in high spectral-
spatial resolution imaging

Advancements in image processing techniques have
greatly augmented the progress of remote sensing
technology in agriculture. The amalgamation of machine
learning, spectrum unmixing, and advancements in thermal
imaging has facilitated the accurate and efficient extraction
of crop characteristics, stress markers, and phenotypic
variants from high-resolution pictures. With the increasing
prevalence of high spectral-spatial resolution imaging,
there is a necessity for robust processing approaches to
manage complex datasets and enhance the precision of
agricultural monitoring.

Machine learning has become an effective instrument
for analyzing satellite-derived data, automating the
extraction of phenotypic traits, and enhancing the accuracy



of stress detection and yield forecasting. Supervised and
unsupervised learning methods are being employed to
analyze hyperspectral and multispectral data, enabling
the assessment of biomass, nitrogen concentrations,
and chlorophyll contents (Li et al. 2015). Deep learning
methodologies have exhibited significant efficacy in
forecasting phenotypic characteristics, including crop
yield, water stress, and nutrient status. Yue ef al. (2019)
illustrated that convolutional neural networks (CNNs) and
recurrent neural networks (RNNs) surpass conventional
statistical models in precision agriculture contexts.
Maimaitijiang ef al. (2021) emphasized the significance
of machine learning in amalgamating satellite data with
in-field observations, allowing real-time surveillance
of crop development and stress conditions. These
improvements diminish dependence on labor-intensive
field evaluations, rendering high-throughput phenotyping
more practicable and enhancing resource utilization
efficiency in precision agriculture.

Spectrum unmixing is a crucial method for separating
mixed spectrum signals in high-resolution remote
sensing data, facilitating accurate assessment of crop
health, phenotypic variety, and soil characteristics.
The occurrence of mixed pixels, wherein many land
cover types contribute to a singular spectral measurement,
frequently hampers the analysis of satellite data. Spectral
unmixing resolves this issue by deconstructing pixel-level
spectral data into its constituent components, enabling
more precise evaluations of vegetation indices and stress
indicators (Small 2004). Somers et al. (2010) illustrated
its use in evaluating genetic diversity, facilitating
the selection of high-yield and stress-resistant genotypes in
breeding initiatives. Wang et al. (2025) recently combined
spectral unmixing with machine learning approaches,
markedly enhancing the accuracy of crop stress detection
by distinguishing between biotic and abiotic stressors.
Moncholi-Estornell et al. (2023) employed spectral
unmixing to quantify sunlight-vegetation cover, thereby
enhancing the interpretation of solar-induced fluorescence
(SIF), which is crucial for assessing photosynthetic activity
and drought responses in crops.

Progress in thermal image processing has enhanced
the capability of high-resolution agricultural monitoring.
Thermal imaging has been extensively employed for
identifying water stress, detecting disease outbreaks,
and assessing canopy temperature variations. Recent
advancements in thermal sharpening methodologies have
enhanced the spatial resolution of thermal data, allowing
more accurate detection of localized stress hotspots (Maes
and Steppe 2019). Du et al. (2024) devised a technique
for integrating Sentinel-2 and Sentinel-3 thermal data,
enhancing daily soil moisture content assessment and
optimizing irrigation scheduling in precision agriculture.
He et al. (2024) integrated ground-based hyperspectral
imaging with satellite thermal data to improve evaluations
of topsoil nitrogen variability, facilitating the optimization
of fertilizer delivery techniques.

The amalgamation of machine learning, spectrum
unmixing, and thermal enhancement approaches has
resulted in a more holistic methodology for high-
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resolution agricultural monitoring. These approaches
enable researchers to delineate exact phenotypic features,
identify stress factors at early stages, and enhance resource
allocation for sustainable agricultural management. Future
studies ought to concentrate on further refining data fusion
methodologies, enhancing spectral calibration approaches,
and automating image processing processes to improve
the accuracy and scalability of high spectral-spatial
resolution imaging in agriculture.

Multispectral and hyperspectral imaging

Multispectral and hyperspectral imaging technologies,
such as the Hyperion Sensor, have changed the way crop
health analysis is done by collecting data across narrow
spectral bands. This lets scientists look at a lot of different
biochemical and physiological traits of plants. Gao
(2000) illustrated the accuracy of these imaging systems
in quantifying chlorophyll concentrations with over
90% precision, providing valuable information for crop
health management. This technique facilitates the early
identification of stressors, including nutrient deficits, which
is essential for improving nutrient management methods
and overall production in precision agriculture. Fitzgerald
et al. (2010) also talked about how important hyperspectral
imaging is for measuring nitrogen, with a resolution
of 0.1 mg(N) g'(FM). This innovation improved nitrogen
application efficiency by almost 15%, promoting optimal
crop development and minimizing waste. In addition to
enhancing nutrition management, Sanacifar ef al. (2023)
highlighted the accuracy of hyperspectral imaging in
stress detection, achieving a 95% precision rate for
recognizing early indicators of drought and illness. Due
to these features, hyperspectral systems are necessary for
modern crop phenotyping. They let managers see how
plants' health is changing in real-time and make proactive
management strategies easier.

