

LETTER TO THE EDITOR

Cadmium and high light stress interactions highlight limits of PSII in *Arabidopsis thaliana*

R. SINGH

Research Media SR & Golden Key International, South Africa, 4001 Durban, South Africa

Recently, Giordano *et al.* (2025) published an important article about the combinatory effect of cadmium (Cd) toxicity and high light stress on the photosynthetic performance in *Arabidopsis thaliana*. From this study, it was found that when *A. thaliana* is exposed to a higher concentration of Cd, three factors negatively impact the photosynthetic machinery of *A. thaliana*. There is compelling evidence that Cd contributes to the light stress experienced by *A. thaliana*, exacerbating it and thereby contributing to the three factors mentioned: impaired electron transport, elevated nonphotochemical quenching (NPQ), and a lowered F_v/F_m ratio. These factors demonstrate how a combination of converging physiological signals (*i.e.*, functional, protective, and efficiency-related) influences the photochemical machinery of *A. thaliana* in response to Cd exposure.

The implications of these findings apply to other plant species, not just *A. thaliana*, because Cd is a widespread environmental contaminant. Bharagava and Saxena (2020) state that agricultural and industrial activities produce Cd; however, when Cd accumulates in soils, crop productivity is affected in the long term (Alloway 2013). Cd, as reported in several other studies (Schiller and Dau 2000, Sigfridsson *et al.* 2004, Pagliano *et al.* 2006), interferes with the oxygen-evolving complex (Pagliano *et al.* 2013). This induces reactive oxygen species (ROS) (Cho and Seo 2005), causing photoinhibition and oxidative damage (Faller *et al.* 2005), while, in the process, impairment of PSII protein turnover occurs (Geiken *et al.* 1998).

Giordano *et al.* (2025) provide novel insight that practically shows photoinhibitory quenching overpowering energy-dependent quenching, highlighting the limitations imposed by Cd and high light on PSII (Fig. 1S, *supplement*). Therefore, the interaction of Cd and light stress induces structural damage, instead of just regulating energy dissipation, and this confirms earlier evidence that excess light accelerates Cd-induced PSII damage (Cai *et al.* 2023, Zhou *et al.* 2024). In addition, the presence of L- and K-bands in OJIP transients in Cd-exposed plants, a feature reported in barley (Kalaji *et al.* 2011) and pea (Jiang *et al.* 2006) plants as well, indicates that Cd causes a direct limitation of the oxygen-evolving complex activity, as well as interference with the antenna PSII connectivity.

This shows that K- and L-band emergence is not a general chlorophyll fluorescence marker of stress limited to *A. thaliana*, as it is also seen in legumes (van Heerden *et al.* 2003, 2004) and cereals (Strasser *et al.* 2004, Antunović Dunić *et al.* 2023).

The use of Kautsky kinetics, OJIP (origin, 1st electron intermediate peak, 2nd electron intermediate peak) analysis, and other fluorescence methods is crucial for dissecting the various alterations that occur in the photosystem due to stress (Roháček 2002, Strasser *et al.* 2004). Most importantly, however, Cd-induced stress causes a decline in performance index (PI_{ABS}), thereby supporting the use of the utilized methods as a sensitive biomarker for PSII impairment (Dobrikova *et al.* 2021, Chen *et al.* 2022). This decline in performance index has also been observed in several other plants, including spinach, barley (Vassilev *et al.* 2003), rice (Lee *et al.* 2025), and pea (Hattab *et al.* 2009). The importance of reporting performance index decline in *A. thaliana* rests on the fact that there is less comprehensive data on PI_{ABS} responses to multiple stresses in this model organism. Furthermore, to dissect which genes and pathways are responsible for PSII activity in response to Cd, PI_{ABS} declination enables mechanistic studies on specific genes, especially since *Arabidopsis* contains a diverse array of molecular genetic tools, such as mutants, transcriptomics, and CRISPR lines (Pegler *et al.* 2021). By using *A. thaliana* in this study, the authors have created a baseline by which stress responses can be assessed in other *Arabidopsis* species under regulated conditions (Giordano *et al.* 2025). Moreover, the reported study allows for the expansion of our understanding of how PSII in *A. thaliana* responds to combined stressors, not just one, and this is essential as *Arabidopsis* has been well-studied under drought, light, and nutrient stresses (Fischer *et al.* 2017), but not under the simultaneous exposure to high light and cadmium.

Received 31 August 2025

Accepted 3 September 2025

Published online 9 September 2025

e-mail: rishansingh18@gmail.com

Conflict of interest: The author declares no conflict of interest.

The broader significance of these results lies in facilitating and enhancing our understanding of multi-stress interactions. Ben Ammar *et al.* (2008) and Hakmaoui *et al.* (2007) state that Cd toxicity, on its own, causes disruption of chloroplast infrastructure and reduction in biomass. However, the addition of high light stress causes photoinhibition to amplify, resulting in slower recovery and greater energy dissipation (Jin *et al.* 2014, Hikosaka 2021). Thus, the synergistic effect highlights the imperativeness of considering multiple stress factors in agricultural and ecological contexts (El Rasafi *et al.* 2022, Didaran *et al.* 2024).

