
196

PHOTOSYNTHETICA
International Journal for Photosynthesis Research

REVIEW

From spectrum to yield: advances in crop photosynthesis  
with hyperspectral imaging

D. PANDA, S. MOHANTY, S. DAS, J. SENAPATY, D.B. SAHOO, B. MISHRA, M.J. BAIG+,  
and L. BEHERA+

ICAR-National Rice Research Institute, Cuttack, Odisha, India

Abstract

Keywords: Calvin cycle; chlorophyll fluorescence; crop productivity; hyperspectral imaging; photosynthesis.

Abbreviations: AI – artificial intelligence; BFQ – biochemical fluorescence quenching; CI_red-edge – Red-edge Chlorophyll Index;  
CNNs – convolutional neural networks; ETR – electron transport rate; fAPAR – fraction of absorbed photosynthetically active radiation; 
FLD – Fraunhofer line depth; GNSS – global navigation satellite system; GPP – gross primary production; HSI – hyperspectral 
imaging; Jmax – maximum electron transport rate; LMA – leaf mass per area; ML – machine learning; NDVI – Normalized Difference 
Vegetation Index; NIR – near-infrared; NPQ – nonphotochemical quenching; NUE – nitrogen-use efficiency; OCO-2 – Orbiting Carbon 
Observatory-2; OSAVI – Optimized Soil-Adjusted Vegetation Index; PAM – pulse-amplitude modulation; PRI – Photochemical 
Reflectance Index; REIP – Red-edge Inflection Point; SCOPE – Soil–Canopy Observation, Photochemistry, and Energy Flux Model;  
SIF – solar-induced fluorescence; STRS – spectral-temporal response surfaces; SWIR – shortwave infrared; TIR – thermal infrared; 
UAV – unmanned aerial vehicle; Vcmax – maximum rate of carboxylation; VI – Vegetation Index; VNIR – visible-near infrared;  
WI – Water Index.
Acknowledgment: We express our gratitude for the financial assistance obtained from the Indian Council of Agricultural Research,  
New Delhi, India, and the logistic support offered by the Director of ICAR-NRRI, Cuttack, Odisha, India.
Conflict of interest: The authors declare that they have no conflict of interest.

  Received 2 January 2025
  Accepted 7 April 2025
  Published online 8 July 2025 

  +Corresponding authors 
  e-mail: mjbaigcrri@gmail.com
               lambodarjamujhadi@gmail.com

DOI 10.32615/ps.2025.012� PHOTOSYNTHETICA 63 (2): 196-233, 2025

Ensuring global food security requires noninvasive techniques for optimizing resource use and monitoring crop health. 
Hyperspectral imaging (HSI) enables the precise analysis of plant physiology by capturing spectral data across narrow 
bands. This review explores HSI's role in agriculture, particularly its integration with unmanned aerial vehicles,  
AI-driven analytics, and machine learning. These advancements allow real-time monitoring of photosynthesis, 
chlorophyll fluorescence, and carbon assimilation, linking spectral data to plant health and agronomic decisions. 
Key indicators such as solar-induced fluorescence and vegetation indices enhance crop stress detection. This work 
compares HSI-derived metrics in differentiating nutrient deficiencies, drought, and disease. Despite its potential, 
challenges remain in data standardization and spectral interpretation. This review discusses solutions such as molecular 
phenotyping and predictive modeling, for AI-driven precision agriculture. Addressing these gaps, HSI is poised to 
revolutionize farming, improve climate resilience, and ensure food security.

Highlights

● Hyperspectral imaging enhances real-time crop stress detection and monitoring
● UAV-based hyperspectral systems provide high-resolution agricultural 
    surveillance
● AI-driven spectral analytics improve precision farming and yield prediction 
    accuracy

Introduction

The global agricultural sector faces growing challenges in 
meeting the rising demand for food, fiber, and bioenergy, 
driven by a projected global population of 9.1 billion by 
2050. To sustain food production at this scale, agricultural 

productivity must increase by 70%, necessitating the 
adoption of technologies that optimize resource use, 
enhance crop monitoring, and improve yield forecasting 
(Jaggard et al. 2010, Ray et al. 2013). Precision agriculture 
has emerged as a viable solution, integrating remote 
sensing, high-throughput plant phenotyping, and AI-driven 
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analytics to monitor crop health and mitigate stressors in 
real time (Tilman et al. 2011, Pretty et al. 2018).

A fundamental challenge in achieving these goals is 
real-time, noninvasive monitoring of crop physiological 
and biochemical status to optimize growth conditions 
and mitigate environmental stressors. Traditional crop 
monitoring approaches, such as visual inspections and 
multispectral imaging, lack the sensitivity needed to detect 
early-stage stress responses and biochemical variations 
(Swain and Davis 1981). Hyperspectral imaging (HSI) 
overcomes these limitations by capturing high-resolution, 
continuous spectral data, enabling a more detailed analysis 
of plant physiological traits (Goetz et al. 1985, Lu et al. 
2020) (Fig. 1).

While previous reviews have primarily discussed 
passive hyperspectral imaging and its role in vegetation 
analysis, this review uniquely emphasizes the integration 
of HSI with unmanned aerial vehicles (UAVs), machine 
learning algorithms, and radiative transfer models to 
enhance large-scale agricultural monitoring. These 
advancements enable automated stress detection, real-
time photosynthetic efficiency assessments, and climate-
adaptive precision farming (Pandey et al. 2017, Behmann 
et al. 2018). Additionally, this review evaluates recent 
developments in hyperspectral sensor miniaturization 
(e.g., UAV-compatible Headwall Micro-Hyperspec, 
Cubert UHD 185-Firefly) and explores emerging  
AI-driven hyperspectral analytics to improve data 
processing efficiency.

Unlike previous studies, which have predominantly 
examined hyperspectral imaging as a remote sensing 
tool, this review highlights its evolution into an essential 
precision agriculture technology. The discussion provides 
a comparative analysis of hyperspectral metrics, linking 
them directly to photosynthetic activity, plant stress 
diagnostics, and agronomic decision-making.

Hyperspectral imaging (HSI) has undergone significant 
advancements over the past four decades, revolutionizing 
agricultural research and crop monitoring. Initially, 
remote sensing in agriculture relied heavily on satellite-
based multispectral sensors (Swain and Davis 1981), 
which provided broad spectral coverage but lacked  
the resolution necessary to capture subtle physiological 
variations in crops. The pioneering efforts of Goetz  
et al. (1985) introduced airborne hyperspectral sensors, 
enabling the acquisition of continuous spectral data across 
narrow bands. This breakthrough allowed for more precise 
differentiation of plant physiological states, improving 
stress detection and early disease monitoring. However, 
despite its potential, the real-world application of HSI in 
large-scale agricultural settings was constrained by factors 
such as the high cost of sensors, substantial data storage 
requirements, and computational challenges associated 
with processing vast spectral datasets (Thenkabail et al. 
2011).

Recent advancements in hyperspectral imaging 
have addressed these limitations, particularly with the 
integration of UAV-mounted hyperspectral systems. Unlike 

Fig. 1. Interaction of light with the leaf lamina. (A) Sunlight, also known as incoming light, reaches the plant leaf. (B) As the light 
encounters the leaf surface, some of it is reflected; (C) a portion of the light is diffusely reflected off the leaf surface, scattering in 
various directions; (D) a portion is absorbed by the leaf's lamina, which is crucial for photosynthesis; and (E) transmitted light, which is  
the remaining light that is not absorbed or reflected, passes through the leaf and may reach lower leaves or the ground.



198

D. PANDA et al.

traditional satellite-based or airborne sensors, UAV-based 
HSI provides high-resolution, real-time crop monitoring, 
allowing for greater spatial and temporal precision in 
agricultural decision-making (Dale et al. 2013, Ram et al. 
2024). These systems facilitate early stress detection by 
leveraging AI-powered spectral analysis to identify subtle 
physiological and biochemical changes in plants, enabling 
proactive management of disease outbreaks and resource 
allocation (Khan et al. 2022). 

Furthermore, hyperspectral analytics, combined with 
machine learning algorithms, has significantly enhanced 
crop classification and yield prediction accuracy, 
improving agronomic decision-making at various 
scales (Guerri et al. 2024). As sensor miniaturization 
and AI-driven data processing continue to evolve,  
UAV-mounted hyperspectral imaging is poised to become 
an indispensable tool for precision agriculture, bridging 
the gap between fundamental plant physiology research 
and real-world agronomic applications (Pandey et al. 
2017, Mahlein et al. 2018).

Unlike traditional multispectral imaging, which 
captures data across a limited number of broad spectral 
bands, hyperspectral imaging (HSI) provides superior 
spectral resolution, allowing for the precise differentiation 
of plant physiological states. This capability is particularly 
valuable for the early detection of stress factors, including 
nitrogen deficiencies, chlorophyll degradation, and water 
stress, which are critical indicators of crop health and 
productivity (Mahlein et al. 2018, Benelli et al. 2020). 
By capturing continuous spectral data across hundreds of 
narrow bands, HSI enables a more nuanced understanding 
of plant responses to environmental stressors, facilitating 
data-driven decision-making in precision agriculture.

The integration of hyperspectral imaging with machine 
learning algorithms and UAV-based data acquisition has 
transformed modern agriculture, enabling high-throughput, 
noninvasive crop monitoring at an unprecedented scale. 
Machine learning models, particularly deep learning-
based spectral classifiers, have enhanced the ability  
to analyze hyperspectral datasets efficiently, improving  
the accuracy of stress detection and yield prediction 
(Guerri et al. 2024). However, several key challenges 
still hinder the widespread adoption of HSI in agricultural 
applications. First, the standardization of hyperspectral 
data acquisition remains a pressing issue, as variability 
in sensor specifications, atmospheric conditions, and 
calibration protocols can impact data consistency across 
different platforms (Pandey et al. 2017). Second, improving 
spectral interpretation methodologies is essential to reduce 
misclassification errors in stress diagnosis, particularly 
when distinguishing between abiotic (e.g., drought, 
nutrient deficiencies) and biotic stress factors  
(e.g., pathogen infections) (Mahlein et al. 2018). Third, 
bridging hyperspectral metrics with biochemical pathways 
is crucial for establishing direct correlations between 
spectral signatures and physiological processes at the 
molecular level. This would enhance the predictive power 
of HSI-derived models, ultimately facilitating more 
precise crop stress monitoring and management strategies 
(Thenkabail et al. 2011). Addressing these challenges will 

be key to unlocking the full potential of hyperspectral 
imaging in sustainable, climate-resilient agriculture.

This review systematically explores the role of 
hyperspectral imaging (HSI) in photosynthesis-driven crop 
monitoring, offering a structured roadmap for its integration 
with AI, UAVs, and radiative transfer models. It begins by 
examining the fundamental principles of HSI, detailing 
how electromagnetic radiation (EMR) interacts with plant 
physiology through key processes, such as absorption, 
scattering, fluorescence, and transmission. The discussion 
then shifts to key spectral indices, including solar-induced 
fluorescence (SIF), the Photochemical Reflectance Index 
(PRI), and spectral-temporal response surfaces (STRS), 
which are essential for assessing photosynthetic efficiency 
and plant stress responses.

Following this, the review traces the technological 
evolution of HSI in agriculture, charting its transition 
from early airborne sensors to modern UAV-integrated 
systems equipped with AI-driven spectral analytics.  
It further explores HSI applications in precision agriculture, 
emphasizing its role in crop stress detection, disease 
identification, nutrient optimization, and yield prediction 
using advanced spectral metrics. Finally, the review 
addresses key challenges and emerging solutions, focusing 
on the standardization of hyperspectral data acquisition, 
the need for AI-powered spectral analytics, and the 
potential of molecular phenotyping to enhance sustainable 
farming practices. Through this comprehensive analysis, 
the review highlights the transformative potential of HSI 
in modern agricultural monitoring and precision farming 
strategies.

Unveiling the spectrum: hyperspectral imaging 
in agriculture

Hyperspectral imaging (HSI) has rapidly become  
an indispensable tool in precision agriculture, providing 
detailed and nuanced insights into various aspects of 
crop management, including plant health, nutrient 
status, and stress responses. The ongoing advancements 
in HSI technology have broadened its applicability 
in contemporary agricultural practices, facilitating 
real-time assessments critical for more informed and 
effective decision-making processes. This section delves 
into the transformative impact of HSI on agricultural 
methodologies, particularly emphasizing the integration of 
unmanned aerial vehicle (UAV) platforms and the progress 
achieved through machine learning algorithms (Gevaert  
et al. 2015, Lu et al. 2020). Note that the abbreviation HSI 
will now be used for hyperspectral imaging.

Integration of unmanned aerial vehicles with
hyperspectral imaging

The synergy between unmanned aerial vehicles (UAVs) 
and hyperspectral imaging (HSI) has revolutionized 
agricultural data acquisition, enabling precise, high-
resolution data pertinent to crop vitality and yield 
forecasting. The miniaturization of hyperspectral sensors, 
exemplified by models such as the Headwall Micro-
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Hyperspec and Cubert UHD 185-Firefly, coupled with 
the integration of UAV platforms with Global Navigation 
Satellite System (GNSS) technology, has significantly 
broadened the scope of spectral response analysis across 
diverse agricultural applications (Adão et al. 2017, Lu 
et al. 2020). This technological convergence effectively 
addresses the inherent limitations of traditional satellite 
and ground-based techniques, offering versatile and cost-
effective solutions for high-resolution monitoring across 
extensive agricultural landscapes (Gevaert et al. 2015, 

Zeng et al. 2017) (Table 1). Notably, UAV-HSI systems 
have demonstrated remarkable effectiveness in the early 
detection of plant diseases, nutrient deficiencies, and 
water stress. By combining data streams from UAV-borne 
hyperspectral sensors with multispectral satellite imagery, 
these integrated systems generate spectral-temporal 
response surfaces (STRSs), which offer continuous 
spectral reflectance information characterized by enhanced 
spatial and temporal resolutions (Gevaert et al. 2015). 
These STRSs capture the dynamic spectral signatures 

Table 1. Advancements in crop photosynthesis research through hyperspectral imaging techniques.

Crop studied Theme Contribution to photosynthesis 
understanding

Unique data from traditional 
studies

References

Tobacco Reflectance
hyperspectroscopy

Enables noninvasive, detailed
analysis of photosynthetic efficiency,
chlorophyll concentration, 
and carbon absorption

Provides high-resolution spectral
data across a wide range of
wavelengths, allowing for precise
physiological assessments

Falcioni et al. (2023)
Marín-Ortiz et al.
(2024)

Sorghum Decoding
photosynthetic
efficiency

Identifies the role of photosynthetic
efficiency as a bottleneck in yield
potential, linking it to biomass
production

Offers insights into the efficiency 
of light-to-energy conversion and 
the impact of photorespiration 
on fixed carbon

Zhi et al. (2022)

Maize Multispectral 
analysis

Facilitates the extraction of 
vegetation indices and spectral
features, enhancing the
understanding of crop physiology

Employs specialized sensors and
analytical models to estimate
photosynthetic parameters
nondestructively

Mertens et al. (2021)
Veramendi and Cruvinel 
(2024)

Rice UAV-based
hyperspectral
imaging

Provides a comprehensive view 
of the complex interactions between
different crops and vegetation at 
the ecosystem level

Integrates HSI with 3D structural
information to better comprehend
light interception and distribution

Zheng et al. (2018)
Xu et al. (2024)

Wheat Hyperspectral 
sensors

Connects hyperspectral information
with plant genetic traits, aiding 
in discovering genes that contribute
to improved photosynthesis

Combines HSI with genomic and
phenomics data to transform crop
breeding practices

Yue et al. (2018)
Lu et al. (2024)

Tobacco Carbohydrate 
content analysis

Quantifies leaf carbon content, 
a key aspect of photosynthesis 
and plant productivity

Captures NIR and SWIR spectra
for nondestructive carbohydrate
quantification

Meacham-Hensold et al. 
(2020)
Olakanmi et al. (2024)

Wheat Machine learning
algorithms

Enhances the estimation of wheat
leaf chlorophyll content by
addressing soil background and
canopy complexity

Utilizes image segmentation and
pixel-wise spectrum clustering for
more accurate leaf chlorophyll
estimation

da Silva et al. (2024)

Tomato Reflectance and
leaf composition

Correlates leaf composition
and reflective properties with
photosynthetic processes and
pigment concentrations

Detects and quantifies changes
in pigment concentrations due 
to environmental stressors

Zhao et al. (2023)

Rice Automated
chlorophyll
measurement

Automates the processing
of hyperspectral datasets for
nondestructive chlorophyll
measurement in rice leaves

Integrates advanced image analysis
with hyperspectral imaging for 
high-resolution digitization 
of chlorophyll distribution

Zhu et al. (2024)

Lettuce Dark reactions 
of photosynthesis

Monitors key indicators associated
with dark reactions, improving 
the understanding of carbon
assimilation

Provides a holistic view of
biochemical processes related 
to carbon assimilation
nondestructively

Kumar et al. (2022)

Rice Future directions of
HSI in agriculture

Envisions a comprehensive approach
to crop photosynthesis research,
integrating precision agriculture 
and genomics

Proposes real-time monitoring
systems and ecosystem-level 
studies for sustainable land
management

Sun et al. (2017)

Rice Photosynthetic
electron transport 
rate (ETR)

Improves the precision of studying
ETR in PSII, which is essential for
understanding plant photosynthesis

Utilizes advanced hyperspectral
fluorescence data analysis for
detailed insights into ETR

Liran (2022)
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of vegetation over time, providing a comprehensive 
dataset for analysis. Leveraging advanced data analysis 
methodologies, including support vector machines, 
Random Forests, and partial least squares regression  
(Lu et al. 2020, Pascucci et al. 2020), UAV-based 
hyperspectral imaging also streamlines the mapping 
of critical biophysical properties of crops, detailed soil 
assessments, and accurate crop classification.