Satellite-based hyperspectral imaging

Satellite-based hyperspectral imaging enhances agri-
cultural surveillance by allowing extensive evaluations
of essential crop health indicators. Ustin ef al. (2009)
demonstrated its ability to measure LAI accurately
(0.5 m*> m?) and revealed strong correlations between
spectral  indices and chlorophyll concentration,
enabling improved resource allocation and sustainable
management. Additionally, Gamon et al. (2016) utilized
hyperspectral imaging to monitor photosynthetic activity,
improving efficiency forecasts by more than 20%. Recent
advancements have further expanded its potential. Wang
et al. (2025) emphasized integrating machine learning
models with hyperspectral data to improve precision
agriculture applications, enhancing stress detection
accuracy. Siddique et al. (2024) illustrated the role
of satellite-based hyperspectral imaging in modern
agriculture, showing its value in soil health monitoring
and crop yield predictions. Yu and Cui (2024) applied
hyperspectral imaging for cold-tolerant crop identification,
demonstrating its effectiveness in breeding programs and
stress-resilient crop development. These advancements
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highlight satellite-based hyperspectral imaging as a key
technology for large-scale crop health assessments and
sustainable resource management.

UAV-integrated hyperspectral imaging systems:
operational efficacy and calibration protocols

The implementation of UAV-mounted hyperspectral
imaging in precision agriculture has markedly enhanced
high-resolution, real-time crop monitoring, facilitating
early stress identification and precise resource management.
UAV-HSI shows superior spatial and temporal resolution
compared to satellite or manned aircraft hyperspectral
imaging, rendering it especially beneficial for site-specific
crop analysis (Ram et al. 2024). Nonetheless, despite its
advantages, UAV-HSI continues to encounter operational
and calibration issues that impact the consistency and
reliability of spectral data. Recent research has shown the
effectiveness of UAV-HSI systems in illness diagnosis,
stress evaluation, and phenotyping applications.
A thorough evaluation by Lu er al. (2020) showed that
UAV-HSI  effectively recognizes small spectrum
fluctuations in crops, identifying water stress and nutritional
deficits far earlier than conventional field scouting
approaches. Ishidaeral. (2018) showed in separate research
that UAV-HSI-based vegetation classification surpasses
multispectral  photography, enhancing classification
accuracy by 20-30%. These findings demonstrate
the enhanced spectral resolution of HSI compared to
traditional imaging methods. Nonetheless, UAV-HSI is
particularly vulnerable to environmental fluctuations,
rendering calibration a significant difficulty. Liu et al.
(2024) discovered that flight altitude, lighting conditions,
and sensor vibrations can cause reflectance inaccuracies
of up to 15%, hence severely affecting vegetation indices
and stress detection models. Moreover, variations in
sensor types, spectral resolution, and data processing
methodologies among investigations impede cross-
comparison, underscoring the critical necessity for
standardized calibration processes.

A fundamental constraint of UAV-HSI applications in
agriculture is the absence of widely recognized calibration
standards, leading to spectrum discrepancies among
various research investigations (Arroyo-Mora et al.
2019). Numerous calibration approaches are available,
however, their use is uneven, resulting in fluctuating
radiometric accuracy and diminished data dependability.
A multitude of significant issues exacerbate this dilemma.
UAV-HSI functions under unregulated atmospheric
circumstances, rendering it particularly vulnerable to
swings in solar irradiance, variations in cloud cover, and
air scattering. Radiometric calibration methods, such as
empirical line calibration (ELC), are frequently employed,
nevertheless, they rely on ground reference targets and
are typically challenging to execute in field situations
(Geipel et al. 2021). Moreover, hyperspectral sensors
demonstrate spectral drift and radiometric noise, which
may skew reflectance readings. Research conducted by
Swaminathan and Thomasson (2024) revealed that the use
of onboard calibration panels and real-time radiometric
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correction algorithms lowered spectrum drift errors by
10%. Nonetheless, these methodologies have not yet been
standardized across many UAV sensor systems.

