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Recently, Giordano et al. (2025) published an important 
article about the combinatory effect of cadmium (Cd) toxicity 
and high light stress on the photosynthetic performance in 
Arabidopsis thaliana. From this study, it was found that 
when A. thaliana is exposed to a higher concentration  
of Cd, three factors negatively impact the photosynthetic 
machinery of A. thaliana. There is compelling evidence 
that Cd contributes to the light stress experienced by  
A. thaliana, exacerbating it and thereby contributing to 
the three factors mentioned: impaired electron transport, 
elevated nonphotochemical quenching (NPQ), and  
a lowered FV/FM ratio. These factors demonstrate how  
a combination of converging physiological signals  
(i.e., functional, protective, and efficiency-related) 
influences the photochemical machinery of A. thaliana in 
response to Cd exposure. 

The implications of these findings apply to other plant 
species, not just A. thaliana, because Cd is a widespread 
environmental contaminant. Bharagava and Saxena (2020) 
state that agricultural and industrial activities produce Cd; 
however, when Cd accumulates in soils, crop productivity 
is affected in the long term (Alloway 2013). Cd, as 
reported in several other studies (Schiller and Dau 2000, 
Sigfridsson et al. 2004, Pagliano et al. 2006), interferes 
with the oxygen-evolving complex (Pagliano et al. 2013). 
This induces reactive oxygen species (ROS) (Cho and 
Seo 2005), causing photoinhibition and oxidative damage 
(Faller et al. 2005), while, in the process, impairment of 
PSII protein turnover occurs (Geiken et al. 1998). 

Giordano et al. (2025) provide novel insight that prac
tically shows photoinhibitory quenching overpowering 
energy-dependent quenching, highlighting the limitations 
imposed by Cd and high light on PSII (Fig. 1S, 
supplement). Therefore, the interaction of Cd and light 
stress induces structural damage, instead of just regulating 
energy dissipation, and this confirms earlier evidence that 
excess light accelerates Cd-induced PSII damage (Cai  
et al. 2023, Zhou et al. 2024). In addition, the presence of 
L- and K-bands in OJIP transients in Cd-exposed plants, 
a feature reported in barley (Kalaji et al. 2011) and pea 
(Jiang et al. 2006) plants as well, indicates that Cd causes  
a direct limitation of the oxygen-evolving complex activity, 
as well as interference with the antenna PSII connectivity. 

This shows that K- and L-band emergence is not a general 
chlorophyll fluorescence marker of stress limited to  
A. thaliana, as it is also seen in legumes (van Heerden  
et al. 2003, 2004) and cereals (Strasser et al. 2004, 
Antunović Dunić et al. 2023). 

The use of Kautsky kinetics, OJIP (origin, 1st electron 
intermediate peak, 2nd electron intermediate peak) analysis, 
and other fluorescence methods is crucial for dissecting 
the various alterations that occur in the photosystem 
due to stress (Roháček 2002, Strasser et al. 2004). Most 
importantly, however, Cd-induced stress causes a decline 
in performance index (PIABS), thereby supporting the use 
of the utilized methods as a sensitive biomarker for PSII 
impairment (Dobrikova et al. 2021, Chen et al. 2022). This 
decline in performance index has also been observed in 
several other plants, including spinach, barley (Vassilev  
et al. 2003), rice (Lee et al. 2025), and pea (Hattab et al. 
2009). The importance of reporting performance index 
decline in A. thaliana rests on the fact that there is less 
comprehensive data on PIABS responses to multiple stresses 
in this model organism. Furthermore, to dissect which 
genes and pathways are responsible for PSII activity in 
response to Cd, PIABS declination enables mechanistic 
studies on specific genes, especially since Arabidopsis 
contains a diverse array of molecular genetic tools, such 
as mutants, transcriptomics, and CRISPR lines (Pegler  
et al. 2021). By using A. thaliana in this study, the authors 
have created a baseline by which stress responses can be 
assessed in other Arabidopsis species under regulated 
conditions (Giordano et al. 2025). Moreover, the reported 
study allows for the expansion of our understanding of 
how PSII in A. thaliana responds to combined stressors, 
not just one, and this is essential as Arabidopsis has been  
well-studied under drought, light, and nutrient stresses 
(Fischer et al. 2017), but not under the simultaneous 
exposure to high light and cadmium.
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The broader significance of these results lies in 
facilitating and enhancing our understanding of multi-
stress interactions. Ben Ammar et al. (2008) and Hakmaoui 
et al. (2007) state that Cd toxicity, on its own, causes 
disruption of chloroplast infrastructure and reduction 
in biomass. However, the addition of high light stress 
causes photoinhibition to amplify, resulting in slower 
recovery and greater energy dissipation (Jin et al. 2014, 
Hikosaka 2021). Thus, the synergistic effect highlights  
the imperativeness of considering multiple stress factors  
in agricultural and ecological contexts (El Rasafi et al. 
2022, Didaran et al. 2024).

Future study strategies should explore how the effect of 
the interaction between Cd and high light can be mitigated. 
These protective strategies used must include antioxidant 
production enhancement (Bi et al. 2009, Namdjoyan et al. 
2011), plant growth-promoting bacteria (He et al. 2020, 
Wu et al. 2020), and xanthophyll cycle activity monitoring 
(Pogson et al. 1998, Li et al. 2000). These wider approaches 
hold promise for the development of crop varieties and 
management practices that can tolerate contaminated 
environments that contain multiple co-occurring stressors. 

In conclusion, Giordano et al. (2025) enrich our 
mechanistic understanding of how heavy metals, such 
as Cd, and high light interact with each other to damage  
and/or impair photosynthetic processes. The linkage 
between Cd toxicity and the exacerbated photoinhibition 
in A. thaliana shows the vulnerability and adaptive limits 
of PSII under compound stress conditions. 
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