A key advantage of UAV-HSI systems lies in their 
inherent compatibility with sophisticated computational 
techniques. The application of machine learning and 
artificial intelligence algorithms to UAV-HSI-derived data 
facilitates the recognition of intricate patterns, crucial for 
the detection of subtle stress indicators such as chlorophyll 
content variations, hydration levels, and cellular integrity 
(Tsouros et al. 2019) (Fig. 2). For instance, algorithms like 
HW-HyperLCA substantially enhance hyperspectral data 
processing efficiency, achieving significant compression 
ratios while preserving essential data integrity, thereby 
optimizing the analytical utility of large-scale datasets 
(Guerra et al. 2019). Moreover, UAV-based platforms 
generally ensure efficient and responsive monitoring 
capabilities through the provision of highly detailed 
and adaptable imaging modalities specifically tailored 
for precision agriculture applications (Zeng et al. 2017, 
Tsouros et al. 2019).

The practical utility of UAV-HSI technology in 
agriculture is substantial and varied. In viticulture,  
UAV-HSI enables precise assessments of vine health 
and irrigation demands, ultimately contributing to 
improvements in both grape quality and overall yield 
(Pascucci et al. 2020). Furthermore, UAV-HSI has proven 
particularly valuable in arid and semi-arid regions for 
accurate soil moisture assessment, empowering farmers 
to refine irrigation strategies and achieve considerable 
reductions in water usage (Lu et al. 2020). Beyond water 
management, UAV-HSI systems are also critical for 
detailed disease mapping and the timely identification 
of pest infestations, equipping agricultural practitioners 
with actionable information to optimize crop health 
management and fostering more sustainable farming 
practices (Zeng et al. 2017).

Through the deployment of cutting-edge hyperspectral 
sensors and the integration of advanced computational 
methodologies, UAV-HSI has established itself as  
a potent instrument within precision agriculture. It delivers 
unparalleled capabilities for monitoring crop physiological 
status, optimizing resource allocation, and addressing 
critical challenges in agricultural production, representing 
a significant stride forward in remote sensing technologies 
for the agricultural sector.

Advancements in artificial intelligence and machine
learning for hyperspectral analysis imaging

The integration of artificial intelligence (AI) and machine 
learning (ML) techniques has advanced profoundly 
hyperspectral data processing by enabling the extraction of 
complex patterns often indiscernible through conventional 
analytical approaches. Within precision agriculture, 
Convolutional Neural Networks (CNNs) and Random 

Forests have been extensively applied, demonstrating 
exceptional performance in this domain. Notably, these 
sophisticated models have achieved high accuracies, 
reaching up to 90%, identifying subtle indicators of plant 
stress, such as early manifestations of water scarcity and 
nutrient imbalances (Banerjee et al. 2020, Olson and 
Anderson 2021). Indeed, leveraging UAVs equipped 
with HSI systems offers a unique avenue for acquiring 
high-resolution spectral datasets, which is instrumental 
for comprehensively investigating complex, spectrally 
driven agricultural scenarios (Banerjee et al. 2020). These 
analytical advancements effectively mitigate challenges 
related to the inherent spectral variability within vegetation 
canopies, facilitating more reliable and precise monitoring 
of crop health across extensive agricultural regions.

The synergistic combination of artificial intelligence 
and hyperspectral imaging has fundamentally transformed 
resource management strategies in agriculture. By 
employing machine learning algorithms, including Random 
Forests and CNNs, AI-driven analytics can accurately and 
rapidly identify both nutritional deficiencies and water 
stress conditions at nascent stages of development. This 
proactive approach has demonstrated tangible benefits, 
including a reported 15% reduction in water consumption 
and a 10% decrease in fertilizer application, underscoring 
the practical viability of AI-enhanced sustainable 
agricultural practices (Benos et al. 2021, García-Vera  
et al. 2024). Furthermore, the seamless integration of 
AI with HSI technology streamlines and automates 
the detection of stress and disease in cultivated crops, 
significantly diminishing the reliance on time-consuming 
manual inspection and intervention (Benos et al. 2021). 
In essence, machine learning amplifies the inherent 
capabilities of HSI by enabling the precise interpretation 
of complex spectral information, leading to more effective 
and timely detection of early-stage plant health issues and 
resource limitations.

AI-driven models have also revolutionized the 
scalability of HSI systems, allowing for the efficient and 

Fig. 2. Flow chart of hyperspectral imaging system components 
and processes for plant spectral data acquisition and analysis.
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robust analysis of increasingly large and complex datasets. 
The incorporation of AI algorithms with spectral and 
thermal imaging modalities further enhances the utility 
of hyperspectral imaging by improving the detection of 
critical stress parameters, such as reduced chlorophyll 
content and water availability limitations (Gevaert et al. 
2015). These progressive enhancements firmly establish 
AI and ML as indispensable tools for the advanced analysis 
of hyperspectral data, significantly improving the overall 
efficiency and effectiveness of contemporary agricultural 
management practices.

Methods for enhanced spectral and spatial resolution

Continued progress in hyperspectral imaging (HSI) 
technology has significantly enhanced the capacity to 
acquire agricultural data with unprecedented spectral and 
spatial resolution. These enhanced resolutions are crucial 
for detecting subtle physiological changes within crop 
canopies, including minor variations in photosynthetic 
efficiency and initial signs of plant stress. Satellite 
platforms, such as Sentinel-2, and UAVs equipped with 
advanced hyperspectral sensors offer versatile and high-
resolution monitoring capabilities, making them essential 
for effective surveillance of expansive agricultural areas 
(Gevaert et al. 2015, Adão et al. 2017). Hyperspectral 
systems deployed on UAVs effectively generate spectral-
temporal response surfaces (STRSs), seamlessly 
integrating satellite and UAV imagery to achieve 
superior spatial and temporal resolutions, further refining  
the data available for analysis (Gevaert et al. 2015). These 
technological advancements directly enable more precise 
and data-driven management of irrigation schedules, 
proactive crop health monitoring, and optimized nutrient 
application strategies, yielding measurable benefits such 
as substantial reductions in resource utilization (Ram  
et al. 2024). Notably, hyperspectral imaging techniques 
have demonstrated considerable efficacy in accurately 
assessing chlorophyll fluorescence and nitrogen 
concentration in key crops such as wheat, thereby 
facilitating the optimization of fertilizer applications 
and significantly improving photosynthetic nitrogen-use 
efficiency (Jia et al. 2021).

Despite these notable advancements, the widespread 
implementation of high-resolution HSI systems still faces 
certain practical challenges. These challenges primarily 
include the considerable upfront costs associated with 
acquiring sophisticated hyperspectral equipment,  
the computational complexities inherent in processing large 
volumes of high-dimensional datasets, and the inherent 
operational limitations of UAV platforms, such as restricted 
flight durations and vulnerability to adverse meteorological 
conditions. Addressing these multifaceted challenges 
is crucial for enabling the broader and more routine 
application of HSI in real-time agricultural monitoring and 
decision support systems (Dale et al. 2013, Jia et al. 2021). 
Furthermore, to fully integrate hyperspectral data into 
actionable decision-making processes, the standardization 
of data processing workflows and analytical techniques is 
essential to ensure robust and reliable outcomes.

Integration of multispectral and hyperspectral data

The strategic integration of multispectral and hyperspectral 
data streams offers a powerful approach to leverage  
the complementary strengths of each imaging modality 
for enhanced agricultural monitoring. This synergistic 
amalgamation combines the broad spectral coverage 
characteristic of multispectral imaging with the fine spectral 
resolution inherent to hyperspectral imaging techniques. 
This combined approach enables a more comprehensive 
and nuanced assessment of overall vegetation health 
by capitalizing on the respective advantages offered by 
both data types. While multispectral imaging excels at 
identifying broad-scale patterns and general vegetation 
indices, hyperspectral imaging offers superior sensitivity 
for detecting subtle, yet critical, indicators of plant stress, 
such as early chlorophyll content reductions and subtle 
nutrient imbalances (Lu et al. 2020, Khan et al. 2022).

Incorporating thermal imaging data into this integrated 
framework further enhances the functional capabilities of 
HSI-based monitoring systems. Thermal data allows for 
the direct assessment of plant canopy temperature and 
the detection of temperature variations related to water 
stress, providing a more holistic and comprehensive 
methodology for evaluating overall crop physiological 
status. Specifically, the integration of thermal and 
hyperspectral imaging has demonstrated notable 
effectiveness in pinpointing areas experiencing water 
stress within agricultural fields and optimizing irrigation 
management strategies accordingly (Lu et al. 2020). 
Moreover, this multimodal approach facilitates the early 
detection of plant diseases by enabling the analysis of both 
temperature anomalies and subtle spectral irregularities, 
thus promoting timely interventions to minimize potential 
crop losses. The seamless integration of these diverse 
imaging modalities is becoming increasingly vital for 
advancing precision agriculture, significantly improving 
the efficiency of irrigation practices, targeted pest control 
applications, and optimized resource allocation within 
complex agricultural systems (Fig. 3).

Practical implications and future prospects

Empirical studies increasingly underscore the trans
formative potential of hyperspectral imaging (HSI) for 
promoting sustainable agricultural practices. The effective 
integration of HSI data with AI-driven analytics empowers 
agricultural practitioners to significantly expedite data 
processing workflows and enhance the overall precision 
of targeted agricultural interventions. As highlighted by 
Mulla (2013) and García-Vera et al. (2024), AI-enhanced 
HSI systems are rapidly emerging as critical tools for 
precision agriculture, enabling real-time detection of 
nutrient deficiencies, water stress onset, and early pest 
infestations across diverse crop types. These advanced 
techniques facilitate a more sustainable approach to 
resource utilization by enabling the precise minimization 
of water and fertilizer inputs while simultaneously 
maintaining or even enhancing crop yields. However, to 
realize the full transformative potential of HSI technology 
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in agriculture, the standardization of data acquisition and 
subsequent analytical methodologies remains a critical 
prerequisite. Establishing standardized procedures would 
be instrumental in promoting the widespread and consistent 
implementation of HSI across varied agricultural systems 
and geographical regions, thereby significantly enhancing 
data-driven decision-making in crucial agricultural 
management areas such as irrigation scheduling, targeted 
pest control, and optimized fertilization strategies. Looking 
ahead, continued advancements in sensor technologies, 
particularly the development of miniaturized, more 
affordable hyperspectral cameras and the further refinement 
of integrated AI algorithms, are anticipated to substantially 
enhance the capabilities and accessibility of HSI systems, 
solidifying their role as indispensable tools for achieving 
enhanced agricultural sustainability and productivity in 
the coming years.

Exploring crop photosynthesis through hyperspectral
imaging applications
HSI offers a noninvasive method for evaluating the efficacy 
of photosystems in crops, such as the efficiency of light 
absorption and chlorophyll fluorescence. The accuracy 
of HSI in measuring photosynthetic rates and stress 

responses in cotton was demonstrated by Jiang et al. (2020) 
through the use of ground-based hyperspectral imaging 
to characterize canopy-level photosynthetic activities. 
Their results indicated that the detection of photosynthetic 
variations was enhanced by 28% when HSI-based models 
were implemented in comparison to conventional gas-
exchange measurements. In the same vein, Meacham-
Hensold et al. (2020) investigated the use of proximate 
hyperspectral imaging to evaluate the photosynthetic 
parameters of cereals. Their research has shown that  
HSI-based fluorescence retrieval techniques can increase 
the estimation of photosystem II efficiency (ΦPSII) by 25%, 
thereby enabling the identification of subtle variations 
in photosynthetic quantum efficiency across various 
genotypes. HSI has been demonstrated to be effective in 
monitoring light-use efficiency (LUE) variations under  
a variety of environmental conditions, and LUE is a critical 
determinant of photosynthetic performance. To evaluate 
the photosynthetic efficacy of grape leaves, Yang et al. 
(2022) implemented hyperspectral imaging in conjunction 
with machine learning models. The study discovered that 
HSI-based models were capable of accurately predicting 
variations in LUE with a 92% accuracy rate, thereby 
illustrating their potential to optimize carbon assimilation 

Fig. 3. Illustration of the process of measuring leaf reflectance using a spectroradiometer (ASD Field Spec 3). (A) Incoming solar 
radiation is directed at a plant leaf. (B) The sensor is positioned at a 25-degree angle from the leaf to capture the reflected radiation. 
(C) A white surface is used as a reference to calibrate the sensor for accurate measurement. (D) The sensor collects data on the leaf's 
reflectance, which is then plotted on a graph, showing how different wavelengths of light are absorbed or reflected by the leaf, indicating 
various plant physiological properties and atmospheric interactions.
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in various crop species. Furthermore, Lu et al. (2020) 
investigated the potential of hyperspectral imaging for 
agricultural applications. They discovered that HSI-
derived chlorophyll fluorescence indices could increase 
nitrogen-use efficiency (NUE) by 20%, resulting in 
enhanced carbon fixation rates and overall photosynthetic 
efficiency in maize and soybean.

Environmental stresses, including drought, salinity, 
and temperature fluctuations, significantly influence 
photosynthetic efficiency. HSI has facilitated the early 
detection of stress, thereby enabling the implementation of 
opportune interventions to preserve the optimal function of 
the photosynthetic system. Hyperspectral reflectance data 
was employed by Zhou et al. (2021) to assess the effects 
of water stress on the photosynthetic capacity of soybean 
and wheat. Their research illustrated that HSI models 
could identify stress-induced decreases in photosynthetic 
efficiency up to eight days before the onset of visible 
symptoms, thereby offering a critical instrument for 
precision agriculture and stress mitigation. Additionally, 
Sobejano-Paz et al. (2020) investigated the impact of 
drought stress on stomatal conductance and transpiration 
using HSI. The study discovered that HSI-derived pigment 
indices were 91% accurate in predicting chlorophyll 
degradation and photosynthetic decline, rendering it  
a dependable method for monitoring plant responses to 
environmental stress.

This section reinforces the connection between 
scientific insights provided by hyperspectral imaging 
(HSI) and their practical applications in agriculture. 
It elaborates on how real-time HSI data can optimize 
essential farming practices, such as irrigation scheduling 
and fertilizer application, to improve resource efficiency 
and increase crop yields. Concluding with future directions 
for HSI research, this section considers how ongoing 
advancements could drive breakthroughs in crop breeding, 
particularly in developing varieties with enhanced 
photosynthetic efficiency and resilience to climate change, 
establishing this work as a foundational reference for 
upcoming research and innovation in agricultural sciences 
(Table 2).

Photosynthetic pigment signature: an unveiling
through hyperspectral analysis

The accurate quantification of leaf chlorophyll 
concentration is essential for evaluating photosynthetic 
efficiency and overall plant vitality, as chlorophyll is crucial 
for light energy absorption in photosynthesis (Murchie and 
Lawson 2013). Pulse amplitude-modulated (PAM) devices 
measure chlorophyll fluorescence, which is a noninvasive 
way to check PSII activity, photosynthetic efficiency, 
and how plants respond to changes in their environment. 
These instruments are essential for crop enhancement, 
field phenotyping, and ecological surveillance, allowing 
quick and precise assessment of photosynthetic vitality 
across various settings. Hyperspectral imaging (HSI) 
provides a noninvasive technique for precisely measuring 
chlorophyll concentrations by collecting reflectance data 
over several small spectral bands (Yang et al. 2015). This 

capability allows precise measurement of chlorophyll 
concentrations, allowing extensive surveillance of plant 
vitality. Yang et al. (2015) used a Hyperion hyperspectral 
imaging system to create a four-scale geometrical-optical 
model. They used critical wavelengths (480, 631, 735, 
749, and 819 nm) to predict chlorophyll concentrations 
with an accuracy of 88.7%, which was better than other 
estimation methods.

HSI enables a thorough investigation of chlorophyll 
fluorescence, assessing photosynthetic efficiency and 
plant stress. The Fraunhofer line depth (FLD) method 
distinguishes fluorescence signals by examining absorption 
features in the solar spectrum known as Fraunhofer lines, 
enabling precise assessment of photosynthetic activity 
(Zarco-Tejada et al. 2013). Feng et al. (2017) made 
advanced hyperspectral pipelines that make it possible to 
automatically extract chlorophyll a and b, total chlorophyll, 
and carotenoids. This facilitates a more accurate 
assessment of plant physiological status. In their study 
on rice crops, they got mean absolute percentage errors 
of 6.94% to 12.84% and made high-resolution pigment 
distribution maps that were accurate to within 0.11 mm 
per pixel. Machine learning has significantly enhanced 
the precision of chlorophyll estimates in hyperspectral 
imaging, expanding its use in remote sensing. Gao 
et al. (2022) suggested combining the Soil-Adjusted 
Vegetation Index (SAVI) with k-means clustering. This 
method reduces soil background interference by 25% and 
improves the accuracy of the chlorophyll estimate by 10%. 
Ruszczak et al. (2022) introduced a benchmark dataset 
and validation framework for chlorophyll estimation, 
thereby standardizing the assessment of machine learning 
algorithms. Using high-throughput methods like fractional-
order derivatives (FOD), continuous wavelet transforms 
(CWT), and ensemble learning models makes it more 
accurate to measure chlorophyll content in complex crop 
canopies. For example, research on citrus trees of Xiao  
et al. (2024) shows this. They discovered critical 
reflectance peaks at 550 nm and 750 nm to enhance 
chlorophyll prediction.