Aerial and terrestrial sensors

Aerial and terrestrial sensors are essential tools for real-time
nutrient management and crop health assessments. Raun
et al. (2002) demonstrated their efficacy in assessing
nitrogen concentrations with 85% accuracy, enabling
precise modifications in fertilizer applications and
minimizing losses. Shanahan ez a/. (2001) further combined
terrestrial sensors with UAV platforms, achieving 90%
accuracy in chlorophyll concentration assessments. Ryu
(2024) applied high-resolution aerial and ground sensors
to scale land surface flux measurements, enhancing
predictions of plant stress responses in precision
agriculture. These innovations reinforce the importance
of aerial and terrestrial sensors in sustainable agricultural
practices and resource optimization.

Integration of diverse platform technologies

The integration of satellite, UAV, and terrestrial sensors
offers a holistic method for agricultural monitoring. Hunt
et al. (2010) demonstrated that this integration improved
the temporal resolution of crop phenotyping to three-
day intervals, enabling continuous monitoring of crop
responses to environmental stresses. Lelong et al. (2008)
highlighted that multi-platform integration enhanced spatial
resolution and accuracy, facilitating precise modifications
in irrigation and fertilizer applications. Zhang and Kovacs
(2012) emphasized the benefits of multi-platform sensing
for yield prediction and phenotyping precision.

In recent studies, Kariani and Supriyadi (2024)
demonstrated the synergy of satellite and UAV platforms
for crop yield estimation and stress mapping, improving
agricultural decision-making processes. Oppelt and Muhuri
(2024) emphasized multi-sensor data fusion for achieving
consistent and high-resolution monitoring across diverse
agricultural landscapes. These integrations highlight
the transformative role of multi-platform technologies
in enhancing the efficiency, accuracy, and scalability of
precision agriculture.

Advancements in satellite imaging technologies

Recent advancements in satellite imaging technologies
have significantly improved the monitoring of agricultural
health through enhanced spatial and temporal resolution.
Mulla (2013) examined the utility of Sentinel and Landsat
satellites in improving yield prediction models by up to
15%, facilitating resource-efficient farming practices.
Maes and Steppe (2019) explored thermal imaging
applications, demonstrating sub-meter spatial resolution
in identifying temperature-induced crop stress for efficient
irrigation and disease management.

Recent research by Wiipper ef al. (2024) demonstrated
the use of Sentinel-2 multispectral data for estimating
crop stress in precision agriculture, improving monitoring
reliability. Ryu (2024) integrated hyperspectral imaging



data with flux tower observations, enabling high-resolution
monitoring of land surface fluxes and crop responses.

These advancements highlight the ongoing evolution of
satellite imaging technologies, enabling robust monitoring
systems that enhance resilience to climate variability and
promote sustainable agricultural practices.

Comparative analysis of hyperspectral imaging with
other high-resolution imaging modalities

Hyperspectral imaging has emerged as a powerful tool
in agricultural monitoring due to its ability to capture
continuous spectral information across hundreds of narrow
bands. This spectral granularity enables the detection of
subtle biochemical and physiological variations in crops,
making HSI particularly useful for stress detection, disease
identification, and nutrient mapping (Zhang et al. 2025).
However, despite its strengths, HSI faces competition
from other high-resolution imaging modalities, including
LiDAR, multispectral imaging (MSI), and thermal
imaging, each with unique advantages and limitations.

LiDAR (Light Detection and Ranging) has been
widely adopted in agricultural applications for its ability to
generate high-resolution three-dimensional (3D) structural
models of vegetation. Unlike HSI, which relies on spectral
reflectance, LiDAR actively measures distances using
laser pulses, making it highly effective for canopy height
estimation, biomass modeling, and topographic analysis
(Jurado-Rodriguez et al. 2024). Recent studies have
demonstrated the benefits of integrating LiDAR with HSI,
where spectral data enhances the structural information
provided by LiDAR, leading to improved biomass
estimation and crop classification (Benelli et al. 2020).
However, while LiDAR excels in structural mapping,
it lacks the spectral resolution necessary for biochemical
assessments, limiting its ability to detect plant stressors at
the molecular level (Bhargava et al. 2024).

Multispectral imaging (MSI) is another widely used
remote sensing modality in precision agriculture, offering
a more cost-effective alternative to HSI. MSI captures
fewer and broader spectral bands, typically in the visible
and near-infrared regions, making it suitable for large-
scale monitoring applications such as vegetation index
calculation (Mabhlein et al. 2019). While MSI provides
sufficient information for general crop health assessment,
its limited spectral resolution reduces its capability to
differentiate between specific stress factors (Lu er al.
2020). A comparative study by Sethy ef al. (2022) found
that while MSI effectively tracks vegetation dynamics
using indices such as NDVI, it fails to detect subtle
biochemical changes that HSI can capture. As a result,
MSI is often integrated with HSI in hybrid approaches to
balance cost-effectiveness and spectral precision in large-
scale agricultural applications.

