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Cadmium and high light stress interactions highlight limits of PSII

in Arabidopsis thaliana
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Recently, Giordano et al. (2025) published an important
articleaboutthe combinatoryeffectofcadmium (Cd)toxicity
and high light stress on the photosynthetic performance in
Arabidopsis thaliana. From this study, it was found that
when A. thaliana is exposed to a higher concentration
of Cd, three factors negatively impact the photosynthetic
machinery of A. thaliana. There is compelling evidence
that Cd contributes to the light stress experienced by
A. thaliana, exacerbating it and thereby contributing to
the three factors mentioned: impaired electron transport,
elevated nonphotochemical quenching (NPQ), and
a lowered Fv/Fy ratio. These factors demonstrate how
a combination of converging physiological signals
(i.e., functional, protective, and efficiency-related)
influences the photochemical machinery of 4. thaliana in
response to Cd exposure.

The implications of these findings apply to other plant
species, not just 4. thaliana, because Cd is a widespread
environmental contaminant. Bharagava and Saxena (2020)
state that agricultural and industrial activities produce Cd,
however, when Cd accumulates in soils, crop productivity
is affected in the long term (Alloway 2013). Cd, as
reported in several other studies (Schiller and Dau 2000,
Sigfridsson et al. 2004, Pagliano et al. 20006), interferes
with the oxygen-evolving complex (Pagliano ef al. 2013).
This induces reactive oxygen species (ROS) (Cho and
Seo 2005), causing photoinhibition and oxidative damage
(Faller et al. 2005), while, in the process, impairment of
PSII protein turnover occurs (Geiken ef al. 1998).

Giordano et al. (2025) provide novel insight that prac-
tically shows photoinhibitory quenching overpowering
energy-dependent quenching, highlighting the limitations
imposed by Cd and high light on PSII (Fig. 1S,
supplement). Therefore, the interaction of Cd and light
stress induces structural damage, instead of just regulating
energy dissipation, and this confirms earlier evidence that
excess light accelerates Cd-induced PSII damage (Cai
et al. 2023, Zhou et al. 2024). In addition, the presence of
L- and K-bands in OJIP transients in Cd-exposed plants,
a feature reported in barley (Kalaji et a/. 2011) and pea
(Jiang et al. 20006) plants as well, indicates that Cd causes
adirect limitation of the oxygen-evolving complex activity,
as well as interference with the antenna PSII connectivity.
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This shows that K- and L-band emergence is not a general
chlorophyll fluorescence marker of stress limited to
A. thaliana, as it is also seen in legumes (van Heerden
et al. 2003, 2004) and cereals (Strasser et al. 2004,
Antunovi¢ Duni¢ et al. 2023).

The use of Kautsky kinetics, OJIP (origin, 1* electron
intermediate peak, 2" electron intermediate peak) analysis,
and other fluorescence methods is crucial for dissecting
the various alterations that occur in the photosystem
due to stress (Rohacek 2002, Strasser et al. 2004). Most
importantly, however, Cd-induced stress causes a decline
in performance index (Plags), thereby supporting the use
of the utilized methods as a sensitive biomarker for PSII
impairment (Dobrikova et al. 2021, Chen et al. 2022). This
decline in performance index has also been observed in
several other plants, including spinach, barley (Vassilev
et al. 2003), rice (Lee ef al. 2025), and pea (Hattab et al.
2009). The importance of reporting performance index
decline in A. thaliana rests on the fact that there is less
comprehensive data on Plsps responses to multiple stresses
in this model organism. Furthermore, to dissect which
genes and pathways are responsible for PSII activity in
response to Cd, Plags declination enables mechanistic
studies on specific genes, especially since Arabidopsis
contains a diverse array of molecular genetic tools, such
as mutants, transcriptomics, and CRISPR lines (Pegler
et al. 2021). By using 4. thaliana in this study, the authors
have created a baseline by which stress responses can be
assessed in other Arabidopsis species under regulated
conditions (Giordano et al. 2025). Moreover, the reported
study allows for the expansion of our understanding of
how PSII in A. thaliana responds to combined stressors,
not just one, and this is essential as Arabidopsis has been
well-studied under drought, light, and nutrient stresses
(Fischer et al. 2017), but not under the simultaneous
exposure to high light and cadmium.
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The broader significance of these results lies in
facilitating and enhancing our understanding of multi-
stress interactions. Ben Ammar et a/. (2008) and Hakmaoui
et al. (2007) state that Cd toxicity, on its own, causes
disruption of chloroplast infrastructure and reduction
in biomass. However, the addition of high light stress
causes photoinhibition to amplify, resulting in slower
recovery and greater energy dissipation (Jin ef al. 2014,
Hikosaka 2021). Thus, the synergistic effect highlights
the imperativeness of considering multiple stress factors
in agricultural and ecological contexts (El Rasafi et al.
2022, Didaran et al. 2024).

Future study strategies should explore how the effect of
the interaction between Cd and high light can be mitigated.
These protective strategies used must include antioxidant
production enhancement (Bi et al. 2009, Namdjoyan et al.
2011), plant growth-promoting bacteria (He et al. 2020,
Wu et al. 2020), and xanthophyll cycle activity monitoring
(Pogsonetal. 1998, Liet al. 2000). These wider approaches
hold promise for the development of crop varieties and
management practices that can tolerate contaminated
environments that contain multiple co-occurring stressors.

In conclusion, Giordano et al. (2025) enrich our
mechanistic understanding of how heavy metals, such
as Cd, and high light interact with each other to damage
and/or impair photosynthetic processes. The linkage
between Cd toxicity and the exacerbated photoinhibition
in A. thaliana shows the vulnerability and adaptive limits
of PSII under compound stress conditions.
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