A thorough comprehension of auxiliary pigments, 
including carotenoids, is crucial for assessing photo
synthesis. Carotenoids absorb light and safeguard plants 
from photodamage. Huang et al. (2022) conducted recent 
research using UAV-mounted hyperspectral imaging to 
identify pigments in Brassica napus. This methodology 
offers essential insights into agricultural health and growth 
trends. Combining hyperspectral imaging with airborne 
technology makes it possible to collect data over large areas. 
This is especially helpful for finding differences in crop 
health across space and supporting precision agriculture 
(Ge et al. 2021). Their research in dry environments 
integrates UAV-based hyperspectral photography with 
XGBoost modelling to assess soil moisture content. HSI 
techniques for chlorophyll quantification, augmented by 
AI-based analysis, have shown effectiveness in several 
agricultural contexts. New inventions like PhotoSpec, 
a ground-based sensor for measuring solar-induced 
fluorescence (SIF), make it easier to keep an eye on things 
from the field to the ecosystem level. Grossmann et al. 
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(2018) used PhotoSpec to measure SIF emissions in the red 
(650–690 nm) and far-red (720–780 nm) spectra, which 
reveal direct signs of photosynthesis. Weak background 
noise and better chlorophyll predictions are made with 
narrow-band vegetation indices like the Transformed 
Chlorophyll Absorption in Reflectance Index (TCARI) 
and the Optimized Soil-Adjusted Vegetation Index 
(OSAVI) (Haboudane et al. 2002). These indicators have 
a favorable correlation with chlorophyll measurements, 
underscoring their reliability in precision agriculture.  
The physiological reflectance index (PRI) uses narrow-
band reflectance to assess physiological alterations in 
plants, proving especially beneficial for evergreen species 
due to their structural consistency, which facilitates 
accurate temporal comparisons. Merrick et al. (2020) 
found a link between PRI and how efficiently plants use 
light for photosynthesis. They also pointed out that this 
relationship is useful for studying how plants react to stress 
and changes in the pigments that make up the xanthophyll 
cycle. Solar-induced chlorophyll fluorescence (SIF) 
measures photochemical and nonphotochemical quenching 
processes, which gives information about how well 
plants use light to make food (Zarco-Tejada et al. 2016).  
The integration of these data with machine learning 
algorithms improves the prediction efficacy of HSI, 
allowing tailored interventions in nutrition management 
and pest control. By looking at Fraunhofer lines, especially 
the O₂-A band at 760 nm, the Fraunhofer line depth 
(FLD) method tells the difference between chlorophyll 
fluorescence and other types of fluorescence in the canopy 
(Nakashima et al. 2021). Grossmann et al. (2018) further 
illustrated the potential of FLD to connect canopy-
level fluorescence with evaluations of plant production. 

Continuous SIF monitoring systems, as emphasized by 
Aasen et al. (2018) and Mohammed et al. (2019), produce 
real-time data on photosynthetic efficiency, thereby 
enhancing daily and seasonal agricultural management.

Indices such as the Photochemical Reflectance Index 
(PRI570) and the O₂-A infilling approach have been pivotal 
in measuring chlorophyll dynamics over time, thereby 
augmenting the utilization of HSI in sustainable and 
precision agriculture (Sabater et al. 2018, Yang et al. 2019). 
The SCOPE model combines radiative transfer and energy 
balance equations to predict chlorophyll fluorescence 
and photosynthetic rates at different scales. This gives us  
a deeper understanding of how plant energy changes over 
time (Huang et al. 2022). These achievements illustrate 
the essential importance of hyperspectral imaging and 
related approaches in enhancing agricultural production 
and sustainability.

A comparative assessment of several chlorophyll 
indices in hyperspectral imaging applications demonstrates 
their unique advantages and limitations depending on 
spectral sensitivity, precision, and specific agricultural 
use cases. SIF is a highly effective method for assessing 
photosynthetic efficiency and detecting stress, making it 
invaluable for large-scale crop health surveillance and 
early drought prediction. PRI, which quantifies variations 
in the xanthophyll cycle, is particularly useful for tracking 
plant responses to environmental stressors such as water 
deficits and heat stress, supporting precision irrigation 
strategies. TCARI and OSAVI minimize soil background 
interference, improving the accuracy of chlorophyll content 
estimation, which helps optimize fertilizer application and 
nutrient management. The Red-edge Chlorophyll Index 
(CI_red-edge) exhibits high sensitivity to chlorophyll 

Table 2. Key metrics and applications of hyperspectral imaging in agriculture.

Crop Hyperspectral 
technique

Application Sensitivity/accuracy Key metrics References

Wheat Hyperspectral 
sensors

Genetic trait discovery,
chlorophyll estimation

High sensitivity 
to spectral changes 
in 400–700 nm

Vegetation indices
(NDVI, PRI)

Yue et al. (2018)
Lu et al. (2024)

Rice UAV-based HSI Ecosystem-level studies,
photosynthetic efficiency

Accuracy > 85% for
chlorophyll content
estimation

3D structural data
integration

Zheng et al. (2018)
Xu et al. (2024)

Maize Multispectral 
analysis

Estimation of vegetation
indices, stress detection

High sensitivity with NIR
and red-edge reflectance

Chlorophyll index,
MCARI

Mertens et al. (2021)
Veramendi and Cruvinel 
(2024)

Sorghum Reflectance
hyperspectroscopy

Light-to-energy
conversion, biomass
prediction

Accuracy > 90% for
photosynthetic efficiency

Spectral reflectance
profiles

Zhi et al. (2022)

Tomato Reflectance 
imaging

Pigment concentration
monitoring

Sensitivity to
environmental stress
impacts

Leaf reflectance and
composition analysis

Zhao et al. (2023)

Lettuce Dark reaction 
monitoring

Carbon assimilation,
physiological stress

High accuracy in dark
reaction enzyme detection

Carbohydrate content 
and biochemical 
profiling

Kumar et al. (2022)

Tobacco Carbohydrate 
analysis

Leaf carbon 
quantification

Noninvasive with SWIR
spectra (accuracy ±5%)

NIR/SWIR spectral
absorption features

Meacham-Hensold et al. 
(2020)
Olakanmi et al. (2024)
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and nitrogen contents, making it an essential tool for 
monitoring crop nutrition and detecting deficiencies early. 
Integrating these indices with machine learning algorithms 
enhances predictive capabilities, enabling hyperspectral 
imaging to serve as a powerful decision-making tool in 
precision agriculture. This approach facilitates early stress 
detection, site-specific nutrient optimization, and accurate 
yield forecasting, ultimately improving farm productivity 
and sustainability. Future advancements in HSI 
calibration, sensor development, and AI-driven spectral 
analytics will further enhance the reliability and practical 
implementation of chlorophyll indices in agricultural 
monitoring, supporting climate-resilient farming systems.

Methodologies for hyperspectral imaging in evaluating 
plant hydric condition

Evaluating plant water status is essential for comprehending 
photosynthetic activity, as water availability directly 
influences CO₂ uptake, stomatal conductance, and overall 
plant vitality (Garbulsky et al. 2011, Zarco-Tejada et al. 
2013). Water stress impairs plant metabolism and 
photosynthetic efficiency, leading to reduced growth 
and productivity. Hyperspectral imaging (HSI) provides  
a noninvasive and highly sensitive method for detecting 
early signs of water stress by analyzing reflectance 
properties and temperature fluctuations across multiple 
spectral bands. These features make HSI a critical tool 
in precision agriculture, aiding in resource optimization, 
stress detection, and yield preservation by facilitating 
early intervention strategies for drought mitigation.

Thermal imaging

Thermal imaging utilizes infrared light to create detailed 
temperature maps, facilitating the efficient identification of 
water stress (Wen et al. 2023). As transpiration declines 
due to stomatal closure, canopy temperature rises, serving 
as an indicator of plant water deficiency (Gonzalez-
Dugo et al. 2012, Vidican et al. 2023). Thermal cameras 
mounted on aircraft or UAVs provide high-resolution 
thermal data, allowing researchers and farmers to identify 
spatial variations in plant hydration status.

Gonzalez-Dugo et al. (2012) demonstrated the efficacy 
of aircraft-mounted thermal cameras in mapping intra-
crown temperature variations in almond plants under 
different irrigation regimes. Their study revealed a strong 
correlation between temperature fluctuations and water 
stress levels, reinforcing the role of thermal imaging in 
precision irrigation management. Similarly, Vidican et al. 
(2023) highlighted the potential of vegetative indices 
(VIs), such as the Normalized Difference Vegetation 
Index (NDVI) and the Soil-Adjusted Vegetation Index 
(SAVI), obtained from Sentinel-1 and Sentinel-2 imaging, 
in assessing drought stress in key crops, including wheat, 
maize, and soybeans.

By integrating thermal imaging with hyperspectral 
analysis, farmers and agronomists can develop precision 
irrigation strategies that ensure optimal water distribution 
while minimizing excessive water use. This combined 

approach reduces crop vulnerability to water stress 
and enhances overall productivity in water-limited 
environments.

Hyperspectral imaging in the VNIR and TIR spectra

Hyperspectral imaging (HSI) in the visible-near-infrared 
(VNIR) and thermal-infrared (TIR) bands provides detailed 
insights into plant physiological responses to water stress. 
VNIR captures changes in reflectance properties, whereas 
TIR detects variations in emitted radiation, enabling  
the distinction between water-stressed and healthy plants 
(Middleton et al. 2016, Mangalraj and Cho 2022). These 
techniques enhance early drought detection, allowing for 
timely interventions to mitigate crop yield losses.

Mangalraj and Cho (2022) explored the advancements 
in solar-induced fluorescence (SIF) measurement 
techniques, demonstrating their ability to detect subtle 
stress symptoms before visible signs appear. This 
highlights the potential of hyperspectral SIF analysis in 
preemptive drought management, ensuring early detection 
and targeted responses in agriculture.

When HSI-based water stress detection is combined 
with UAV technology, large-scale real-time hydric 
assessments become feasible. This integration improves 
irrigation efficiency, reduces unnecessary water 
application, and enhances the sustainability of agricultural 
water management.

Photochemical Reflectance Index (PRI)

The Photochemical Reflectance Index (PRI) quantifies 
reflectance variations at 531 nm and 570 nm, offering 
a reliable proxy for photosynthetic efficiency and 
nonphotochemical quenching mechanisms. PRI is 
particularly valuable in evaluating water stress, as it 
reflects changes in the xanthophyll cycle, which enables 
plants to dissipate excess light energy under drought 
conditions (Chang et al. 2020).

Garbulsky et al. (2011) conducted a meta-analysis 
demonstrating PRI's scalability for assessing radiation-
use efficiency (RUE) across different environmental 
conditions, confirming its robustness in diverse crop 
systems. Furthermore, Garzonio et al. (2017) demonstrated 
that UAV-mounted hyperspectral sensors can accurately 
capture PRI, showing how its integration with solar-
induced fluorescence (SIF) data significantly enhances 
water stress diagnosis. By utilizing PRI for real-time stress 
monitoring, farmers can optimize irrigation schedules, 
mitigate excessive water use, and prevent long-term crop 
yield losses due to drought conditions. This demonstrates 
the utility of PRI as a decision-support tool in precision 
agriculture, ensuring more sustainable water-use strategies.

Broadband thermal imaging

Broadband thermal imaging quantifies canopy temperature 
variations, providing a direct measure of plant hydration 
status. Zhang et al. (2022) employed broadband thermal 
cameras to differentiate temperature profiles between well-
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irrigated and drought-stressed crops, thereby reinforcing 
the effectiveness of precision water management. Their 
findings indicated that high-resolution temperature 
mapping significantly improves irrigation efficiency, 
resulting in substantial reductions in water usage while 
maintaining crop health (Liu et al. 2024).

By combining broadband thermal imaging with 
hyperspectral reflectance indices, agricultural water 
management can become more data-driven and resource-
efficient. This enables site-specific irrigation planning, 
reducing water waste, and improving drought resilience in 
farming systems.

Linking photosynthesis-related indices to precision
agriculture

The methodologies discussed above illustrate how 
hyperspectral imaging and related spectral indices 
contribute to sustainable water management in agriculture. 
PRI and SIF allow for early stress detection, while VNIR 
and TIR spectral analysis provide direct indicators of 
plant hydration levels. When integrated with UAV and  
AI-driven models, these indices enhance precision 
irrigation strategies, allowing farmers to:

• Detect early drought stress symptoms before visible 
signs appear, ensuring timely interventions.
• Optimize water distribution based on real-time canopy 
temperature and reflectance data.
• Improve water-use efficiency to reduce the environmental 
impact of excessive irrigation.
• Enhance yield prediction by linking photosynthetic 
activity to hydric conditions.

As climate change increases the frequency and severity 
of droughts, leveraging hyperspectral imaging for plant 
water status evaluation will be critical in enhancing crop 
resilience, optimizing resource allocation, and ensuring 
global food security. Future advancements in sensor 
technology, calibration techniques, and AI-driven analytics 
will further improve the precision and applicability of 
these methodologies in large-scale agricultural monitoring 
and water management.

Study outcomes of chlorophyll indices in photosynthetic 
stress detection

SIF has been acknowledged for its ability to identify stress 
before the emergence of visible symptoms and its robust 
correlation with photosynthetic activity. Mangalraj and Cho 
(2022) conducted a review of SIF estimation techniques 
that utilized hyperspectral imaging, highlighting their 
potential for early stress detection and plant phenotyping. 
Their results demonstrated that SIF-based models were 
more effective than conventional vegetation indices in 
monitoring stress responses in crops, rendering them  
a critical tool for precision agriculture. In the same 
vein, Wang et al. (2022) evaluated SIF for the detection 
of nitrogen stress in almond trees by utilizing airborne 
hyperspectral imagery. Their findings indicated that SIF 
was 23% more effective than conventional reflectance 

indices in detecting nitrogen-deficient plants before 
the emergence of visible symptoms. This investigation 
emphasizes the benefit of SIF in the early detection of 
stress. To further verify its stress detection capabilities, 
Han et al. (2022) investigated the responses of SIF to arid 
stress in agricultural commodities. They discovered that 
stomatal conductance and transpiration rates were strongly 
correlated with SIF signals (R² = 0.81), which enabled  
the precise surveillance of drought stress in real-time.

PRI tracks xanthophyll cycle changes, which are 
crucial for stress adaptation and light-use efficiency, to 
provide a dependable measure of photosynthetic efficiency.  
By integrating fluorescence spectroscopy with near-infrared 
radiance, Zeng et al. (2017) examined the role of PRI 
in the detection of abiotic stress. The study showed that 
PRI is a critical instrument for early stress diagnostics in 
crops, as it detects stress-related physiological alterations 
21% earlier than traditional indices. Furthermore, Warner 
et al. (2023) employed UAV-based hyperspectral imaging 
to investigate the changes in PRI in rice fields that 
occur under salt stress. They discovered that PRI had  
a robust correlation (R² = 0.76) with stomatal closure 
and photosynthetic downregulation, underscoring its 
efficacy in monitoring salt-induced stress. Red-edge 
chlorophyll indices, particularly those derived from  
UAV-based hyperspectral imaging, have been demonstrated 
to be highly effective in the detection of water stress and 
nutrient deficiencies. SIF and red-edge indices were 
implemented by Wang et al. (2023) to assess salt stress in 
rice cultivars. Their research demonstrated that red-edge 
reflectance indices were 25% more accurate in detecting 
stress-related chlorophyll degradation than NDVI, which 
further substantiated their high sensitivity to physiological 
changes in stressed plants. Furthermore, Zhao et al. (2023) 
demonstrated that red-edge chlorophyll indices were 
more effective than broad-spectrum vegetation indices 
in detecting drought-induced decreases in leaf water 
content. Their results indicate that red-edge indices offer 
a quantifiable advantage (20% greater accuracy) in the 
monitoring of stress-induced chlorophyll fluctuations.

The integration of hyperspectral imaging-based 
chlorophyll indices with UAV platforms and AI-driven 
analytics has significantly improved the accuracy and 
efficiency of early stress detection, nutrient monitoring, 
and precision farming strategies. SIF's strong correlation 
with photosynthetic efficiency makes it an indispensable 
tool for monitoring plant vitality and optimizing fertilizer 
applications in high-throughput phenotyping and 
agronomic decision-making. PRI, with its sensitivity 
to xanthophyll cycle alterations, plays a crucial role 
in precision irrigation scheduling, ensuring that water 
deficits are detected in real-time, minimizing drought-
induced losses. Red-edge chlorophyll indices further 
enhance precision agriculture by providing early warnings 
of nitrogen and water deficiencies, guiding site-specific 
nutrient applications to optimize crop yield and resource 
efficiency. The integration of these indices with machine 
learning and UAV-based hyperspectral sensing has 
transformed agricultural monitoring into a proactive, 
data-driven system, enabling farmers to implement timely 
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interventions, enhance stress resilience, and improve 
long-term crop productivity under climate variability. 
Future advancements in hyperspectral calibration, real-
time processing, and sensor miniaturization will further 
strengthen the role of chlorophyll indices in sustainable 
and precision agriculture.

Hyperspectral methods for assessing the fraction of 
absorbed photosynthetically active radiation (fAPAR)

The percentage of absorbed photosynthetically active 
radiation (fAPAR) is crucial for plant production since it 
measures the quantity of light employed in photosynthesis. 
This statistics is essential for comprehending crop 
performance and ecological dynamics. Peng et al. (2018) 
showed how important hyperspectral imaging is for 
measuring fAPAR because it provides better resolution by 
collecting detailed spectral data. Their research evaluated 
nine broadband and hyperspectral vegetation indices (VIs) 
for determining fAPAR in wheat, maize, and soybean 
canopies. The researchers used the ASD FieldSpec 4 
spectroradiometer to demonstrate that hyperspectral 
indices exhibited more accuracy (R² > 0.9) than standard 
indices, with narrow spectral bands increasing sensitivity 
to light absorption fluctuations by 15–20%. Adding 
hyperspectral data to the fAPAR assessment also makes 
it easier to keep an eye on crop yield, which is helpful 
because it reduces problems caused by changes in canopy 
structure. This invention distinguishes hyperspectral 
imaging as an accurate instrument for agricultural and 
ecological evaluations.
The Normalized Difference Vegetation Index (NDVI)

The Normalized Difference Vegetation Index (NDVI) is 
one of the most prevalent measures for assessing fAPAR. 
Red and near-infrared reflectance, the source of NDVI, has 
proven to be a reliable proxy for photosynthetic activity 
(Wang et al. 2023, Mallick et al. 2024). Zhang et al. 
(2016) enhanced the use of NDVI by combining it with 
the Photochemical Reflectance Index (PRI) and fAPAR 
to forecast gross primary production (GPP) in cornfields. 
Their research employed the EO-1/Hyperion hyperspectral 
imaging technology and attained a notable R² value of 0.92 
for GPP predictions. This method utilized the accuracy of 
hyperspectral imaging, resulting in notable enhancements 
in the observation of canopy structure and light utilization 
dynamics. Consequently, NDVI, when integrated with 
hyperspectral methods, surpasses its conventional uses, 
offering improved instruments for agricultural prediction 
and vegetation assessment.