Thermal imaging, on the other hand, provides valuable
insights into plant water status and temperature variations,
making it particularly useful for drought monitoring and
irrigation management (Du et al. 2024). Because canopy
temperature directly correlates with plant transpiration
rates, thermal imaging has been extensively applied
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for the early detection of water stress (Gitelson et al.
2012). However, its effectiveness is highly dependent
on atmospheric conditions, and frequent recalibration is
necessary to ensure accuracy (He ef al. 2024). Integrating
thermal imaging with HSI has been shown to enhance early
stress detection by combining physiological indicators
with spectral signatures, offering a more comprehensive
assessment of plant health (Feng et al. 2022).

Each of these imaging modalities serves a distinct
role in precision agriculture, and their effectiveness is
context-dependent. While HSI remains unparalleled
in biochemical and physiological analysis, LiDAR is
superior for structural assessments, MSI offers scalability
and cost-effectiveness, and thermal imaging excels in
real-time stress detection. Recent advancements emphasize
the need for multi-sensor integration, where the fusion of
HSIwith LIDAR, MSI, and thermal imaging can overcome
individual limitations and provide holistic agricultural
insights. Future research should focus on optimizing
sensor calibration, enhancing data fusion techniques, and
leveraging artificial intelligence to streamline analysis and
improve decision-making in precision agriculture (Adao
etal 2017).

Advantages of hyperspectral imaging over traditional
techniques in photosynthesis studies

Hyperspectral imaging (HSI) represents a significant
advancement in photosynthesis research, as it captures
extensive multidimensional data that enhances our
comprehension of plant physiological responses to
environmental stress. This extensive data offers unique
insights into photosynthetic efficiency and crop health
that conventional methods cannot achieve. HSI's high-
resolution spectral data facilitates accurate evaluations
across diverse light wavelengths, which is crucial for
real-time monitoring (Blackburn 2007, Adao et al. 2017)
(Table 4).

Improved sensitivity

The sensitivity of hyperspectral imaging (HSI) facilitates
the detection of subtle physiological changes that signify
shifts in photosynthetic activity or early responses to
plant stress. Dai et al. (2015) demonstrated that HSI can
detect subtle variations in plant water stress and nutrient
deficiencies with greater precision than conventional
techniques. More recently, research by Atencia Payares
et al. (2025) highlighted the effectiveness of thermal
and multispectral sensors in assessing plant water status,
demonstrating the strong correlation between water stress
and reduced photosynthetic activity in vineyards (Atencia
Payares et al. 2025). Similarly, Hernandez-Clemente et al.
(2019) confirmed HSTI's ability to identify stress responses
in intricate environments, reinforcing its enhanced
sensitivity to minor variations in chlorophyll fluorescence.

In addition, Meacham-Hensold ez al. (2020) showed
that HSI can quantify leaf-level photosynthetic efficiency
with a sensitivity up to 15% greater than traditional
chlorophyll fluorescence methods, facilitating early
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Table 4. Hyperspectral vegetation indices utilized for assessing photosynthetic activity.

Vegetation Index (VI)

Formula

Derived photosynthetic reference

References

Normalized Difference
Vegetation Index
(NDVI)
Photochemical
Reflectance Index
(PRI)

Modified Chlorophyll
Absorption

in Reflectance Index
(MCARYI)

Red-edge Inflection
Point (REIP)

Water Index (WI)

Normalized Difference

Simple ratio

Green Normalized
Difference Vegetation
Index (GNDVI)
Enhanced Vegetation
Index (EVI)

Chlorophyll Absorption
in Reflectance Index
(CARI)

Red-edge Chlorophyll
Index (CI_red-edge)
Triangular Vegetation
Index (TVI)

Plant Senescence
Reflectance Index
(PSRI)

Structure Insensitive
Pigment Index (SIPI)

Anthocyanin
Reflectance Index
(ARI)

Carotenoid Reflectance
Index (CRI)

Normalized Pigment
Chlorophyll Ratio
Index (NPCRI)

(NIR — Red)/(NIR + Red)

(Rs31 — Rs70)/(Rs31 + Rso)

(R700 — Re70) — 0.2 x (R790 — Rss0) ¥
(R700/Re70)

The wavelength at which the first
derivative of the reflectance
spectrum reaches its maximum
point in the red-edge region

(R‘)OO/ R97(})

(NIR — RedEdge)/(NIR + RedEdge)