Future study strategies should explore how the effect of the interaction between Cd and high light can be mitigated. These protective strategies used must include antioxidant production enhancement (Bi *et al.* 2009, Namdjoyan *et al.* 2011), plant growth-promoting bacteria (He *et al.* 2020, Wu *et al.* 2020), and xanthophyll cycle activity monitoring (Pogson *et al.* 1998, Li *et al.* 2000). These wider approaches hold promise for the development of crop varieties and management practices that can tolerate contaminated environments that contain multiple co-occurring stressors.

In conclusion, Giordano *et al.* (2025) enrich our mechanistic understanding of how heavy metals, such as Cd, and high light interact with each other to damage and/or impair photosynthetic processes. The linkage between Cd toxicity and the exacerbated photoinhibition in *A. thaliana* shows the vulnerability and adaptive limits of PSII under compound stress conditions.

References

Alloway B.J.: Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their Bioavailability. 3rd Edition. Pp. 614. Springer, Dordrecht 2013.

Antunović Dunić J., Mlinarić S., Pavlović I. *et al.*: Comparative analysis of primary photosynthetic reactions assessed by OJIP kinetics in three *Brassica* crops after drought and recovery. – *Appl. Sci.* **13**: 3078, 2023.

Ben Ammar W., Mediouni C., Tray B. *et al.*: Glutathione and phytochelatin contents in tomato plants exposed to cadmium. – *Biol. Plantarum* **52**: 314-320, 2008.

Bharagava R.N., Saxena G. (ed.): Bioremediation of Industrial Waste for Environmental Safety. Volume II: Biological Agents and Methods for Industrial Waste Management. Pp. 538. Springer, Singapore 2020.

Bi Y., Chen W., Zhang W. *et al.*: Production of reactive oxygen species, impairment of photosynthetic function and dynamic changes in mitochondria are early events in cadmium-induced cell death in *Arabidopsis thaliana*. – *Biol. Cell* **101**: 629-643, 2009.

Cai Y., Qi Y., Zhu S.Q. *et al.*: Effects of cadmium stress on photosynthetic apparatus of tobacco. – *Appl. Ecol. Env. Res.* **21**: 1917-1929, 2023.

Chen X., Tao H., Wu Y., Xu X.: Effects of cadmium on metabolism of photosynthetic pigment and photosynthetic system in *Lactuca sativa* L. revealed by physiological and proteomics analysis. – *Sci. Hortic.-Amsterdam* **305**: 111371, 2022.

Cho U.-H., Seo N.-H.: Oxidative stress in *Arabidopsis thaliana* exposed to cadmium is due to hydrogen peroxide accumulation. – *Plant Sci.* **168**: 113-120, 2005.

Didaran F., Kordrostami M., Ghasemi-Soloklui A.A. *et al.*: The mechanisms of photoinhibition and repair in plants under high light conditions and interplay with abiotic stressors. – *J. Photoch. Photobio. B* **259**: 113004, 2024.

Dobrikova A.G., Apostolova E.L., Hanč A. *et al.*: Cadmium toxicity in *Salvia sclarea* L.: an integrative response of element uptake, oxidative stress markers, leaf structure and photosynthesis. – *Ecotox. Environ. Safe.* **209**: 111851, 2021.

El Rasafi T., Oukarroum A., Haddioui A. *et al.*: Cadmium stress in plants: a critical review of the effects, mechanisms, and tolerance strategies. – *Crit. Rev. Environ. Sci. Technol.* **52**: 675-726, 2022.

Faller P., Kienzler K., Krieger-Liszka A.: Mechanism of Cd²⁺ toxicity: Cd²⁺ inhibits photoactivation of Photosystem II by competitive binding to the essential Ca²⁺ site. – *BBA-Bioenergetics* **1706**: 158-164, 2005.

Fischer S., Spielau T., Clemens S.: Natural variation in *Arabidopsis thaliana* Cd responses and the detection of quantitative trait loci affecting Cd tolerance. – *Sci. Rep.-UK* **7**: 3693, 2017.

Geiken B., Masojídek J., Rizzuto M. *et al.*: Incorporation of [³⁵S]methionine in higher plants reveals that stimulation of the D1 reaction centre II protein turnover accompanies tolerance to heavy metal stress. – *Plant Cell Environ.* **21**: 1265-1273, 1998.

Giordano D., Barták M., Hájek J.: The combined effect of Cd and high light stress on the photochemical processes in *Arabidopsis thaliana*. – *Photosynthetica* **63**: 182-195, 2025.

Hakmaoui A., Ater M., Bóka K., Barón M.: Copper and cadmium tolerance, uptake and effect on chloroplast ultrastructure. Studies on *Salix purpurea* and *Phragmites australis*. – *Z. Naturforsch.* **62c**: 417-426, 2007.

Hattab S., Dridi B., Chouba L. *et al.*: Photosynthesis and growth responses of pea *Pisum sativum* L. under heavy metals stress. – *J. Environ. Sci.* **21**: 1552-1556, 2009.