Enhanced Vegetation Index (EVI) and EVI2
The Enhanced Vegetation Index (EVI) and its simplified 
form, EVI2, make up for NDVI's flaws, especially the fact 
that it can be affected by the weather and become saturated 
under thick canopy cover. Baret et al. (2007) used the 
EO-1 Hyperion hyperspectral imaging equipment to show 
how well EVI works for measuring fAPAR in coniferous 
forest ecosystems. By integrating the blue spectrum, EVI 
achieved a 15% superior sensitivity to fluctuations in 
dense vegetation compared to NDVI, thereby successfully 

mitigating saturation errors in thick canopies. This 
innovation improved accuracy in monitoring thick 
canopies, making EVI an essential instrument for fAPAR 
evaluation in difficult situations. Additionally, Barriga 
et al. (2022) investigated EVI and EVI2, which are 
indicators of soil water depletion in temperate heathland 
habitats. The study used field hyperspectral sensors and 
soil moisture probes to validate EVI's ability to identify 
physiological alterations induced by drought. In times 
when there was no drought, EVI had strong connections 
with gross primary production (GPP), and it was very 
good at detecting changes in structure and function when 
there was not enough water. This research demonstrated 
EVI's effectiveness as a diagnostic instrument for precision 
agriculture and ecosystem monitoring by merging 
hyperspectral data with soil moisture measurements.

The integration of hyperspectral imaging with fAPAR 
assessments has significantly improved the precision of 
crop growth monitoring, resource allocation, and yield 
predictions. Hyperspectral-derived fAPAR indices provide 
higher sensitivity to canopy light absorption dynamics, 
enabling farmers to optimize photosynthetic efficiency and 
fine-tune fertilization and irrigation practices for maximum 
productivity. The combination of NDVI, EVI, and PRI 
with hyperspectral imaging enables a comprehensive 
evaluation of vegetation health, facilitating early stress 
detection, site-specific agronomic interventions, and 
improved carbon assimilation estimates. Additionally, 
hyperspectral-based fAPAR models integrated with 
AI and UAV technologies are transforming large-scale 
agricultural monitoring, providing real-time insights that 
support precision crop management, sustainable land-use 
planning, and climate-adaptive farming strategies. Future 
advancements in sensor miniaturization, calibration 
techniques, and AI-driven spectral analytics will further 
enhance the applicability of fAPAR assessments for 
optimizing agricultural productivity and mitigating 
climate-related risks.

Hyperspectral techniques for evaluating stomatal
conductance

Stomatal conductance is essential for controlling 
gas exchange and transpiration thus influencing 
photosynthetic efficiency and water utilization in plants. 
Precise observation of stomatal activity is crucial for 
comprehending plant reactions to environmental stressors. 
Using thermal infrared (TIR) sensors and advanced 
radiative models with hyperspectral imaging makes it 
possible to accurately and noninvasively track stomatal 
activity in a variety of environmental conditions. This 
novel method connects physiological data with remote 
sensing, offering practical insights for crop management 
and water usage optimization.

Thermal infrared imaging (TIR) for stomatal
conductance measurement

Thermal infrared imaging (TIR) effectively detects 
discrepancies in leaf temperature, which act as markers 
of stomatal conductance (Smigaj et al. 2024). Jones 
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(2004) illustrated the effectiveness of TIR imaging in 
documenting the cooling effects of transpiration, providing 
a reliable method for observing plant–water interactions. 
Additionally, Jones and Leinonen (2003) applied a similar 
methodology to grapevine canopies, linking real-time leaf 
temperature fluctuations with stomatal activity during dry 
conditions. These findings highlight the importance of TIR 
in optimizing irrigation efficiency and advancing water 
resource management through a comprehensive analysis 
of stomatal responses. Furthermore, TIR imaging interacts 
effortlessly with hyperspectral methods to provide 
thorough evaluations of plant physiological processes. 
This collaboration across technologies underscores  
the adaptability of remote sensing instruments in tackling 
intricate agricultural issues.

Soil-canopy observation, photochemistry, and energy
flux model

The SCOPE model integrates hyperspectral reflectance 
data with radiative transfer equations to assess stomatal 
conductance and several physiological parameters 
(Zheng et al. 2024). Yang et al. (2021) employed the 
SCOPE model in almond orchards to quantify diurnal 
and seasonal fluctuations in plant energy fluxes during 
water stress conditions. Their research showed that the 
model accurately tracked stomatal activity by connecting 
data from remote sensing with physiological processes. 
This gave them a good understanding of how plants 
respond to changes in their environment. Moreover,  
the amalgamation of SCOPE with hyperspectral 
photography establishes a scalable framework for real-
time agricultural management. This integrated method 
enhances the accuracy of physiological assessments, 
making it a crucial tool for sustainable agriculture and 
precision farming (Fig. 4).

Recent advancements in SIF quantification utilizing
UAV-mounted sensors

The development of unmanned aerial vehicles (UAVs) 
outfitted with solar-induced fluorescence (SIF) sensors 
has considerably improved precision agriculture and 
environmental monitoring. UAV-mounted SIF sensors 
provide a noninvasive, high-resolution technique for 
assessing plant health by detecting fluorescence emissions 
associated with photosynthetic efficiency. Conventional 
SIF monitoring depended on terrestrial spectrometers or 
satellite imagery, both with constraints in geographical 
and temporal resolution. Recent research has shown the 
efficacy of UAV-based SIF retrieval methods. Wang et al. 
(2021) examined the diurnal fluctuations of SIF in crops 
utilizing UAV-based spectrometers. Their research 
indicated that UAV-mounted sensors achieved a spatial 
resolution of 0.5 m, markedly enhancing detection accuracy 
compared to satellite-based methods. Furthermore, their 
data indicated that SIF retrieval from UAVs enhanced early 
stress detection accuracy by 22% relative to conventional 
approaches. Additionally, Bandopadhyay et al. (2020) 
performed an extensive assessment of top-of-canopy 

SIF research, emphasizing the shift from terrestrial and 
aerial systems to UAV-mounted sensors. Their research 
highlighted that UAV-based SIF retrieval enhanced 
the capacity to differentiate changes in photosynthetic 
efficiency among crop species, rendering it an essential 
instrument for precision agriculture.

The amalgamation of machine learning techniques with 
UAV-based SIF measurement has improved the precision 
and applicability of fluorescence data. Chakhvashvili et al. 
(2024) formulated a deep-learning-augmented SIF model, 
integrating UAV-based SIF acquisition with multispectral 
photography. Their research indicated that convolutional 
neural networks (CNNs) enhanced early-stage drought 
stress detection by 25%, highlighting the potential of 
AI-driven UAV-SIF models in contemporary agriculture. 
Furthermore, Nie et al. (2024) used hyperspectral remote 
sensing with UAV-based SIF retrieval methods to enhance 
precision fertilization in maize cultivation. Their findings 
revealed that UAV-SIF data enhanced nitrogen-use 
efficiency by 30%, underscoring the significance of SIF 
retrieval in optimizing crop management techniques.  
UAV-mounted SIF sensors have proven essential for 
ecosystem-scale monitoring beyond agricultural contexts. 
Honkanen et al. (2024) employed UAV-SIF retrieval 
techniques in boreal forest locations, monitoring seasonal 
fluctuations in photosynthetic activity and ecosystem 
productivity. Their findings demonstrated that UAV-SIF 
accurately detected variations in photosynthetic 
performance, establishing it as a practical instrument for 
agricultural and forestry applications.

Hyperspectral imaging: analyzing chlorophyll
fluorescence

Chlorophyll fluorescence is an important way to measure 
how well photosynthesis is working and how healthy a plant 
is physically. It also tells us a lot about how photosynthesis 
changes in different environments (Maxwell and Johnson 
2000). Hyperspectral imaging (HSI) has developed as  
a revolutionary tool for analyzing chlorophyll fluorescence, 
allowing the acquisition of comprehensive spatial and 
spectral data that exceeds the accuracy and adaptability 
of conventional techniques (Blackburn 2007). Moreover,  
the incorporation of sophisticated imaging technologies 
and computer models has transformed our capacity to 
identify plant stress and enhance agricultural operations 
(Fig. 5).

Imaging techniques for chlorophyll fluorescence 
and plant stress identification

Zarco-Tejada et al. (2009) came up with a new way to 
track chlorophyll fluorescence dynamics. They used 
airborne narrow-band multispectral cameras, such as 
the Micro-Hyperspec VNIR, along with the FluorMOD 
model. This novel technique replicated leaf and canopy 
fluorescence across various environmental conditions, 
with over 85% accuracy in detecting nutrition and water 
deficits. Moreover, sensitivity was enhanced by 20% when 
used in orchard-scale imaging, providing a noninvasive 
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and dependable approach for early stress identification 
and agricultural resource optimization. Bauriegel et al. 

(2011) used the Specim FX-10 hyperspectral camera to 
examine Fusarium culmorum infections in wheat. Their 

Fig. 4. The diagram presents a multi-step scientific process for measuring the fluorescence line height (FLH) index and analyzing 
photosynthetic activity using a fluorescence-based approach. 
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method revealed significant changes in the integrity of 
photosynthetic systems between 400 and 900 nm, and 
it was able to identify infections with 91% accuracy. 
This research underscores the spectral shifts linked to 
fungal infections and shows the possibility of reducing 
crop losses through timely interventions. Furthermore,  
the noninvasive characteristic of the approach highlights  
its significance for real-time agricultural monitoring. 
Yang et al. (2024) showed that hyperspectral data and 
fluorescence metrics can be used to find Verticillium wilt 
(VW) in cotton. Continuous wavelet transforms (CWT) 
combined with the Ocean Insight Flame-S spectrometer 
achieved a detection accuracy of 90.62%, and near-infrared 
wavelet features improved sensitivity by 25% compared to 
conventional fluorescence indices. This method excelled 
in detecting asymptomatic infections, showcasing its 
advantages in early diagnostic applications.

Improved accuracy in assessing photosystem efficiency 
and seasonal fluctuations

By combining the SpecimAisaFEN hyperspectral system 
with radiative transfer models, Hejtmánek et al. (2022) 
made fluorescence measurements more accurate and 
clearer. Their research on Norway spruce demonstrated 
notable seasonal fluctuations in spectral reflectance, 
especially within the 700–1,300 nm region, with changes 
in reflectance reaching as high as 30%. The strong link 

(R² > 0.85) between these changes and chlorophyll 
contents showed how useful hyperspectral imaging is for 
keeping an eye on photosynthetic activities. Additionally, 
Wientjes et al. (2017) analyzed chlorophyll ratios in 
photosystems I and II (PSI and PSII) with the Headwall 
Nano-Hyperspec hyperspectral imager. Their findings 
indicated that PSII fluorescence diminished 15% more 
rapidly than PSI under stress, offering significant insights 
into light-use efficiency and stress response mechanisms. 
This research substantially enhanced our comprehension 
of photosynthetic systems, especially their reactions to 
environmental stressors.

Spatial analysis of quantum efficiency 
and nonphotochemical quenching (NPQ)

Hyperspectral imaging has been very helpful in figuring 
out how PSII efficiency parameters, such as Fv/Fm and 
PSII, change over time and space (Bartold and Kluczek 
2024). Jiang et al. (2020) used the Resonon Pika L 
hyperspectral imager to look at these changes. They found 
that Fv/Fm ratios changed by up to 40% over time when 
the plants were under stress. This study emphasized the 
adaptive responses of plants to environmental changes, 
highlighting the essential role of hyperspectral imaging 
in comprehending temporal reactions. Furthermore, Chou 
et al. (2017) examined nonphotochemical quenching 
(NPQ) using the SPECIM IQ hyperspectral camera, 
concentrating on changes in spectral signatures under 
high-light conditions. Their research indicated that 
stressed plants displayed 20% elevated NPQ levels, 
with notable alterations detected in the red-edge area 
(680–750 nm). Furthermore, these discoveries improved 
our understanding of photoprotective processes and 
enabled more accurate evaluations of plant health under 
unfavorable conditions.

Expedited disease diagnosis and enhanced agricultural 
methods

Hyperspectral imaging continues to evolve as a critical 
tool in early-stage disease detection in agriculture, 
enabling proactive management strategies. Recent 
advancements highlight its growing precision and 
application. Adetutu et al. (2024) presented an extensive 
review of hyperspectral imaging techniques, showing 
their utility in the identification and classification of crop 
diseases. García-Vera et al. (2024) emphasized machine 
learning integration, improving disease classification 
accuracy using hyperspectral images. Xie et al. (2024) 
demonstrated nondestructive hyperspectral methods 
for detecting biological stress in wheat, enabling early 
diagnosis of crown rot disease. Similarly, Bukhamsin et al. 
(2025) highlighted the importance of high-throughput 
hyperspectral imaging for early disease detection and 
intervention strategies. Lin et al. (2024) successfully 
applied hyperspectral remote sensing to identify early 
signs of rice sheath blight, further validating its agricultural 
potential. Together, these studies affirm hyperspectral 
imaging as a transformative technology in plant health 

Fig. 5. The flowchart outlines a structured process for analyzing 
hyperspectral image data, starting with image acquisition, 
preprocessing, data extraction, modelling, and validation.  
It includes normalization, calibration, filters, segmentation,  
and computing indices. The final output is a classified image with 
an interpreted analysis of the hyperspectral data.
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monitoring, optimizing crop productivity, and advancing 
resource-efficient agricultural practices.

The integration of hyperspectral imaging with 
chlorophyll fluorescence analysis has revolutionized 
plant health diagnostics, stress monitoring, and precision 
agriculture decision-making. By detecting fluorescence-
based stress responses at an early stage, farmers and 
researchers can optimize irrigation, nutrient management, 
and disease control interventions before symptoms become 
visible. The combination of machine learning algorithms 
with hyperspectral fluorescence imaging enhances disease 
classification accuracy, facilitating early-stage pathogen 
detection and targeted treatment applications. Furthermore, 
HSI's ability to track photosystem efficiency fluctuations 
and nonphotochemical quenching (NPQ) provides 
valuable insights into plant photoprotection mechanisms, 
allowing for better adaptation to environmental stressors 
such as drought and heatwaves. As hyperspectral imaging 
technology continues to advance through UAV integration, 
AI-driven spectral modeling, and high-throughput analysis, 
its role in enhancing agricultural sustainability, resource 
optimization, and climate-resilient crop management 
will become even more critical. Future developments 
in sensor calibration, real-time spectral processing, and  
high-resolution canopy imaging will further solidify  
HSI as an indispensable tool for sustainable precision 
agriculture and improved food security.

Assessment of PSII efficiency

Assessing the efficacy of PSII is essential in photosynthesis 
research since it elucidates the mechanisms by which 
plants transform light into chemical energy and adapt 
to environmental challenges, including drought and 
elevated temperatures. Pulse-amplitude modulation 
(PAM) fluorometers, such as the Walz PAM-2000, measure 
important parameters such as Fv/Fm. Maxwell and Johnson 
(2000) indicated that these parameters are essential for 
understanding how well PSII works. These measurements 
provide a sensitive and noninvasive method for monitoring 
photosynthetic performance, with reductions of 20–30% 
noted under stress circumstances. Furthermore, this 
seminal study emphasized the sensitivity and utility 
of PAM fluorometry, which surpassed traditional gas 
exchange methods by offering dynamic, real-time 
evaluations of plant responses to environmental stimuli. 
Moreover, improvements in hyperspectral fluorescence 
imaging have greatly advanced this discipline by delivering 
extensive spectral and spatial data that exceed traditional 
techniques. For instance, Zarco-Tejada et al. (2012) 
employed UAV-mounted hyperspectral imaging systems, 
integrating narrow-band indices with thermal data to 
assess water stress. The new way of using fluorescence, 
temperature, and spectrum reflectance together made it 
30% more accurate to find changes in the body compared 
to other methods. Moreover, this approach significantly 
enhanced spatial resolution, enabling real-time monitoring 
of stress responses at the canopy level. Likewise, 
hyperspectral sensors have advanced the computation of 
the Photochemical Reflectance Index (PRI), an essential 

statistic for evaluating light-use efficiency. Garbulsky et al. 
(2011) demonstrated the application of narrow-band 
spectroradiometers, which improved the accuracy of 
light-use efficiency calculations by 10–15%. Additionally, 
Gitelson et al. (2003) emphasize the importance of the 
Red-edge Inflection Point (REIP) for detecting minor 
variations in chlorophyll concentrations and canopy 
architecture. Using field spectrometers like the ASD 
FieldSpec, their approach highlighted the capability of 
hyperspectral imaging to detect nuanced physiological 
changes. Additionally, Sims and Gamon (2002) expanded 
the spectral range to include near-infrared (NIR) regions. 
This led to a 20% improvement in estimates of chlorophyll 
concentration, which made hyperspectral indices more 
reliable for canopy-level assessments. Porcar-Castell  
et al. (2014) integrated ground-truthing techniques, such 
as PAM fluorometry, with hyperspectral imaging, which 
improved the reliability of PSII efficiency measurements 
by approximately 25%. This integration underscores the 
crucial necessity of calibrating hyperspectral imaging with 
ground-based instruments to ensure accurate and scalable 
assessments of plant health and environmental responses. 
Moreover, this combination bridged the gap between 
leaf-level measurements and canopy-level observations, 
making it a pivotal advancement in ecological and 
agricultural research (Fig. 6).

Hyperspectral imaging for monitoring electron
transport rate, photoinhibition, and carbon flux

Hyperspectral imaging (HSI) is now a useful tool for 
measuring the electron transport rate (ETR) in plants, 
especially for keeping track of how well plants use light 
to make food in a variety of environmental conditions. 
HSI facilitates accurate assessments of energy transfer  
in the photosynthetic system by acquiring comprehensive 
spectrum data, hence, it aids in the identification of stress-
related changes in ETR. The electron transport rate (ETR)  
is a crucial factor in photosynthetic activity, directly 
associated with the transformation of light energy into 
metabolic energy. Yang et al. (2022) employed hyper
spectral machine learning models to assess photosynthetic 
performance in grape leaves. Their research showed 
a strong link between hyperspectral reflectance in  
the 400–1,000 nm range and ETR (R² = 0.87), which enables 
scientists to find early signs of photosynthetic degradation 
caused by stress (Yang et al. 2022). Additionally, Camino 
González (2019) used hyperspectral images and solar-
induced fluorescence (SIF) retrievals to assess differences 
in ETR for both rainfed and irrigated crops. Their study 
showed that ETR predictions were 18% more accurate 
when hyperspectral reflectance data was combined with 
regular chlorophyll fluorescence measurements (Camino 
González 2019). These findings validate the efficacy of 
HSI in monitoring the kinetics of photosynthetic energy 
transfer.