NIR/Red

(NIR — Green)/(NIR + Green)
2.5 x [(NIR — Red)/

(NIR + 6 x Red — 7.5 x Blue + 1)]
(R700/R670) -1

(R750/R710) -1

0.5 x {[120 % (R750 — Rss0)] —
[200 x (Re70 — Rss0)]}

(R680 - RSOO) R750

(R800 — R445)/ (Rsoo - Rsso)
(1/Rss0) — (1/R700)

(Rs10/Rss0)

(Reso — Razo)/(Reso + Ruzo)

Fluorescence Index (FI) (R740 — Rgoo)/(R74o + Rgoo)

Indicates vegetation health, biomass,

and chlorophyll content, reflecting
photosynthetic capacity

Sensitive to changes in xanthophyll cycle
pigments, indicating photosynthetic light
use efficiency and stress

Designed to minimize soil color influences,
indicating chlorophyll content which is
related to photosynthetic activity

Indicates chlorophyll content and leaf
structure, which are related to
photosynthetic efficiency

Reflects leaf water content, which can
influence photosynthetic activity and plant
water stress

Indicates vegetation health and chlorophyll
content, related to photosynthetic activity
Indicates leaf biomass and chlorophyll
content, which are related to photosynthetic
activity

Indicates chlorophyll content and nitrogen
status, which are related to photosynthetic
activity

Indicates vegetation health and chlorophyll
content which are related to photosynthetic
activity

Indicates chlorophyll content, which is
related to photosynthetic activity

Indicates chlorophyll content, which is
related to photosynthetic activity

Indicates vegetation health and chlorophyll
content, which are related to photosynthetic
activity

Indicates the onset of plant senescence,
which affects photosynthetic activity

Indicates carotenoid content, which is related
to light absorption and photosynthetic
protection

Indicates anthocyanin content, which can

be related to plant stress and photosynthetic
activity

Indicates carotenoid content, which is related
to light absorption and photosynthetic
protection

Indicates chlorophyll content, which is related

to photosynthetic activity

Indicates chlorophyll fluorescence, which
is related to photosynthetic efficiency
and electron transport rate

Huang et al. (2021)
Zhao et al. (2024)

Garbulsky et al. (2011)
Zheng et al. (2024)

Wu et al. (2008)

Herrmann et al. (2010)
Patil et al. (2024)

Pefiuelas et al. (1997)

Imran et al. (2020)

Putra and Soni (2017)
Shaver (2009)
Matsushita et al. (2007)

Lai et al. (2024)

Bannari et al. (2007)
Verma et al. (2024)

Xie et al. (2018)

Xing et al. (2019)

Ren et al. (2017)

Pefiuelas ef al. (1995)

Manne et al. (2024)

Steele et al. (2009)

Kong et al. (2016)

Sosa et al. (2021)

Johnson et al. (2012)

detection and targeted agricultural interventions. Recent
advances in machine learning-assisted HSI processing
have further improved the detection of early-stage plant
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(Atencia Payares et al. 2025).

stress conditions, allowing for real-time monitoring of
water stress and nutrient deficiencies in various crops



These advancements underscore the potential of HSI
for precision agriculture, enabling farmers to optimize
irrigation strategies, mitigate stress conditions, and
improve crop yield efficiency through proactive decision-
making.

Progress in hyperspectral imaging for chlorophyll
fluorescence assessment

Conventional chlorophyll fluorescence (ChIF) methods
have historically been employed to evaluate plant
photosynthetic efficiency, however, their limited spectrum
range and dependence on a restricted set of fluorescence
characteristics hinder their capacity to identify intricate
stress responses. Hyperspectral imaging (HSI) offers
a sophisticated method for acquiring continuous spectral
data over an extensive wavelength range, enhancing early
stress detection and physiological evaluations (Mora-
Poblete et al. 2024). Techniques for retrieving solar-induced
fluorescence (SIF) based on hyperspectral imaging (HSI)
have shown enhanced sensitivity and precision in measuring
photosystem efficiency, facilitating faster identification of
plant stress relative to conventional fluorescence methods
(Belwalkar er al. 2024). The amalgamation of machine
learning models with HSI-derived fluorescence data has
significantly augmented stress diagnostics, yielding a 20%
enhancement in detection accuracy compared to traditional
pulse-amplitude modulated (PAM) fluorometry (Bartold
and Kluczek 2024). Fluorescence imaging, however,
is vulnerable to atmospheric fluctuations and sensor
calibration discrepancies, which can generate noise and
diminish measurement reliability. Research indicates that
fluctuations in ambient light conditions can substantially
influence the precision of SIF estimations, necessitating
the creation of automated data correction models and
sophisticated spectral normalization techniques to
improve the reliability of fluorescence-based HSI for field
applications (Lee et al. 2024).