He X., Xu M., Wei Q. *et al.*: Promotion of growth and phytoextraction of cadmium and lead in *Solanum nigrum* L. mediated by plant-growth-promoting rhizobacteria. – *Ecotox. Environ. Safe.* **205**: 111333, 2020.

Hikosaka K.: Photosynthesis, chlorophyll fluorescence and photochemical reflectance index in photoinhibited leaves. – *Funct. Plant Biol.* **48**: 815-826, 2021.

Jiang C.-D., Jiang G.-M., Wang X. *et al.*: Increased photosynthetic activities and thermostability of photosystem II with leaf development of elm seedlings (*Ulmus pumila*) probed by the fast fluorescence rise OJIP. – *Environ. Exp. Bot.* **58**: 261-268, 2006.

Jin H., Liu B., Luo L. *et al.*: HYPERSENSITIVE TO HIGH LIGHT1 interacts with LOW QUANTUM YIELD OF PHOTOSYSTEM III1 and functions in protection of photosystem II from photodamage in *Arabidopsis*. – *Plant Cell* **26**: 1213-1229, 2014.

Kalaji H.M., Govindjee, Bosa K. *et al.*: Effects of salt stress on photosystem II efficiency and CO₂ assimilation of two Syrian barley landraces. – *Environ. Exp. Bot.* **73**: 64-72, 2011.

Lee H.-S., Jo S.-H., Kim J.-H. *et al.*: Impact of heat and ozone stress on rice growth and productivity: interactive and mitigating effects. – *Sci. Total Environ.* **980**: 179471, 2025.

Li X.P., Björkman O., Shih C. *et al.*: A pigment-binding protein essential for regulation of photosynthetic light harvesting. – *Nature* **403**: 391-395, 2000.

Namdjoyan S.H., Khavari-Nejad R.A., Bernard F. *et al.*: Antioxidant defense mechanisms in response to cadmium treatments in two safflower cultivars. – *Russ. J. Plant Physiol.* **58**: 467-477, 2011.

Pagliano C., Ravaioli M., Dalla Vecchia F. *et al.*: Evidence for PSII donor-side damage and photoinhibition induced by cadmium treatment on rice (*Oryza sativa* L.). – *J. Photoch.*

Photobio. B **84**: 70-78, 2006.

Pagliano C., Saracco G., Barber J.: Structural, functional and auxiliary proteins of photosystem II. – Photosynth. Res. **116**: 167-188, 2013.

Pegler J.L., Oultram J.M.J., Nguyen D.Q. *et al.*: MicroRNA-mediated responses to cadmium stress in *Arabidopsis thaliana*. – Plants-Basel **10**: 130, 2021.

Pogson B.J., Niyogi K.K., Björkman O., DellaPenna D.: Altered xanthophyll compositions adversely affect chlorophyll accumulation and non-photochemical chlorophyll fluorescence quenching in *Arabidopsis* mutants. – PNAS **95**: 13324-13329, 1998.

Roháček K.: Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. – Photosynthetica **40**: 13-29, 2002.

Schiller H., Dau H.: Preparation protocols for high-activity Photosystem II membrane particles of green algae and higher plants, pH dependence of oxygen evolution and comparison of the S₂-state multiline signal by X-band EPR spectroscopy. – J. Photoch. Photobio. B **55**: 138-144, 2000.

Sigfridsson K.G.V., Bernát G., Mamedov F., Styring S.: Molecular interference of Cd²⁺ with photosystem II. – BBA-Bioenergetics **1659**: 19-31, 2004.

Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll *a* fluorescence transient. – In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll *a* Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 321-362. Springer, Dordrecht 2004.

van Heerden P.D.R., Strasser R.J., Krüger G.H.J.: Reduction of dark chilling stress in N₂-fixing soybean by nitrate as indicated by chlorophyll *a* fluorescence kinetics. – Physiol. Plantarum **121**: 239-249, 2004.

van Heerden P.D.R., Tsimilli-Michael M., Krüger G.H.J., Strasser R.J.: Dark chilling effects on soybean genotypes during vegetative development: parallel studies of CO₂ assimilation, chlorophyll *a* fluorescence kinetics O-J-I-P and nitrogen fixation. – Physiol. Plantarum **117**: 476-491, 2003.

Vassilev A., Lidon F., Ramalho J.C. *et al.*: Effects of excess Cu on growth and photosynthesis of barley plants. Implication with a screening test for Cu tolerance. – J. Cent. Eur. Agric. **4**: 225-236, 2003.

Wu Y., Ma L., Liu Q. *et al.*: The plant-growth promoting bacteria promote cadmium uptake by inducing a hormonal crosstalk and lateral root formation in a hyperaccumulator plant *Sedum alfredii*. – J. Hazard. Mater. **395**: 122661, 2020.

Zhou R., Xu J., Li L. *et al.*: Exploration of the effects of cadmium stress on photosynthesis in *Oenanthe javanica* (Blume) DC. – Toxics **12**: 307, 2024.

© The author. This is an open access article distributed under the terms of the Creative Commons BY-NC-ND Licence.