Photoinhibition transpires when excessive light 
exposure impairs the photosynthetic apparatus, diminishing 
photosynthetic efficiency. Murchie and Lawson (2013) 
looked at how photoinhibition works in plants and found 
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that combining hyperspectral imaging with chlorophyll 
fluorescence analysis made it much easier to find drops in 
ETR caused by stress (Murchie and Lawson 2013). Their 
research emphasized the amalgamation of hyperspectral 
and fluorescence methodologies when evaluating  
the impacts of photoinhibition on photosynthetic efficacy. 
HSI is crucial in monitoring carbon flow, a vital component 
of plant production. Jiang et al. (2020) employed diurnal 
SIF measurements to assess carbon fixation and net primary 
production (NPP) across various canopy topologies.  
The results showed that hyperspectral-derived SIF values 
were closely related to net ecosystem exchange (NEE), 
which means that they can be used to measure plant carbon 
fluxes without damaging the plants (Jiang et al. 2020). 
Toyoshima et al. (2020) used hyperspectral imaging to 
look at how changes in spectral light affect the flow of 
carbon and the parts of photosynthetic electron transport 
in cyanobacteria. Their investigation demonstrated  
the selective use of electron transport channels under 
varying spectral circumstances, underscoring the plasticity 
of photosynthetic organisms in optimizing carbon 
assimilation (Toyoshima et al. 2020). These results show 

how important hyperspectral imaging is for helping us 
understand how photosynthetic processes work, especially 
when it comes to checking ETR, photoinhibition, and 
carbon flow. HSI enhances plant monitoring in precision 
agriculture and ecological research by facilitating high-
throughput, noninvasive measurement.

Analysis of the Calvin cycle and carbon incorporation

Comprehending the Calvin cycle and carbon assimilation 
rates is essential for enhancing agricultural productivity and 
advancing photosynthetic research. Zhang et al. (2014) 
demonstrated the substantial influence of hyperspectral 
imaging on quantifying Calvin cycle indicators and 
gross primary production (GPP). Utilizing data from the 
Orbiting Carbon Observatory-2 (OCO-2), they attained 
a 15% enhancement in gross primary production (GPP) 
modeling, with values fluctuating between 10–35 g(C) 
m–2 day–1 across diverse ecosystems. This highlights  
the significance of satellite-based hyperspectral techniques 
worldwide. Moreover, by analyzing reflectance in  
the near-infrared (NIR) and shortwave infrared (SWIR) 

Fig. 6. Workflow for Calvin Cycle assessment using hyperspectral imaging and analysis.
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spectra, which closely correlate with the quantities of 
soluble sugars and starch in plant tissues, hyperspectral 
data facilitates the estimation of leaf carbon content. 
Gitelson et al. (2003) and Gamon et al. (2016) both 
reported better ways to find out how much carbon is in 
leaves and how fast they absorb nutrients. They found that 
the amounts of soluble sugar and starch ranged from 5 to 
20 mg g–1(FM). These findings underscore the efficacy of 
hyperspectral imaging in correlating spectral reflectance 
data with metabolic activities.

High-throughput hyperspectral detection has enabled 
us to measure precisely the highest rate of carboxylation 
(Vcmax) and the highest rate of electron transfer (Jmax). 
Zhi et al. (2022) used hyperspectral imaging to examine 
dark reactions in sorghum crops, resulting in a 25% 
improvement in accuracy. Reflectance values throughout 
the 700–780 nm spectrum were crucial for detecting stress 
reactions. Furthermore, Hollberg and Schellberg (2017) 
illustrated the efficacy of UAV-mounted hyperspectral 
sensors in precision agriculture. Their research on 
grasslands demonstrated a 15% improvement in precision 
for identifying fertilization intensity levels, with nutrient 
concentrations between 25 and 60 mg g–1(DM) associated 
with fluctuations in the NIR spectrum (760–850 nm). 
An extensive study by Serbin et al. (2012) highlighted 
the significance of hyperspectral imaging in evaluating 
carbohydrate accumulation and enzyme activity in several 
plant species. Their findings indicated carbohydrate 
amounts ranging from 10 to 30 mg g–1(FM), enhancing 
biochemical activity detection by 20%. Also, Yu et al. 
(2022) used proximal hyperspectral sensors to predict Vcmax 
with a level of accuracy of ±5%. They found that Vcmax 
was between 50 and 100 µmol m–2 s–1. This mechanistic 
method highlights the promise of hyperspectral techniques 
for noninvasive studies of photosynthetic efficiency.

Advancements in monitoring the Calvin cycle

The Calvin cycle encompasses metabolic activities 
essential for carbon fixation during photosynthesis.  
It significantly influences agricultural output and 
resilience across many climates (Taiz and Zeiger 2010). 
This fundamental comprehension of the Calvin cycle 
has propelled many breakthroughs in the monitoring and 
evaluation of photosynthetic activities, especially using 
cutting-edge technologies such as hyperspectral imaging. 
Fu et al. (2020) showed that hyperspectral sensors can 
identify spectral markers linked to essential carbon-
fixation enzymes, including Rubisco. These sensors allow 
scientists to precisely quantify Calvin cycle intermediates, 
providing an unparalleled degree of precision in 
photosynthetic evaluations. Moreover, their prediction 
models assessed essential photosynthetic characteristics, 
such as the maximum carboxylation rate (Vcmax) and  
the maximum electron transport rate (Jmax), achieving  
an outstanding accuracy of ±10%. This work emphasized  
the amalgamation of spectral data with physiological  
models by synthesizing data from diverse species, 
hence enhancing noninvasive methods for evaluating 
photosynthetic traits. The amalgamation of spectral 

and physiological knowledge signifies a substantial 
advancement in enhancing agricultural output and 
comprehending crop resistance throughout varied 
environmental situations. Furthermore, Zhi et al. 
(2022) devised high-throughput techniques employing 
hyperspectral photography to monitor biochemical 
activities in sorghum canopies. Their novel methodology 
utilized spectral reflectance data in the near-infrared 
(NIR) and shortwave infrared (SWIR) areas, achieving  
a 25% increase in accuracy for forecasting photosynthetic 
rates. This development is especially important for large-
scale phenotyping since it allows accurate assessment of 
photosynthetic efficiency across vast agricultural areas. 
Furthermore, their emphasis on sorghum, an essential 
commodity for food security in dry areas, highlights 
the practical significance of their efforts to improve 
crop resilience. Moreover, hyperspectral sensors have 
demonstrated efficacy in detecting leaf carbon content 
by recording reflectance in the NIR and SWIR bands, 
establishing robust relationships with biochemical 
composition (Gitelson et al. 2002, Poorter et al. 2009). 
Gitelson et al. (2002) investigated the correlation between 
chlorophyll concentration and spectral reflectance in plant 
leaves, creating noninvasive methods for chlorophyll 
estimation. Their research, employing spectroradiometers, 
attained significant prediction accuracy with reflectance 
assessed at essential wavelengths, specifically 700–
750 nm. These algorithms have become indispensable 
instruments for academics and practitioners pursuing 
reliable, noninvasive techniques for assessing plant health. 
Poorter et al. (2009) performed an extensive meta-analysis 
investigating the correlation between leaf mass per area 
(LMA) and photosynthetic characteristics across a diverse 
array of plant species, including both C3 and C4 plants. 
Their findings indicated that LMA is closely correlated 
with photosynthetic rates [measured in µmol(CO₂) m–2 s–1], 
with variations affected by environmental and genetic 
variables. This meta-analysis offered essential insights into 
the influence of leaf shape on photosynthetic efficiency, 
informing future physiological and ecological research. 
Additionally, Serbin et al. (2012) examined the correlation 
between leaf optical characteristics and photosynthetic 
metabolism across different temperature settings. They 
utilized field spectroradiometers to assess leaf reflectance 
and transmittance within the 400–2,500 nm spectrum. 
Their research showed a 20% increase in forecasting 
photosynthetic rates [in µmol(CO₂) m–2 s–1], correlating 
optical characteristics with metabolic reactions under 
thermal stress. These findings enhanced comprehension of 
temperature sensitivity in photosynthesis and underscored 
the potential of optical features as indicators of metabolic 
activities in fluctuating climates. Rascher et al. (2015) 
utilized the HyPlant imaging spectrometer to map sun-
induced fluorescence (SIF) with an exceptional resolution 
of 10 cm. This high-resolution mapping disclosed regional 
discrepancies in Calvin cycle activity, with fluorescence 
signals quantified in mW m–2 sr–1 nm–1. Their research 
linked fluorescence signals to the efficiency of the Calvin 
cycle, bridging the divide between leaf-level activities and 
landscape-level observations. This innovation highlights 



214

D. PANDA et al.

the significance of hyperspectral imaging in converting 
theoretical knowledge into practical applications, enabling 
accurate evaluations of photosynthetic output under 
various environmental circumstances.

These findings collectively underscore the revolutionary 
potential of hyperspectral imaging in enhancing our 
comprehension of the Calvin cycle. Innovations in 
identifying spectrum markers of essential enzymes and 
correlating optical features with photosynthetic metabolism 
provide improved crop monitoring and sustainable 
agricultural operations. The integration of high-resolution 
imaging methods with predictive physiological models 
highlights the significance of hyperspectral technology in 
tackling global issues such as food security and climate 
adaptation.

These findings collectively underscore the trans
formative role of hyperspectral imaging in advancing our 
understanding of the Calvin cycle and its implications for 
sustainable agriculture. By linking spectral markers of key 
carbon-fixation enzymes with photosynthetic efficiency 
models, HSI enables noninvasive, high-throughput 
assessments of crop vitality, carbon assimilation, 
and metabolic activity. The integration of SIF-based 
fluorescence mapping with real-time spectral monitoring 
enhances the precision of drought response strategies, yield 
forecasting, and stress diagnostics, ensuring that farmers 
can implement adaptive management techniques based 
on real-time photosynthetic efficiency data. Furthermore,  
the application of UAV-mounted hyperspectral sensors and 
AI-driven spectral analytics allows large-scale monitoring 
of Calvin cycle dynamics, facilitating early detection of 
environmental stressors that impact crop productivity. 
Future advancements in sensor resolution, spectral 
calibration, and physiological modeling will continue to 
refine these monitoring techniques, strengthening global 
food security efforts and enabling climate-adaptive 
agricultural practices.

Hyperspectral vegetation indices and photosynthetic 
mechanisms

By collecting reflectance data across many spectral bands, 
hyperspectral vegetation indices (VIs) are important tools 
for figuring out photosynthesis, plant health, and how 
plants respond to stress (Yu et al. 2022). These indicators 
utilize the extensive data spectrum of hyperspectral 
sensors to provide accurate assessments of photosynthetic 
efficiency and overall plant health. The most significant 
vegetation indices include the Normalized Difference 
Vegetation Index (NDVI), the Modified Chlorophyll 
Absorption in Reflectance Index (MCARI), and  
the Photochemical Reflectance Index (PRI). Each index 
offers distinct insights into plant physiological states 
(Carter and Knapp 2001). The fact that NDVI is sensitive 
to chlorophyll contents and canopy structure shows how 
important it is for measuring biomass and ecosystem health 
(Gitelson et al. 2003). Furthermore, Yu et al. (2022) built 
a mechanistic photosynthetic model to assess the maximal 
carboxylation rate (Vcmax) using hyperspectral remote 
sensing data. This innovation yielded a ±5% increase 

in prediction accuracy, demonstrating the significant 
relationship between physiological factors and spectral 
features. Carter and Knapp (2001) found a link between 
the way leaves look, the amount of pigments, and how 
sensitive they are to light in a wide range of ecosystems. 
For pigment content, this link was over 90% accurate. 
These advancements have significantly improved 
ecosystem-scale monitoring capabilities, emphasizing 
the use of hyperspectral indices in ecological research. 
MCARI improves these measurements by reducing the 
impact of nonphotosynthetic parts, lowering background 
noise by 15–20%, and making it easier to find chlorophyll 
in complex canopy structures (Daughtry et al. 2000). This 
enhancement is especially beneficial in dense vegetation 
environments, where conventional techniques frequently 
prove inadequate. The PRI index measures how well 
plants use light concerning their PSII performance and is 
a noninvasive way to check their photosynthetic potential 
(Gamon et al. 1997). Yang et al. (2022) talk about how 
new developments in PRI applications have made stress 
detection 20% more accurate, which helps us understand 
photoprotective systems better. PRI's connection with 
changes in carotenoid pigments also makes it better at 
predicting how much light is used, which makes it even 
more useful for precise monitoring (Gamon et al. 2016).

The Red-edge Chlorophyll Index (CI_red-edge), which 
focuses on nitrogen and chlorophyll concentrations, offers 
supplementary information. This hyperspectral index 
has demonstrated its ability to yield essential insights 
into plant nutrition and photosynthetic capacity (Barnes 
et al. 2000). Recent developments in UAV-mounted 
hyperspectral sensors have augmented their value by 
improving spatial resolution by up to 25% and hence 
promoting precision agricultural techniques (Polivova and 
Brook 2022). Researchers have established the efficacy 
of the Water Index (WI) in detecting drought stress and 
associated physiological alterations. By connecting the WI 
with stomatal conductance and photosynthetic efficiency 
(Peñuelas et al. 1997), this method has been shown to keep 
photosynthetic rates high in a range of water conditions. 
Seelig et al. (2008) demonstrated a 20% enhancement in 
stress detection accuracy through the integration of WI 
and stomatal conductance measures, hence, they improved 
drought monitoring methodologies. Furthermore, 
hyperspectral solar-induced fluorescence (SIF) detection 
has become a transformative method for monitoring 
photochemical processes at both canopy and ecosystem 
levels. This method substantially improves the observation 
of photosynthetic activities by recording real-time 
fluorescence signals. Frankenberg et al. (2014) found that 
SIF data improved the accuracy of finding photosynthetic 
features by 15–20%. This gave scientists important new 
information on how photosynthetic processes work under 
different light conditions. Moreover, Hank et al. (2019) 
emphasize the significance of SIF in promoting sustainable 
agriculture and ecosystem management. Integrating SIFs 
with hyperspectral VIs enables researchers to acquire 
a holistic perspective on plant health and productivity, 
thereby enhancing agricultural and environmental 
monitoring methodologies.
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Constraints of hyperspectral imaging (HSI) 
in photosynthesis surveillance and the growing
influence of big data and artificial intelligence

Hyperspectral imaging (HSI) has transformed the 
monitoring of plant physiology by enabling noninvasive 
assessments of photosynthetic characteristics, nonetheless, 
its extensive use encounters some significant constraints. 
A significant problem of hyperspectral imaging in 
photosynthesis monitoring is the substantial data volume 
produced, necessitating sophisticated computer methods 
for effective processing. The amalgamation of artificial 
intelligence (AI) and machine learning (ML) has surfaced 
as a remedy for managing the intricacies of spectrum 
datasets, nonetheless, obstacles, including data storage, 
processing velocity, and model generalizability, persist 
as substantial issues (Islam et al. 2024). The substantial 
data volume generated by HSI requires sophisticated 
spectral data compression methods and refined feature 
selection algorithms for effective interpretation (Ali et al. 
2024). Moreover, model calibration presents a significant 
challenge when using HSI across several plant species, 
as spectral fingerprints may fluctuate based on climatic 
circumstances, plant phenology, and stress levels. Sharma 
et al. (2024) revealed that AI-enhanced HSI models 
enhanced the categorization of stress responses in grapevine 
phenotyping, nevertheless, attaining model transferability 
across species continues to be a significant problem.  
A significant disadvantage is HSI's reliance on external 
environmental elements, especially in field circumstances 
where fluctuating light intensity, air interference, and 
sensor noise can influence spectral measurements 
(Zhang et al. 2025). Despite advancements in remote 
sensing capabilities using airborne and UAV-mounted 
hyperspectral sensors, the precision of photosynthetic 
efficiency assessments by solar-induced fluorescence 
(SIF) remains influenced by diurnal and seasonal 
fluctuations in sunshine availability (Mangalraj and Cho 
2022). The amalgamation of hyperspectral imaging (HSI) 
with biochemical fluorescence quenching (BFQ) models 
has enhanced estimations of electron transport rate (ETR), 
yet discrepancies in data remain due to differences in leaf 
chlorophyll fluorescence at the canopy level (Zarco-Tejada 
et al. 2016). AI-driven hyperspectral data processing has 
presented issues associated with the opaque nature of 
deep learning models and the complexities in identifying 
spectral patterns (Varghese et al. 2023). Convolutional 
neural networks (CNNs) and graph-based AI models have 
effectively identified stress-related spectrum changes, 
however, their practical implementation is frequently 
limited by the requirement for extensive annotated 
datasets for training and validation (Abdullah et al. 
2023). Recent research has emphasized the heightened 
computing demands of deep learning-based hyperspectral 
models, especially in the context of real-time canopy-
level photosynthetic observations (Haworth et al. 2023). 
Moreover, the expense and availability of high-resolution 
hyperspectral sensors continue to pose substantial 
obstacles to widespread agricultural use. Although UAV-
mounted and satellite-based platforms such as ESA FLEX 

have enhanced the accessibility of hyperspectral imaging 
(HSI), the prohibitive expense of spectral imaging 
devices and the necessity for specialized skills hinder 
general deployment (Guanter et al. 2014). Anticipated 
developments in AI-enhanced spectrum unmixing and 
cloud-based big data processing are projected to enhance 
the operational efficiency of hyperspectral imaging, 
rendering it a more scalable instrument for monitoring 
plant photosynthesis (Chen et al. 2024). Notwithstanding 
these constraints, the integration of HSI with AI possesses 
the capacity to surmount existing obstacles by facilitating 
real-time, automated analysis of hyperspectral data. 
Current investigations into adaptive AI algorithms and 
hyperspectral fusion methods are anticipated to enhance 
the precision of photosynthesis monitoring inside intricate 
plant canopies. Nonetheless, more efforts are required to 
guarantee model robustness, computational efficiency, and 
wider application across various crop species and climatic 
circumstances.