Technical and practical constraints of hyperspectral
imaging

Notwithstanding its considerable benefits, the extensive
implementation of HSI in precision agriculture is
obstructed by several technological and practical obstacles.
The computational demands of real-time data processing
continue to be a significant limitation, especially in
UAV-based and field-deployable systems with restricted
onboard processing capabilities. Recent improvements in
cloud-based spectrum analysis platforms have alleviated
some limits, nonetheless, these solutions necessitate high-
bandwidth data transfer and remain not globally accessible
(Bethge et al. 2024).

Alongside data processing issues, the prohibitive
expense of hyperspectral cameras and imaging
spectrometers constitutes a significant obstacle to their
extensive use. Despite a decline in the cost of multispectral
imaging systems in recent years, hyperspectral sensors
remain costly, limiting their application mainly to research
and high-value crop monitoring (Bartold and Kluczek
2024). Moreover, field applications of HSI necessitate
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regular sensor calibration due to environmental variables
such as temperature variations and sensor drift, hence
augmenting operational complexity. Miniaturized UAV-
mounted hyperspectral sensors have improved mobility
and deployment efficiency, yet they often suffer from
trade-offs in spectral resolution and operational endurance,
limiting their effectiveness for continuous monitoring in
large-scale agricultural settings (Pacheco-Labrador et al.
2025).

A significant issue is the susceptibility of hyperspectral
readings to ambient variables. Fluctuating sunlight,
atmospheric disturbances, and soil background reflectance
can introduce noise into spectral data, compromising
measurement precision (Lee et al. 2024). Al-driven
spectrum correction models have been created to mitigate
unpredictability in lighting circumstances, nevertheless,
their implementation escalates computing complexity
and constrains real-time decision-making capabilities
(Pacheco-Labrador et al. 2025). The incorporation of
sophisticated deep learning algorithms for spectral noise
reduction and automated preprocessing demonstrates
potential in enhancing the reliability of hyperspectral
imaging measurements, nevertheless, these methods
necessitate further validation across various crop species
and environmental conditions before widespread
implementation.

Distinguishing between drought and nutrient deficiency
stress utilizing HSI

A significant benefit of HSI compared to traditional stress
detection techniques is its capacity to distinguish among
several abiotic stressors, such as drought stress and
nutritional deficits, which frequently have overlapping
physiological impacts. Conventional multispectral and
visual evaluations find it challenging to differentiate
these stressors because of their analogous effects on leaf
morphology, such as wilting, yellowing, and chlorosis.
HSI facilitates accurate distinction through the analysis
of unique spectral changes across several wavelength
ranges. Drought stress generally results in diminished leaf
water content, which increases reflectance in the short-
wave infrared (SWIR) spectrum (1,000-2,500 nm), while
deficiencies in nitrogen and phosphorus predominantly
influence chlorophyll contents, resulting in spectral shifts
in the red-edge region (680—750 nm) and modifications
in the Photochemical Reflectance Index (PRI) (Liu et al.
2025).

Machine learning models have played a vital role in
increasing stress categorization accuracy using HSI. These
Al-driven methodologies utilize comprehensive spectrum
libraries to automate stress detection, enhancing the
feasibility of real-time precision agricultural applications.
Additionally, combining chlorophyll fluorescence imaging
with HSI significantly promotes stress distinction by
identifying variations in photosynthetic efficiency under
different stress situations. Recent studies demonstrate that
fluorescence kinetics measures, including F./F., ratios
and nonphotochemical quenching (NPQ), are essential
indicators for differentiating between photosynthetic limits
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caused by drought and those resulting from nutritional
deficits (Spasova et al. 2024). Future research should
concentrate on refining machine learning-based stress
classification models, augmenting real-time spectral data
integration with agricultural decision-support systems,
and advancing spectral normalization techniques to
enhance the diagnostic accuracy of hyperspectral stress
detection methods in precision agriculture. Moreover,
creating hybrid methodologies that combine hyperspectral
imaging (HSI) with other remote sensing technologies,
such as LiDAR or thermal imaging, might augment
stress differentiation capabilities and provide more
thorough monitoring of crop health under variable field
circumstances.

Research challenges

Despite significant progress in hyperspectral imaging
for crop phenotyping and precision agriculture, several
challenges must be addressed to further advance our
understanding and application of this technology. These
challenges are categorized into thematic subsections for
a clearer understanding of the issues and to facilitate future
research efforts.