Assessment of nutrient concentration

Evaluating nutrient contents, particularly nitrogen, is key 
for understanding photosynthetic efficiency and overall 
plant health, as nitrogen is an integral component of 
chlorophyll and photosynthetic proteins (Poorter et al. 
2009). Furthermore, studies have demonstrated a strong 
correlation between the variation in leaf mass per area 
(LMA) and photosynthetic rates. Poorter et al. (2009) 
performed an extensive meta-analysis to investigate 
the causes and effects of LMA variation, demonstrating 
that these discrepancies significantly influence resource 
use efficiency in plants. Their research emphasized the 
impact of structural leaf characteristics on photosynthetic 
efficiency, providing significant insights for both 
ecological and agricultural purposes. Hyperspectral 
vegetation indices, especially those that use near-infrared 
reflectance, are very good at measuring nitrogen contents, 
which have a direct effect on crop growth and yield 
(Clevers and Kooistra 2012). Using hyperspectral remote 
sensing data, Clevers and Kooistra (2012) precisely 
measured nitrogen and chlorophyll contents in mixed 
cereal crops, resulting in a 20% increase in detection 
accuracy. This development highlights the efficacy of 
hyperspectral data in noninvasive nutrient assessment and 
supports precision agriculture. Also, research has shown 
that hyperspectral indices in the red-edge spectrum, such 
as the Red-edge Chlorophyll Index (CI_red-edge), have 
a strong relationship with nitrogen contents. This shows 
how important it is to do accurate and noninvasive nutrient 
assessments for fertilization strategies that work (Gitelson 
et al. 2005, Mutanga and Skidmore 2007). Mutanga and 
Skidmore (2007) highlighted the efficacy of red-edge 
reflectance in quantifying phosphorus concentrations in 
grass canopies, resulting in a 25% increase in accuracy. 
Their findings are crucial for assessing nutrient constraints 
in savanna ecosystems and facilitating sustainable resource 
management. Gitelson et al. (2005) formulated algorithms 
for the remote estimation of canopy chlorophyll content 
in crops like maize and soybean, with an accuracy of 
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10–15%. These scalable techniques substantially improve 
chlorophyll and nitrogen monitoring processes, hence, 
they enhance crop management tactics. Zarco-Tejada et al. 
(2001) further established that CI_red-edge enhances 
nitrogen mapping precision by 15%, especially in diverse 
canopies of olive and citrus trees. Their use of novel 
hyperspectral indicators yielded accurate insights into 
nutrient distribution, enhancing orchard output. Sims 
and Gamon (2002) enhanced this by connecting pigment 
quantity with spectral reflectance across several species 
and developmental phases, hence, they increased pigment 
estimation accuracy by 20%. Wang et al. (2018) extended 
these applications to environmental monitoring by utilizing 
hyperspectral data to identify heavy metal pollution in soil 
and plants. Their research showed a 15% enhancement in 
recognizing distinct spectral signatures linked to pollution, 
highlighting the adaptability of hyperspectral imaging for 
agricultural and environmental evaluations.

Hyperspectral imaging applications have extended 
beyond nitrogen to include other essential nutrients 
such as phosphorus and potassium, which are critical 
for plant growth and productivity. Similarly, Lin et al. 
(2024) developed accurate models using hyperspectral 
data to monitor leaf N, P, and K content in maize, 
achieving improved prediction precision for nutrient 
status assessment. Silva et al. (2023) highlighted the 
importance of UAV and satellite-based hyperspectral 
imaging for monitoring spatial variations in crop nitrogen 
contents, providing essential data for precision nutrient 
management. Zhang et al. (2023) employed UAV-mounted 
hyperspectral cameras to analyze biochemical information 
related to crop nutrients, achieving up to 30% higher 
accuracy compared to traditional methods. Sharma et al. 
(2024) optimized hyperspectral imaging workflows for 
potato crop nutrient prediction, demonstrating its ability to 
accurately map nitrogen and potassium concentrations for 
biomass growth estimation.

These advancements underscore hyperspectral 
imaging's transformative impact on precision agriculture 
by facilitating high-resolution, real-time monitoring of 
crop nutrient dynamics. This technology enables precise 
nutrient management, reduces input costs, and minimizes 
environmental impacts, fostering sustainable agricultural 
practices.

Evaluation of leaf area index (LAI)

The leaf area index (LAI) is a crucial metric in 
photosynthesis research, it measures the proportion of 
leaf area to the ground surface. It serves as an essential 
indicator of canopy density, light absorption capacity, and 
photosynthetic potential (Daughtry et al. 2000). Daughtry 
et al. (2000) established a fundamental approach for 
measuring LAI from leaf and canopy reflectance data, 
specifically in crops like maize (Zea mays). By linking 
chlorophyll contents to reflectance indices, they were 
able to get 20% more accurate estimates, with chlorophyll 
contents ranging from 20 to 80 µg cm–2. This research 
established the foundation for further advancements in 
noninvasive agricultural monitoring techniques. A high 

LAI often correlates with improved light absorption and 
gas exchange, leading to greater biomass accumulation 
and agricultural productivity. Bréda (2003) emphasized 
the significant relationships between LAI and canopy 
light absorption while also addressing the problems 
associated with LAI measurements. Their thorough 
analysis of terrestrial methodologies highlighted the 
necessity for improved techniques, especially for 
ecological evaluations. Also, hyperspectral remote sensing 
technologies have made LAI calculations faster and 
more accurate by collecting spectral signatures that are 
unique to different plant species and canopy structures 
(Ali and Imran 2020). They found that using reflectance 
in the near-infrared (NIR) and red-edge spectra, along 
with hyperspectral methods, improved nitrogen detection 
and LAI by 20–30%. This breakthrough establishes 
hyperspectral imaging as a revolutionary instrument in 
precision agriculture. Radiative transfer methods, like 
PROSAIL, which combines the PROSPECT model for 
leaf optical properties with the SAIL model for canopy 
reflectance, are useful for finding the LAI. Jacquemoud  
et al. (2009) proved that PROSAIL could accurately 
replicate LAI and canopy structure, with a prediction 
accuracy of ±5% across wavelengths from 400 to 2,500 nm. 
Likewise, Darvishzadeh et al. (2011) used PROSAIL on 
aerial hyperspectral pictures, effectively measuring LAI 
in grasslands with an accuracy improvement of ±10%. 
This highlights the strong capabilities of PROSAIL in 
evaluating various ecosystems.

When crops are at key stages of growth,  
the Normalized Difference Vegetation Index (NDVI) 
and the Green Normalized Difference Vegetation Index 
(GNDVI) are two hyperspectral vegetation indices 
that are closely linked to the LAI. Zarco-Tejada et al. 
(2013) found that relating chlorophyll fluorescence to 
photosynthetic rates in crops like olive trees and vineyards 
made LAI predictions 20% more accurate during these 
phases. These metrics are essential for tracking biomass 
buildup and canopy dynamics. Additionally, UAV-derived 
hyperspectral imaging offers enhanced spatial resolution 
and precision for evaluating LAI. Xie et al. (2019) said 
that hyperspectral sensors mounted on unmanned aerial 
vehicles (UAVs) improved spatial resolution by 20–30% 
and were able to measure LAI gradients in both forest 
and agricultural areas. This finding underscores the 
transformative potential of hyperspectral imaging for 
comprehensive ecosystem monitoring and precision 
agricultural applications (Table 3).

Rate of carbon assimilation

Carbon absorption rates, which measure a plant's ability 
to convert atmospheric CO2 into organic compounds, 
are crucial for understanding photosynthesis, biomass 
production, and crop yield (Law et al. 2002). They 
got important information about carbon flow patterns 
by connecting gross primary production (GPP) with 
canopy reflectance data. This shows how important 
spectral indices are for measuring carbon assimilation.  
The Photochemical Reflectance Index (PRI), established 
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by Gamon et al. (1997), serves as a noninvasive instrument 
for assessing photosynthetic light-use efficiency. They 
established a robust link between PRI and PSII efficiency, 
which enhanced GPP predictions by 15–20%. Advanced 
hyperspectral indices have enhanced these estimations 
by using spectral reflectance in the red and near-infrared 
(NIR) bands. Zhi et al. (2022) said that high-throughput 
hyperspectral imaging made GPP accuracy 25% better 
for crops like sorghum (Sorghum bicolor) and maize  
(Zea mays). Furthermore, Fu et al. (2020) included 
physiological and spectral data in predictive models, 
achieving ±10% accuracy in estimating photosynthetic 
efficiency, including factors such as Vcmax and Jmax. Their 
research underscores the possibility of integrating spectral 
and physiological attributes for accurate photosynthesis 
monitoring.

Moreover, UAV-mounted hyperspectral sensors have 
enhanced ecosystem-level carbon monitoring by delivering 
superior spatial resolution and precision. Xie et al. (2019) 
demonstrated that UAV hyperspectral methods enhanced 
spatial resolution for carbon cycle evaluations by 20–30%. 
These advancements highlight the essential function of 
hyperspectral imaging in ecological surveillance and 
precision agriculture. 
Configuration and organization of foliar cells

The cellular architecture of a leaf is fundamental in 
photosynthetic efficiency, influencing key processes 
such as light absorption, gas exchange, and internal 

CO2 diffusion. Xiong et al. (2024) emphasized that 
improvements in mesophyll structure, chloroplast 
arrangements, and CO2 conductance could enhance light-
use efficiency and assimilation rates in rice, revealing 
pathways for improving photosynthetic performance. 
Oivukkamäki et al. (2025) applied multiscale optical 
remote sensing, demonstrating how changes in mesophyll 
structure influence CO2 diffusion and reflectance-based 
models. Falcioni et al. (2024) compared photosynthetic 
performance across species and highlighted the role of 
mesophyll conductance in optimizing CO2 diffusion, 
linking cellular organization to enhanced photosynthetic 
rates. Similarly, Egesa et al. (2024) showed how differences 
in mesophyll cell size and intercellular spaces affect CO2 
diffusion efficiency, impacting overall photosynthesis in 
Phaseolus vulgaris. Neuwirthová et al. (2024) explored 
the relationship between leaf anatomical traits and  
VIS-NIR reflectance spectra, emphasizing that asymmetry 
in mesophyll structure directly affects the optical modeling 
of CO2 diffusion pathways. These findings highlight 
the transformative role of hyperspectral imaging and 
reflectance models in understanding the link between 
cellular architecture and photosynthesis.

By integrating structural analysis, hyperspectral 
imaging, and models like PROSPECT, researchers 
gain comprehensive insights into how cellular features 
regulate photosynthesis. This knowledge has significant 
implications for optimizing crop productivity and 
advancing ecological research.

Table 3. Comparative analysis of hyperspectral imaging and traditional techniques in plant physiology.

Parameter Hyperspectral imaging (HSI) Traditional techniques

Sensitivity High spectral sensitivity enables the detection of subtle
physiological variations, including early-stage stress
responses and minor fluctuations in photosynthetic
efficiency

Lower sensitivity may result in undetected early or
minimal physiological changes, limiting the ability
to detect stress responses and small variations in
photosynthesis

Spectral resolution Acquisition of high-resolution spectral data across
hundreds of narrow bands (typically in the range 
of 400–2,500 nm), facilitating precise identification 
and quantification of photosynthetic pigments and 
other biomolecules

Limited to a few broad spectral bands, typically focusing
on key wavelengths (e.g., red and near-infrared),
restricting the capacity for detailed spectral analysis

Invasiveness Enables noninvasive, real-time monitoring of plant
physiological processes without the need for physical
sampling, preserving plant integrity and allowing for
continuous observation

Often necessitates destructive sampling (e.g., tissue
extraction for chlorophyll content measurement),
potentially altering plant physiology and limiting 
the frequency of data collection

Spatial and temporal
resolution

Facilitates high-resolution spatial mapping of
photosynthetic activity over extensive areas with 
the capability for frequent temporal assessments,
enhancing the monitoring of dynamic physiological
processes

Typically limited to site-specific, point-based
measurements with reduced spatial coverage and lower
temporal resolution, leading to potential gaps in data
over time and space

Data processing and
multivariate analysis

Supports advanced multivariate statistical techniques
(e.g., PCA, PLSR) for the extraction of complex 
patterns from high-dimensional hyperspectral data,
enabling comprehensive analysis of plant physiological
states

Often constrained by the need to simplify data, reducing
the ability to extract complex interactions and patterns
from the physiological dataset

Quantification 
of photosynthetic
pigments

Provides precise quantification and mapping of
photosynthetic pigments (e.g., chlorophyll, carotenoids)
and associated biomolecules, allowing for detailed
biochemical profiling and monitoring of photosynthetic
efficiency

Limited in scope, often focusing on chlorophyll
fluorescence or other specific features without 
the capability to conduct a holistic assessment 
of the photosynthetic apparatus
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High-spectral and spatial resolution techniques 
for crop phenotyping and precision agriculture

Advancements in high-spectral and spatial resolution 
techniques have profoundly impacted crop phenotyping 
and precision agriculture, offering unprecedented 
accuracy in monitoring crop health, stress responses, and 
productivity. This section reviews the latest developments 
in these approaches, highlighting their significance and 
applications in enhancing agricultural productivity.

Progress in high-resolution imaging for agricultural
surveillance

High-resolution remote sensing has transformed 
agricultural monitoring by offering intricate spatial and 
spectral information on crop health, phenotyping, and 
stress identification. Recent improvements in satellite 
imagery, synthetic aperture radar (SAR), fluorescence-
based sensing, and data fusion approaches have improved 
the accuracy of agricultural evaluations (Maimaitijiang 
et al. 2020). Nonetheless, issues concerning calibration, 
data processing, and sensor compatibility persistently 
hinder the complete implementation of these technologies 
(Arroyo-Mora et al. 2019).

High-resolution satellite photography has markedly 
enhanced the capacity to identify agricultural characteristics 
and evaluate biomass. Platforms like WorldView-3 
and Pleiades-1A provide sub-meter spatial resolution, 
allowing detailed observation of leaf area index, canopy 
architecture, and stress responses (Cheekhooree 2024). 
The amalgamation of machine learning algorithms with 
satellite data has significantly improved the precision of 
crop categorization and yield prediction (Sarkar et al. 
2024). Notwithstanding these advantages, substantial 
expenses, restricted revisit intervals, and the intricacy of 
data interpretation continue to pose considerable obstacles 
(Lu et al. 2020). Multi-sensor fusion methodologies, 
encompassing the amalgamation of Sentinel-2 and 
PlanetScope data, have exhibited enhanced precision 
in phenotyping and stress assessment (Xie et al. 2019). 
Nonetheless, variations in spectral responses among 
platforms pose obstacles to standardization and cross-
validation (Zarco-Tejada et al. 2013).

SAR technology has emerged as a crucial instrument 
for ongoing agricultural surveillance, especially in areas 
with persistent cloud cover, where optical imaging proves 
problematic (Ulaby et al. 2010). Synthetic Aperture Radar 
(SAR) can pierce cloud cover and deliver high-resolution 
estimations of biomass and soil moisture, rendering it 
essential for yield estimation and resource optimization 
(Paloscia et al. 2013). The amalgamation of SAR with 
optical sensors has enhanced stress detection and fortified 
remote sensing applications in precision agriculture 
(Fuentes-Peñailillo et al. 2024). SAR data interpretation 
is intricate because of speckle noise and difficulties 
in distinguishing plant components, necessitating 
sophisticated classification approaches and machine 
learning algorithms to derive significant insights (Houborg 
and McCabe 2016).

The European Space Agency's FLEX mission has 
pioneered a novel method for monitoring photosynthetic 
activity using fluorescence-based imaging. In contrast 
to conventional reflectance-based techniques, FLEX 
measures solar-induced fluorescence (SIF), enabling 
direct evaluations of plant physiological conditions and 
early stress reactions (Frankenberg et al. 2014). This 
feature renders it an effective instrument for assessing 
drought stress and nutritional deficits (Marques et al. 
2024). Nevertheless, obstacles such as limited spatial 
resolution, intricate data retrieval, and the necessity for 
ground validation restrict its practical uses (Oppelt and 
Muhuri 2024). The amalgamation of FLEX data with  
high-resolution optical imaging has demonstrated potential 
in connecting field-level observations with extensive 
ecosystem evaluations (Hank et al. 2019).

Panchromatic sharpening has been an effective method 
for improving the spatial resolution of satellite images 
by integrating high-resolution panchromatic bands with 
multispectral data. This method has been very helpful in 
enhancing vegetation indices and canopy mapping (Gao 
et al. 2006). Recent implementations of panchromatic 
sharpening in Sentinel-2 images have shown enhancements 
in spatial resolution of up to 20%, hence improving 
phenotyping and early stress detection (Song et al. 2024). 
The efficacy of this approach relies on sensor calibration, 
band alignment, and radiometric constancy (Wulder et al. 
2008).

The amalgamation of multi-sensor satellite data, 
including Sentinel-2 and Landsat-8, has markedly 
enhanced the spatial and temporal resolution of agricultural 
surveillance (Roy et al. 2014). Researchers can achieve 
a more thorough knowledge of crop health and stress 
responses by integrating optical, thermal, and hyperspectral 
data (Zarco-Tejada et al. 2013). Nonetheless, obstacles 
persist in standardizing datasets from diverse sources 
as discrepancies in spectral resolution and processing 
techniques may lead to inconsistencies (Oppelt and Muhuri 
2024). Standardization initiatives, automated processing 
processes, and AI-driven data integration methods will be 
essential for guaranteeing the dependability and scalability 
of these technologies in precision agriculture.

Techniques for image processing in high spectral-
spatial resolution imaging

Advancements in image processing techniques have 
greatly augmented the progress of remote sensing 
technology in agriculture. The amalgamation of machine 
learning, spectrum unmixing, and advancements in thermal 
imaging has facilitated the accurate and efficient extraction 
of crop characteristics, stress markers, and phenotypic 
variants from high-resolution pictures. With the increasing 
prevalence of high spectral-spatial resolution imaging, 
there is a necessity for robust processing approaches to 
manage complex datasets and enhance the precision of 
agricultural monitoring.

Machine learning has become an effective instrument 
for analyzing satellite-derived data, automating the 
extraction of phenotypic traits, and enhancing the accuracy 
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of stress detection and yield forecasting. Supervised and 
unsupervised learning methods are being employed to 
analyze hyperspectral and multispectral data, enabling 
the assessment of biomass, nitrogen concentrations, 
and chlorophyll contents (Li et al. 2015). Deep learning 
methodologies have exhibited significant efficacy in 
forecasting phenotypic characteristics, including crop 
yield, water stress, and nutrient status. Yue et al. (2019) 
illustrated that convolutional neural networks (CNNs) and 
recurrent neural networks (RNNs) surpass conventional 
statistical models in precision agriculture contexts. 
Maimaitijiang et al. (2021) emphasized the significance 
of machine learning in amalgamating satellite data with  
in-field observations, allowing real-time surveillance 
of crop development and stress conditions. These 
improvements diminish dependence on labor-intensive 
field evaluations, rendering high-throughput phenotyping 
more practicable and enhancing resource utilization 
efficiency in precision agriculture.

Spectrum unmixing is a crucial method for separating 
mixed spectrum signals in high-resolution remote 
sensing data, facilitating accurate assessment of crop 
health, phenotypic variety, and soil characteristics.  
The occurrence of mixed pixels, wherein many land 
cover types contribute to a singular spectral measurement, 
frequently hampers the analysis of satellite data. Spectral 
unmixing resolves this issue by deconstructing pixel-level 
spectral data into its constituent components, enabling 
more precise evaluations of vegetation indices and stress 
indicators (Small 2004). Somers et al. (2010) illustrated 
its use in evaluating genetic diversity, facilitating  
the selection of high-yield and stress-resistant genotypes in 
breeding initiatives. Wang et al. (2025) recently combined 
spectral unmixing with machine learning approaches, 
markedly enhancing the accuracy of crop stress detection 
by distinguishing between biotic and abiotic stressors. 
Moncholi-Estornell et al. (2023) employed spectral 
unmixing to quantify sunlight-vegetation cover, thereby 
enhancing the interpretation of solar-induced fluorescence 
(SIF), which is crucial for assessing photosynthetic activity 
and drought responses in crops.

Progress in thermal image processing has enhanced 
the capability of high-resolution agricultural monitoring. 
Thermal imaging has been extensively employed for 
identifying water stress, detecting disease outbreaks, 
and assessing canopy temperature variations. Recent 
advancements in thermal sharpening methodologies have 
enhanced the spatial resolution of thermal data, allowing 
more accurate detection of localized stress hotspots (Maes 
and Steppe 2019). Du et al. (2024) devised a technique 
for integrating Sentinel-2 and Sentinel-3 thermal data, 
enhancing daily soil moisture content assessment and 
optimizing irrigation scheduling in precision agriculture. 
He et al. (2024) integrated ground-based hyperspectral 
imaging with satellite thermal data to improve evaluations 
of topsoil nitrogen variability, facilitating the optimization 
of fertilizer delivery techniques.

The amalgamation of machine learning, spectrum 
unmixing, and thermal enhancement approaches has 
resulted in a more holistic methodology for high-

resolution agricultural monitoring. These approaches 
enable researchers to delineate exact phenotypic features, 
identify stress factors at early stages, and enhance resource 
allocation for sustainable agricultural management. Future 
studies ought to concentrate on further refining data fusion 
methodologies, enhancing spectral calibration approaches, 
and automating image processing processes to improve  
the accuracy and scalability of high spectral-spatial 
resolution imaging in agriculture.

Multispectral and hyperspectral imaging

Multispectral and hyperspectral imaging technologies, 
such as the Hyperion Sensor, have changed the way crop 
health analysis is done by collecting data across narrow 
spectral bands. This lets scientists look at a lot of different 
biochemical and physiological traits of plants. Gao 
(2000) illustrated the accuracy of these imaging systems 
in quantifying chlorophyll concentrations with over 
90% precision, providing valuable information for crop 
health management. This technique facilitates the early 
identification of stressors, including nutrient deficits, which 
is essential for improving nutrient management methods 
and overall production in precision agriculture. Fitzgerald 
et al. (2010) also talked about how important hyperspectral 
imaging is for measuring nitrogen, with a resolution  
of 0.1 mg(N) g–1(FM). This innovation improved nitrogen 
application efficiency by almost 15%, promoting optimal 
crop development and minimizing waste. In addition to 
enhancing nutrition management, Sanaeifar et al. (2023) 
highlighted the accuracy of hyperspectral imaging in 
stress detection, achieving a 95% precision rate for 
recognizing early indicators of drought and illness. Due 
to these features, hyperspectral systems are necessary for 
modern crop phenotyping. They let managers see how 
plants' health is changing in real-time and make proactive 
management strategies easier.

Satellite-based hyperspectral imaging

Satellite-based hyperspectral imaging enhances agri
cultural surveillance by allowing extensive evaluations 
of essential crop health indicators. Ustin et al. (2009) 
demonstrated its ability to measure LAI accurately 
(±0.5 m2 m–2) and revealed strong correlations between 
spectral indices and chlorophyll concentration, 
enabling improved resource allocation and sustainable 
management. Additionally, Gamon et al. (2016) utilized 
hyperspectral imaging to monitor photosynthetic activity, 
improving efficiency forecasts by more than 20%. Recent 
advancements have further expanded its potential. Wang 
et al. (2025) emphasized integrating machine learning 
models with hyperspectral data to improve precision 
agriculture applications, enhancing stress detection 
accuracy. Siddique et al. (2024) illustrated the role 
of satellite-based hyperspectral imaging in modern 
agriculture, showing its value in soil health monitoring 
and crop yield predictions. Yu and Cui (2024) applied 
hyperspectral imaging for cold-tolerant crop identification, 
demonstrating its effectiveness in breeding programs and 
stress-resilient crop development. These advancements 
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highlight satellite-based hyperspectral imaging as a key 
technology for large-scale crop health assessments and 
sustainable resource management.

UAV-integrated hyperspectral imaging systems:
operational efficacy and calibration protocols

The implementation of UAV-mounted hyperspectral 
imaging in precision agriculture has markedly enhanced 
high-resolution, real-time crop monitoring, facilitating 
early stress identification and precise resource management. 
UAV-HSI shows superior spatial and temporal resolution 
compared to satellite or manned aircraft hyperspectral 
imaging, rendering it especially beneficial for site-specific 
crop analysis (Ram et al. 2024). Nonetheless, despite its 
advantages, UAV-HSI continues to encounter operational 
and calibration issues that impact the consistency and 
reliability of spectral data. Recent research has shown the 
effectiveness of UAV-HSI systems in illness diagnosis, 
stress evaluation, and phenotyping applications.  
A thorough evaluation by Lu et al. (2020) showed that  
UAV-HSI effectively recognizes small spectrum  
fluctuations in crops, identifying water stress and nutritional 
deficits far earlier than conventional field scouting 
approaches. Ishida et al. (2018) showed in separate research 
that UAV-HSI-based vegetation classification surpasses 
multispectral photography, enhancing classification 
accuracy by 20–30%. These findings demonstrate 
the enhanced spectral resolution of HSI compared to 
traditional imaging methods. Nonetheless, UAV-HSI is 
particularly vulnerable to environmental fluctuations, 
rendering calibration a significant difficulty. Liu et al. 
(2024) discovered that flight altitude, lighting conditions, 
and sensor vibrations can cause reflectance inaccuracies 
of up to 15%, hence severely affecting vegetation indices 
and stress detection models. Moreover, variations in 
sensor types, spectral resolution, and data processing 
methodologies among investigations impede cross-
comparison, underscoring the critical necessity for 
standardized calibration processes.

A fundamental constraint of UAV-HSI applications in 
agriculture is the absence of widely recognized calibration 
standards, leading to spectrum discrepancies among 
various research investigations (Arroyo-Mora et al. 
2019). Numerous calibration approaches are available, 
however, their use is uneven, resulting in fluctuating 
radiometric accuracy and diminished data dependability. 
A multitude of significant issues exacerbate this dilemma. 
UAV-HSI functions under unregulated atmospheric 
circumstances, rendering it particularly vulnerable to 
swings in solar irradiance, variations in cloud cover, and 
air scattering. Radiometric calibration methods, such as 
empirical line calibration (ELC), are frequently employed, 
nevertheless, they rely on ground reference targets and 
are typically challenging to execute in field situations 
(Geipel et al. 2021). Moreover, hyperspectral sensors 
demonstrate spectral drift and radiometric noise, which 
may skew reflectance readings. Research conducted by 
Swaminathan and Thomasson (2024) revealed that the use 
of onboard calibration panels and real-time radiometric 

correction algorithms lowered spectrum drift errors by 
10%. Nonetheless, these methodologies have not yet been 
standardized across many UAV sensor systems.

Aerial and terrestrial sensors

Aerial and terrestrial sensors are essential tools for real-time 
nutrient management and crop health assessments. Raun  
et al. (2002) demonstrated their efficacy in assessing 
nitrogen concentrations with 85% accuracy, enabling 
precise modifications in fertilizer applications and 
minimizing losses. Shanahan et al. (2001) further combined 
terrestrial sensors with UAV platforms, achieving 90% 
accuracy in chlorophyll concentration assessments. Ryu 
(2024) applied high-resolution aerial and ground sensors 
to scale land surface flux measurements, enhancing 
predictions of plant stress responses in precision 
agriculture. These innovations reinforce the importance 
of aerial and terrestrial sensors in sustainable agricultural 
practices and resource optimization.

Integration of diverse platform technologies

The integration of satellite, UAV, and terrestrial sensors 
offers a holistic method for agricultural monitoring. Hunt 
et al. (2010) demonstrated that this integration improved 
the temporal resolution of crop phenotyping to three-
day intervals, enabling continuous monitoring of crop 
responses to environmental stresses. Lelong et al. (2008) 
highlighted that multi-platform integration enhanced spatial 
resolution and accuracy, facilitating precise modifications 
in irrigation and fertilizer applications. Zhang and Kovacs 
(2012) emphasized the benefits of multi-platform sensing 
for yield prediction and phenotyping precision.

In recent studies, Kariani and Supriyadi (2024) 
demonstrated the synergy of satellite and UAV platforms 
for crop yield estimation and stress mapping, improving 
agricultural decision-making processes. Oppelt and Muhuri 
(2024) emphasized multi-sensor data fusion for achieving 
consistent and high-resolution monitoring across diverse 
agricultural landscapes. These integrations highlight 
the transformative role of multi-platform technologies 
in enhancing the efficiency, accuracy, and scalability of 
precision agriculture.

Advancements in satellite imaging technologies

Recent advancements in satellite imaging technologies 
have significantly improved the monitoring of agricultural 
health through enhanced spatial and temporal resolution. 
Mulla (2013) examined the utility of Sentinel and Landsat 
satellites in improving yield prediction models by up to 
15%, facilitating resource-efficient farming practices. 
Maes and Steppe (2019) explored thermal imaging 
applications, demonstrating sub-meter spatial resolution 
in identifying temperature-induced crop stress for efficient 
irrigation and disease management.

Recent research by Wüpper et al. (2024) demonstrated 
the use of Sentinel-2 multispectral data for estimating 
crop stress in precision agriculture, improving monitoring 
reliability. Ryu (2024) integrated hyperspectral imaging 
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data with flux tower observations, enabling high-resolution 
monitoring of land surface fluxes and crop responses.

These advancements highlight the ongoing evolution of 
satellite imaging technologies, enabling robust monitoring 
systems that enhance resilience to climate variability and 
promote sustainable agricultural practices.

Comparative analysis of hyperspectral imaging with 
other high-resolution imaging modalities

Hyperspectral imaging has emerged as a powerful tool 
in agricultural monitoring due to its ability to capture 
continuous spectral information across hundreds of narrow 
bands. This spectral granularity enables the detection of 
subtle biochemical and physiological variations in crops, 
making HSI particularly useful for stress detection, disease 
identification, and nutrient mapping (Zhang et al. 2025). 
However, despite its strengths, HSI faces competition 
from other high-resolution imaging modalities, including 
LiDAR, multispectral imaging (MSI), and thermal 
imaging, each with unique advantages and limitations.

LiDAR (Light Detection and Ranging) has been 
widely adopted in agricultural applications for its ability to 
generate high-resolution three-dimensional (3D) structural 
models of vegetation. Unlike HSI, which relies on spectral 
reflectance, LiDAR actively measures distances using 
laser pulses, making it highly effective for canopy height 
estimation, biomass modeling, and topographic analysis 
(Jurado-Rodríguez et al. 2024). Recent studies have 
demonstrated the benefits of integrating LiDAR with HSI, 
where spectral data enhances the structural information 
provided by LiDAR, leading to improved biomass 
estimation and crop classification (Benelli et al. 2020). 
However, while LiDAR excels in structural mapping,  
it lacks the spectral resolution necessary for biochemical 
assessments, limiting its ability to detect plant stressors at 
the molecular level (Bhargava et al. 2024).

Multispectral imaging (MSI) is another widely used 
remote sensing modality in precision agriculture, offering 
a more cost-effective alternative to HSI. MSI captures 
fewer and broader spectral bands, typically in the visible 
and near-infrared regions, making it suitable for large-
scale monitoring applications such as vegetation index 
calculation (Mahlein et al. 2019). While MSI provides 
sufficient information for general crop health assessment, 
its limited spectral resolution reduces its capability to 
differentiate between specific stress factors (Lu et al. 
2020). A comparative study by Sethy et al. (2022) found 
that while MSI effectively tracks vegetation dynamics 
using indices such as NDVI, it fails to detect subtle 
biochemical changes that HSI can capture. As a result, 
MSI is often integrated with HSI in hybrid approaches to 
balance cost-effectiveness and spectral precision in large-
scale agricultural applications.

Thermal imaging, on the other hand, provides valuable 
insights into plant water status and temperature variations, 
making it particularly useful for drought monitoring and 
irrigation management (Du et al. 2024). Because canopy 
temperature directly correlates with plant transpiration 
rates, thermal imaging has been extensively applied 

for the early detection of water stress (Gitelson et al. 
2012). However, its effectiveness is highly dependent 
on atmospheric conditions, and frequent recalibration is 
necessary to ensure accuracy (He et al. 2024). Integrating 
thermal imaging with HSI has been shown to enhance early 
stress detection by combining physiological indicators 
with spectral signatures, offering a more comprehensive 
assessment of plant health (Feng et al. 2022).

Each of these imaging modalities serves a distinct 
role in precision agriculture, and their effectiveness is 
context-dependent. While HSI remains unparalleled 
in biochemical and physiological analysis, LiDAR is 
superior for structural assessments, MSI offers scalability 
and cost-effectiveness, and thermal imaging excels in  
real-time stress detection. Recent advancements emphasize 
the need for multi-sensor integration, where the fusion of 
HSI with LiDAR, MSI, and thermal imaging can overcome 
individual limitations and provide holistic agricultural 
insights. Future research should focus on optimizing 
sensor calibration, enhancing data fusion techniques, and 
leveraging artificial intelligence to streamline analysis and 
improve decision-making in precision agriculture (Adão 
et al. 2017).

Advantages of hyperspectral imaging over traditional 
techniques in photosynthesis studies

Hyperspectral imaging (HSI) represents a significant 
advancement in photosynthesis research, as it captures 
extensive multidimensional data that enhances our 
comprehension of plant physiological responses to 
environmental stress. This extensive data offers unique 
insights into photosynthetic efficiency and crop health 
that conventional methods cannot achieve. HSI's high-
resolution spectral data facilitates accurate evaluations 
across diverse light wavelengths, which is crucial for 
real-time monitoring (Blackburn 2007, Adão et al. 2017) 
(Table 4).

Improved sensitivity

The sensitivity of hyperspectral imaging (HSI) facilitates 
the detection of subtle physiological changes that signify 
shifts in photosynthetic activity or early responses to 
plant stress. Dai et al. (2015) demonstrated that HSI can 
detect subtle variations in plant water stress and nutrient 
deficiencies with greater precision than conventional 
techniques. More recently, research by Atencia Payares 
et al. (2025) highlighted the effectiveness of thermal 
and multispectral sensors in assessing plant water status, 
demonstrating the strong correlation between water stress 
and reduced photosynthetic activity in vineyards (Atencia 
Payares et al. 2025). Similarly, Hernández-Clemente et al. 
(2019) confirmed HSI's ability to identify stress responses 
in intricate environments, reinforcing its enhanced 
sensitivity to minor variations in chlorophyll fluorescence.

In addition, Meacham-Hensold et al. (2020) showed 
that HSI can quantify leaf-level photosynthetic efficiency 
with a sensitivity up to 15% greater than traditional 
chlorophyll fluorescence methods, facilitating early 
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detection and targeted agricultural interventions. Recent 
advances in machine learning-assisted HSI processing 
have further improved the detection of early-stage plant 

stress conditions, allowing for real-time monitoring of 
water stress and nutrient deficiencies in various crops 
(Atencia Payares et al. 2025).

Table 4. Hyperspectral vegetation indices utilized for assessing photosynthetic activity.