Data processing and analysis

The high dimensionality of hyperspectral imaging (HSI)
generates large datasets, presenting challenges in terms of
data storage, processing efficiency, and analysis. Bioucas-
Dias and Plaza (2010) and Zhang ef al. (2016) proposed
orthogonal subspace projection and PCA techniques for
dimensionality reduction. Recently, Guerri et al. (2024)
emphasized the role of deep learning algorithms in
automating HSI data analysis (Fig. 5), enhancing real-
time processing capabilities for large-scale agricultural
monitoring. Similarly, Dasari er al. (2024) integrated
convolutional neural networks (CNN) with hyperspectral
data for early disease detection, achieving significant
improvements in analysis efficiency.

Integration of multiple data sources

Combining hyperspectral data with multi-source
information, such as physiological and environmental
metrics, enhances crop health assessment and predictive
modeling. Zarco-Tejada et al. (2013) demonstrated its
utility for ecosystem-level resilience studies. Recent
advancements include Ali et al. (2024), who integrated
Al-driven hyperspectral analysis with soil metrics for
precision fertilization, improving accuracy in crop
monitoring by 25%. Additionally, Yu and Cui (2024)
emphasized integrating meteorological and hyperspectral
data for real-time stress detection, bridging environmental
and spectral observations for optimized crop management.

Spatial and temporal resolution

Balancing spatial and temporal resolution in hyperspectral
imaging is critical. UAV-based sensors offer scalable
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solutions for high-resolution imaging (Hunt et al. 2013).
Finn et al. (2023) proposed automated georectification
methods for UAV-based HSI, enhancing the spatial
precision of phenotypic observations. Similarly, Bian
et al. (2024) developed high spatiotemporal hyperspectral
sensors, enabling real-time monitoring of crop dynamics
at sub-meter resolution, and addressing the demands of
precision agriculture.

Calibration and standardization of sensors

Standardizing hyperspectral sensors ensures consistent
and reliable spectral data. Mutanga er al. (2012) and
Kokaly et al. (2017) emphasized the importance of
rigorous calibration protocols. Recently, Sabin ef al.
(2024) demonstrated advanced calibration workflows
for industrial and agricultural spectral imaging, ensuring
improved spectral accuracy across diverse systems.
Similarly, Makarenko et al. (2024) introduced hardware-
accelerated hyperspectral calibration systems, reducing
variability caused by sensor drift and environmental
factors.

Incorporation of three-dimensional information

Combining hyperspectral data with three-dimensional
(3D) information, such as LiDAR, enhances our
understanding of canopy architecture. Lefsky et al. (2002)
and Asner and Martin (2008) highlighted its role in light
distribution analysis. Recent advancements include
Yu and Cui (2024), who integrated hyperspectral imaging
with 3D reconstruction techniques for precision canopy
mapping, providing improved biomass estimations.
Additionally, Wang et al. (2025) combined LiDAR-based
3D data with hyperspectral imaging for enhanced light-use
efficiency predictions.

Automation of data collection

Automation is critical for large-scale hyperspectral data
collection and processing. Wang ef al. (2015) and Shen
et al. (2019) highlighted automated workflows for
reducing manual errors. Khonina ez al. (2024) introduced
machine learning-driven automation for hyperspectral data
processing, enabling faster and more reliable phenotypic
assessments. Similarly, Bilotta er al. (2023) developed
Al-integrated automation pipelines for hyperspectral
workflows, improving the scalability of high-throughput
phenotyping.

Understanding biological variability

Biological variability across species and environments
complicates hyperspectral data interpretation. Machine
learning models address this challenge, as highlighted
by Homolova ef al. (2013). Recently, Shuai ef al. (2024)
employed deep learning algorithms to account for
genotypic variability, achieving high prediction accuracy
for physiological parameters across diverse environments.
Additionally, Hajaj ez al. (2024) applied Al-driven models



to analyze variability in hyperspectral imaging data for
precision agriculture applications.

Validation of remote sensing data

Validation ensures that remote sensing accurately represents
plant physiological states. Gitelson ez a/. (2003) and Zarco-
Tejada et al. (2004) emphasized spectroradiometer-based
benchmarks. Olorunsogo et al. (2024) proposed improved
field-based validation techniques for hyperspectral indices,
ensuring the accuracy of chlorophyll and water content
measurements. Yu and Cui (2024) cross-validated HSI
data with ground-based observations, enhancing large-
scale model reliability.

Analysis of spectral signatures

Analyzing spectral signatures is vital for identifying subtle
plant physiological changes. Sims and Gamon (2002)
and Doughty ef al. (2011) linked spectral signatures to
abiotic stress responses. Recently, Antony et al. (2024)
demonstrated spectral signature analysis using advanced
hyperspectral indices for early drought detection,
improving stress-response monitoring accuracy.