Vegetation Index (VI) Formula Derived photosynthetic reference References

Normalized Difference
Vegetation Index
(NDVI)

(NIR – Red)/(NIR + Red) Indicates vegetation health, biomass, 
and chlorophyll content, reflecting
photosynthetic capacity

Huang et al. (2021)
Zhao et al. (2024)

Photochemical
Reflectance Index 
(PRI)

(R531 – R570)/(R531 + R570) Sensitive to changes in xanthophyll cycle
pigments, indicating photosynthetic light 
use efficiency and stress

Garbulsky et al. (2011)
Zheng et al. (2024)

Modified Chlorophyll
Absorption 
in Reflectance Index
(MCARI)

(R700 – R670) – 0.2 × (R700 – R550) ×
(R700/R670)

Designed to minimize soil color influences,
indicating chlorophyll content which is
related to photosynthetic activity

Wu et al. (2008)

Red-edge Inflection
Point (REIP)

The wavelength at which the first
derivative of the reflectance 
spectrum reaches its maximum 
point in the red-edge region

Indicates chlorophyll content and leaf
structure, which are related to 
photosynthetic efficiency

Herrmann et al. (2010)
Patil et al. (2024)

Water Index (WI) (R900/R970) Reflects leaf water content, which can
influence photosynthetic activity and plant
water stress

Peñuelas et al. (1997)

Normalized Difference (NIR – RedEdge)/(NIR + RedEdge) Indicates vegetation health and chlorophyll
content, related to photosynthetic activity

Imran et al. (2020)

Simple ratio NIR/Red Indicates leaf biomass and chlorophyll
content, which are related to photosynthetic
activity

Putra and Soni (2017)

Green Normalized
Difference Vegetation
Index (GNDVI)

(NIR – Green)/(NIR + Green) Indicates chlorophyll content and nitrogen
status, which are related to photosynthetic
activity

Shaver (2009)

Enhanced Vegetation
Index (EVI)

2.5 × [(NIR – Red)/
(NIR + 6 × Red – 7.5 × Blue + 1)]

Indicates vegetation health and chlorophyll
content which are related to photosynthetic
activity

Matsushita et al. (2007)
Lai et al. (2024)

Chlorophyll Absorption
in Reflectance Index
(CARI)

(R700/R670) – 1 Indicates chlorophyll content, which is 
related to photosynthetic activity

Bannari et al. (2007)
Verma et al. (2024)

Red-edge Chlorophyll
Index (CI_red-edge)

(R750/R710) – 1 Indicates chlorophyll content, which is 
related to photosynthetic activity

Xie et al. (2018)

Triangular Vegetation
Index (TVI)

0.5 × {[120 × (R750 – R550)] – 
[200 × (R670 – R550)]}

Indicates vegetation health and chlorophyll
content, which are related to photosynthetic
activity

Xing et al. (2019)

Plant Senescence
Reflectance Index
(PSRI)

(R680 – R500) R750 Indicates the onset of plant senescence, 
which affects photosynthetic activity

Ren et al. (2017)

Structure Insensitive
Pigment Index (SIPI)

(R800 – R445)/(R800 – R680) Indicates carotenoid content, which is related
to light absorption and photosynthetic
protection

Peñuelas et al. (1995)
Manne et al. (2024)

Anthocyanin 
Reflectance Index 
(ARI)

(1/R550) – (1/R700) Indicates anthocyanin content, which can
be related to plant stress and photosynthetic
activity

Steele et al. (2009)

Carotenoid Reflectance
Index (CRI)

(R510/R550) Indicates carotenoid content, which is related
to light absorption and photosynthetic
protection

Kong et al. (2016)

Normalized Pigment
Chlorophyll Ratio 
Index (NPCRI)

(R680 – R430)/(R680 + R430) Indicates chlorophyll content, which is related
to photosynthetic activity

Sosa et al. (2021)

Fluorescence Index (FI) (R740 – R800)/(R740 + R800) Indicates chlorophyll fluorescence, which
is related to photosynthetic efficiency 
and electron transport rate

Johnson et al. (2012)
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These advancements underscore the potential of HSI 
for precision agriculture, enabling farmers to optimize 
irrigation strategies, mitigate stress conditions, and 
improve crop yield efficiency through proactive decision-
making.

Progress in hyperspectral imaging for chlorophyll
fluorescence assessment

Conventional chlorophyll fluorescence (ChlF) methods 
have historically been employed to evaluate plant 
photosynthetic efficiency, however, their limited spectrum 
range and dependence on a restricted set of fluorescence 
characteristics hinder their capacity to identify intricate 
stress responses. Hyperspectral imaging (HSI) offers  
a sophisticated method for acquiring continuous spectral 
data over an extensive wavelength range, enhancing early 
stress detection and physiological evaluations (Mora-
Poblete et al. 2024). Techniques for retrieving solar-induced 
fluorescence (SIF) based on hyperspectral imaging (HSI) 
have shown enhanced sensitivity and precision in measuring 
photosystem efficiency, facilitating faster identification of 
plant stress relative to conventional fluorescence methods 
(Belwalkar et al. 2024). The amalgamation of machine 
learning models with HSI-derived fluorescence data has 
significantly augmented stress diagnostics, yielding a 20% 
enhancement in detection accuracy compared to traditional 
pulse-amplitude modulated (PAM) fluorometry (Bartold 
and Kluczek 2024). Fluorescence imaging, however, 
is vulnerable to atmospheric fluctuations and sensor 
calibration discrepancies, which can generate noise and 
diminish measurement reliability. Research indicates that 
fluctuations in ambient light conditions can substantially 
influence the precision of SIF estimations, necessitating 
the creation of automated data correction models and 
sophisticated spectral normalization techniques to 
improve the reliability of fluorescence-based HSI for field 
applications (Lee et al. 2024).

Technical and practical constraints of hyperspectral 
imaging

Notwithstanding its considerable benefits, the extensive 
implementation of HSI in precision agriculture is 
obstructed by several technological and practical obstacles. 
The computational demands of real-time data processing 
continue to be a significant limitation, especially in 
UAV-based and field-deployable systems with restricted 
onboard processing capabilities. Recent improvements in 
cloud-based spectrum analysis platforms have alleviated 
some limits, nonetheless, these solutions necessitate high-
bandwidth data transfer and remain not globally accessible 
(Bethge et al. 2024).

Alongside data processing issues, the prohibitive 
expense of hyperspectral cameras and imaging 
spectrometers constitutes a significant obstacle to their 
extensive use. Despite a decline in the cost of multispectral 
imaging systems in recent years, hyperspectral sensors 
remain costly, limiting their application mainly to research 
and high-value crop monitoring (Bartold and Kluczek 
2024). Moreover, field applications of HSI necessitate 

regular sensor calibration due to environmental variables 
such as temperature variations and sensor drift, hence 
augmenting operational complexity. Miniaturized UAV-
mounted hyperspectral sensors have improved mobility 
and deployment efficiency, yet they often suffer from 
trade-offs in spectral resolution and operational endurance, 
limiting their effectiveness for continuous monitoring in 
large-scale agricultural settings (Pacheco-Labrador et al. 
2025).

A significant issue is the susceptibility of hyperspectral 
readings to ambient variables. Fluctuating sunlight, 
atmospheric disturbances, and soil background reflectance 
can introduce noise into spectral data, compromising 
measurement precision (Lee et al. 2024). AI-driven 
spectrum correction models have been created to mitigate 
unpredictability in lighting circumstances, nevertheless, 
their implementation escalates computing complexity 
and constrains real-time decision-making capabilities 
(Pacheco-Labrador et al. 2025). The incorporation of 
sophisticated deep learning algorithms for spectral noise 
reduction and automated preprocessing demonstrates 
potential in enhancing the reliability of hyperspectral 
imaging measurements, nevertheless, these methods 
necessitate further validation across various crop species 
and environmental conditions before widespread 
implementation.

Distinguishing between drought and nutrient deficiency 
stress utilizing HSI

A significant benefit of HSI compared to traditional stress 
detection techniques is its capacity to distinguish among 
several abiotic stressors, such as drought stress and 
nutritional deficits, which frequently have overlapping 
physiological impacts. Conventional multispectral and 
visual evaluations find it challenging to differentiate 
these stressors because of their analogous effects on leaf 
morphology, such as wilting, yellowing, and chlorosis. 
HSI facilitates accurate distinction through the analysis 
of unique spectral changes across several wavelength 
ranges. Drought stress generally results in diminished leaf 
water content, which increases reflectance in the short-
wave infrared (SWIR) spectrum (1,000–2,500 nm), while 
deficiencies in nitrogen and phosphorus predominantly 
influence chlorophyll contents, resulting in spectral shifts 
in the red-edge region (680–750 nm) and modifications 
in the Photochemical Reflectance Index (PRI) (Liu et al. 
2025).

Machine learning models have played a vital role in 
increasing stress categorization accuracy using HSI. These 
AI-driven methodologies utilize comprehensive spectrum 
libraries to automate stress detection, enhancing the 
feasibility of real-time precision agricultural applications. 
Additionally, combining chlorophyll fluorescence imaging 
with HSI significantly promotes stress distinction by 
identifying variations in photosynthetic efficiency under 
different stress situations. Recent studies demonstrate that 
fluorescence kinetics measures, including Fv/Fm ratios 
and nonphotochemical quenching (NPQ), are essential 
indicators for differentiating between photosynthetic limits 
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caused by drought and those resulting from nutritional 
deficits (Spasova et al. 2024). Future research should 
concentrate on refining machine learning-based stress 
classification models, augmenting real-time spectral data 
integration with agricultural decision-support systems,  
and advancing spectral normalization techniques to 
enhance the diagnostic accuracy of hyperspectral stress 
detection methods in precision agriculture. Moreover, 
creating hybrid methodologies that combine hyperspectral 
imaging (HSI) with other remote sensing technologies, 
such as LiDAR or thermal imaging, might augment 
stress differentiation capabilities and provide more 
thorough monitoring of crop health under variable field 
circumstances.

Research challenges

Despite significant progress in hyperspectral imaging 
for crop phenotyping and precision agriculture, several 
challenges must be addressed to further advance our 
understanding and application of this technology. These 
challenges are categorized into thematic subsections for  
a clearer understanding of the issues and to facilitate future 
research efforts.

Data processing and analysis

The high dimensionality of hyperspectral imaging (HSI) 
generates large datasets, presenting challenges in terms of 
data storage, processing efficiency, and analysis. Bioucas-
Dias and Plaza (2010) and Zhang et al. (2016) proposed 
orthogonal subspace projection and PCA techniques for 
dimensionality reduction. Recently, Guerri et al. (2024) 
emphasized the role of deep learning algorithms in 
automating HSI data analysis (Fig. 5), enhancing real-
time processing capabilities for large-scale agricultural 
monitoring. Similarly, Dasari et al. (2024) integrated 
convolutional neural networks (CNN) with hyperspectral 
data for early disease detection, achieving significant 
improvements in analysis efficiency.

Integration of multiple data sources

Combining hyperspectral data with multi-source 
information, such as physiological and environmental 
metrics, enhances crop health assessment and predictive 
modeling. Zarco-Tejada et al. (2013) demonstrated its 
utility for ecosystem-level resilience studies. Recent 
advancements include Ali et al. (2024), who integrated 
AI-driven hyperspectral analysis with soil metrics for 
precision fertilization, improving accuracy in crop 
monitoring by 25%. Additionally, Yu and Cui (2024) 
emphasized integrating meteorological and hyperspectral 
data for real-time stress detection, bridging environmental 
and spectral observations for optimized crop management.

Spatial and temporal resolution

Balancing spatial and temporal resolution in hyperspectral 
imaging is critical. UAV-based sensors offer scalable 

solutions for high-resolution imaging (Hunt et al. 2013). 
Finn et al. (2023) proposed automated georectification 
methods for UAV-based HSI, enhancing the spatial 
precision of phenotypic observations. Similarly, Bian  
et al. (2024) developed high spatiotemporal hyperspectral 
sensors, enabling real-time monitoring of crop dynamics 
at sub-meter resolution, and addressing the demands of 
precision agriculture.

Calibration and standardization of sensors

Standardizing hyperspectral sensors ensures consistent 
and reliable spectral data. Mutanga et al. (2012) and 
Kokaly et al. (2017) emphasized the importance of 
rigorous calibration protocols. Recently, Sabin et al. 
(2024) demonstrated advanced calibration workflows 
for industrial and agricultural spectral imaging, ensuring 
improved spectral accuracy across diverse systems. 
Similarly, Makarenko et al. (2024) introduced hardware-
accelerated hyperspectral calibration systems, reducing 
variability caused by sensor drift and environmental 
factors.

Incorporation of three-dimensional information

Combining hyperspectral data with three-dimensional 
(3D) information, such as LiDAR, enhances our 
understanding of canopy architecture. Lefsky et al. (2002) 
and Asner and Martin (2008) highlighted its role in light 
distribution analysis. Recent advancements include  
Yu and Cui (2024), who integrated hyperspectral imaging 
with 3D reconstruction techniques for precision canopy 
mapping, providing improved biomass estimations. 
Additionally, Wang et al. (2025) combined LiDAR-based 
3D data with hyperspectral imaging for enhanced light-use 
efficiency predictions.

Automation of data collection

Automation is critical for large-scale hyperspectral data 
collection and processing. Wang et al. (2015) and Shen  
et al. (2019) highlighted automated workflows for 
reducing manual errors. Khonina et al. (2024) introduced 
machine learning-driven automation for hyperspectral data 
processing, enabling faster and more reliable phenotypic 
assessments. Similarly, Bilotta et al. (2023) developed 
AI-integrated automation pipelines for hyperspectral 
workflows, improving the scalability of high-throughput 
phenotyping.

Understanding biological variability

Biological variability across species and environments 
complicates hyperspectral data interpretation. Machine 
learning models address this challenge, as highlighted 
by Homolová et al. (2013). Recently, Shuai et al. (2024) 
employed deep learning algorithms to account for 
genotypic variability, achieving high prediction accuracy 
for physiological parameters across diverse environments. 
Additionally, Hajaj et al. (2024) applied AI-driven models 
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to analyze variability in hyperspectral imaging data for 
precision agriculture applications.

Validation of remote sensing data

Validation ensures that remote sensing accurately represents 
plant physiological states. Gitelson et al. (2003) and Zarco-
Tejada et al. (2004) emphasized spectroradiometer-based 
benchmarks. Olorunsogo et al. (2024) proposed improved 
field-based validation techniques for hyperspectral indices, 
ensuring the accuracy of chlorophyll and water content 
measurements. Yu and Cui (2024) cross-validated HSI 
data with ground-based observations, enhancing large-
scale model reliability.

Analysis of spectral signatures

Analyzing spectral signatures is vital for identifying subtle 
plant physiological changes. Sims and Gamon (2002) 
and Doughty et al. (2011) linked spectral signatures to 
abiotic stress responses. Recently, Antony et al. (2024) 
demonstrated spectral signature analysis using advanced 
hyperspectral indices for early drought detection, 
improving stress-response monitoring accuracy.

Economic considerations and availability

The cost of hyperspectral systems remains a barrier to 
widespread adoption. Ustin et al. (2009) highlighted the 
importance of affordability. Nie et al. (2024) examined 
recent developments in low-cost hyperspectral systems, 
expanding access to smallholder farms. Additionally, 
Durojaiye et al. (2024) emphasized the role of affordable 
spectral libraries in enabling broader adoption for 
commercial agricultural applications.

Future perspectives and recommendations

As we map out the future directions for hyperspectral 
imaging research and applications in agricultural 
photosynthesis, several important topics become clear as 
being essential to the field's advancement. Crop monitoring 
is about to undergo a revolution, thanks to the integration 
of HSI into precision agriculture frameworks, which will 
allow for a thorough spectrum analysis of photosynthetic 
activity and plant health. The use of hyperspectral sensors 
on satellites and unmanned aerial vehicles (UAVs) holds 
the potential to revolutionize agricultural management 
by enabling extensive, high-resolution evaluations. We 
suggest the following strategic paths to fully use HSI:

• To guarantee comparability and reproducibility across 
research, develop and implement consistent data collection 
and analysis processes. This will improve the hyperspectral 
data's dependability and make it easier to create solid 
models for a range of plant species and environmental 
circumstances.
• To handle the complexity of hyperspectral datasets, 
embrace artificial intelligence and machine learning 
methods. With the use of these instruments, detailed data 

on photosynthetic processes may be extracted, advancing 
our knowledge of plant physiology.
• Integrate phenomic and genomic data with hyperspectral 
imaging to find genetic features that influence the efficiency 
of photosynthesis. This multidisciplinary strategy might 
improve global food security and transform crop breeding 
methods.
• Using hyperspectral sensors mounted to agricultural 
equipment, create in-field real-time monitoring systems. 
Farmers will have instant access to information on crop 
photosynthesis as a result, which will help them make 
decisions about irrigation, fertilizer use, and insect control.
• Extend the use of HSI to whole agricultural landscapes 
rather than just specific crops. For sustainable land 
management and biodiversity protection, it is essential to 
comprehend the intricate relationships that exist between 
various crops and plants.
• To fully convey the dynamic character of photosynthesis, 
aim for a balance between high temporal and spatial 
resolution in hyperspectral imaging. Plant physiology 
must be monitored by regular temporal measurements 
combined with precise geographic data.
• Combine HSI with cutting-edge molecular methods to 
learn more about the molecular mechanisms of the Calvin 
cycle. This will provide important new information about 
the biochemical processes that support photosynthesis.
• Utilize HSI to detect plant illnesses and stress early in  
the disease monitoring and management process. 
Through the detection of spectral fingerprints that indicate 
physiological changes, HSI may be used as a proactive 
measure to reduce production losses and maximize 
resource use.
• To obtain a thorough grasp of photosynthetic processes 
under plant canopies, hyperspectral data should be 
integrated with three-dimensional structure information. 
LiDAR and stereoscopic imaging technologies can improve 
our understanding of light dispersion and interception.
• To guarantee consistency and effectiveness, especially in 
large-scale research, automate data collection processes. 
Furthermore, it endeavors to enhance the use of HSI 
technology for scholars and professionals to promote 
extensive implementation.

The future of HSI in agricultural photosynthesis 
research lies in its seamless integration with advanced 
computational models, remote sensing technologies, and 
real-time monitoring systems. As big data analytics and 
AI-driven spectral modeling continue to evolve, precision 
agriculture will benefit from automated hyperspectral 
workflows that deliver real-time, actionable insights 
on crop health, photosynthetic efficiency, and stress 
adaptation. Moreover, the development of cost-effective, 
miniaturized hyperspectral sensors for UAVs and 
ground-based platforms will democratize access to high-
resolution spectral data, enabling farmers, agronomists, 
and researchers to apply HSI across diverse agricultural 
landscapes. Cross-disciplinary collaborations between 
plant physiologists, data scientists, and engineers will 
drive innovations in hyperspectral data processing, 
enhancing predictive modeling of carbon assimilation, 
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nutrient fluxes, and drought resilience. As climate 
change intensifies agricultural challenges, HSI will play  
an increasingly vital role in monitoring ecosystem 
responses, optimizing resource allocation, and improving 
global food security. By advancing hyperspectral imaging 
frameworks that integrate molecular, genomic, and 
structural data, researchers will unlock new frontiers in 
plant phenotyping, stress diagnostics, and adaptive crop 
management strategies. Through these technological 
advancements and strategic research efforts, hyperspectral 
imaging is set to become an indispensable tool for 
sustainable and climate-resilient agriculture.
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