Economic considerations and availability

The cost of hyperspectral systems remains a barrier to
widespread adoption. Ustin ef al. (2009) highlighted the
importance of affordability. Nie ez al. (2024) examined
recent developments in low-cost hyperspectral systems,
expanding access to smallholder farms. Additionally,
Durojaiye ef al. (2024) emphasized the role of affordable
spectral libraries in enabling broader adoption for
commercial agricultural applications.

Future perspectives and recommendations

As we map out the future directions for hyperspectral
imaging research and applications in agricultural
photosynthesis, several important topics become clear as
being essential to the field's advancement. Crop monitoring
is about to undergo a revolution, thanks to the integration
of HSI into precision agriculture frameworks, which will
allow for a thorough spectrum analysis of photosynthetic
activity and plant health. The use of hyperspectral sensors
on satellites and unmanned aerial vehicles (UAVs) holds
the potential to revolutionize agricultural management
by enabling extensive, high-resolution evaluations. We
suggest the following strategic paths to fully use HSI:

* To guarantee comparability and reproducibility across
research, develop and implement consistent data collection
and analysis processes. This will improve the hyperspectral
data's dependability and make it easier to create solid
models for a range of plant species and environmental
circumstances.

* To handle the complexity of hyperspectral datasets,
embrace artificial intelligence and machine learning
methods. With the use of these instruments, detailed data

HYPERSPECTRAL IMAGING

on photosynthetic processes may be extracted, advancing
our knowledge of plant physiology.

* Integrate phenomic and genomic data with hyperspectral
imaging to find genetic features that influence the efficiency
of photosynthesis. This multidisciplinary strategy might
improve global food security and transform crop breeding
methods.

» Using hyperspectral sensors mounted to agricultural
equipment, create in-field real-time monitoring systems.
Farmers will have instant access to information on crop
photosynthesis as a result, which will help them make
decisions about irrigation, fertilizer use, and insect control.
» Extend the use of HSI to whole agricultural landscapes
rather than just specific crops. For sustainable land
management and biodiversity protection, it is essential to
comprehend the intricate relationships that exist between
various crops and plants.

* To fully convey the dynamic character of photosynthesis,
aim for a balance between high temporal and spatial
resolution in hyperspectral imaging. Plant physiology
must be monitored by regular temporal measurements
combined with precise geographic data.

* Combine HSI with cutting-edge molecular methods to
learn more about the molecular mechanisms of the Calvin
cycle. This will provide important new information about
the biochemical processes that support photosynthesis.

« Utilize HSI to detect plant illnesses and stress early in
the disease monitoring and management process.
Through the detection of spectral fingerprints that indicate
physiological changes, HSI may be used as a proactive
measure to reduce production losses and maximize
resource use.

* To obtain a thorough grasp of photosynthetic processes
under plant canopies, hyperspectral data should be
integrated with three-dimensional structure information.
LiDAR and stereoscopic imaging technologies can improve
our understanding of light dispersion and interception.

* To guarantee consistency and effectiveness, especially in
large-scale research, automate data collection processes.
Furthermore, it endeavors to enhance the use of HSI
technology for scholars and professionals to promote
extensive implementation.

The future of HSI in agricultural photosynthesis
research lies in its seamless integration with advanced
computational models, remote sensing technologies, and
real-time monitoring systems. As big data analytics and
Al-driven spectral modeling continue to evolve, precision
agriculture will benefit from automated hyperspectral
workflows that deliver real-time, actionable insights
on crop health, photosynthetic efficiency, and stress
adaptation. Moreover, the development of cost-effective,
miniaturized hyperspectral sensors for UAVs and
ground-based platforms will democratize access to high-
resolution spectral data, enabling farmers, agronomists,
and researchers to apply HSI across diverse agricultural
landscapes. Cross-disciplinary collaborations between
plant physiologists, data scientists, and engineers will
drive innovations in hyperspectral data processing,
enhancing predictive modeling of carbon assimilation,
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nutrient fluxes, and drought resilience. As climate
change intensifies agricultural challenges, HSI will play
an increasingly vital role in monitoring ecosystem
responses, optimizing resource allocation, and improving
global food security. By advancing hyperspectral imaging
frameworks that integrate molecular, genomic, and
structural data, researchers will unlock new frontiers in
plant phenotyping, stress diagnostics, and adaptive crop
management strategies. Through these technological
advancements and strategic research efforts, hyperspectral
imaging is set to become an indispensable tool for
sustainable and climate-resilient agriculture.
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