Photosynthetica 2021, 59(SI):381-398 | DOI: 10.32615/ps.2021.017
Can chlorophyll fluorescence imaging make the invisible visible?
- Molecular and Physical Plant Physiology, Faculty of Sciences, Hasselt University, B-3590 Diepenbeek, Belgium
Chlorophyll fluorescence has developed into a well-established noninvasive technique to study photosynthesis and by extension, the physiology of plants and algae. The versatility of the fluorescence analysis has been improved significantly due to advancements in the technology of light sources, detectors, and data handling. This allowed the development of an instrumention that is effective, easy to handle, and affordable. Several of these techniques rely on point measurements. However, the response of plants to environmental stresses is heterogeneous, both spatially and temporally. Beside the nonimaging systems, low- and high-resolution imaging systems have been developed and are in use as real-time, multi-channel fluorometers to investigate heterogeneous patterns of photosynthetic performance of leaves and algae. This review will revise in several paragraphs the current status of chlorophyll fluorescence imaging, in exploring photosynthetic features to evaluate the physiological response of plant organisms in different domains. In the conclusion paragraph, an attempt will be made to answer the question posed in the title.
Additional key words: chlorophyll fluorescence imaging; hyperspectral imaging; image processing; multicolour fluorescence imaging; stresses; thermal imaging.
Received: January 7, 2021; Revised: February 23, 2021; Accepted: March 9, 2021; Prepublished online: May 4, 2021; Published: July 23, 2021 Show citation
Supplementary files
| Download file | Valcke_2688_supplement.docx File size: 15.35 kB |
References
- Agati G., Bilger W., Cerovic Z.G.: Fluorescence tools for sensing of quality related phytochemicals in fruits and vegetables. - In: Kuswandi B., Siddiqui M.W. (ed.): Sensor-Based Quality Assessment Systems for Fruits and Vegetables. Pp. 79-109. Apple Academic Press, New York 2020.
Go to original source... - Agati G., Cerovic Z.G., Moya I.: The effect of decreasing temperature up to chilling values on the in vivo F685/F735 chlorophyll fluorescence ratio in Phaseolus vulgaris and Pisum sativum. The role of photosystem I contribution to the 735 nm fluorescence band. - Photochem. Photobiol. 72: 75-84, 2000.
Go to original source... - Agati G., Meyer S., Matteini P., Cerovic Z.G.: Assessment of anthocyanins in grape (Vitis vinifera L.) berries using a noninvasive chlorophyll fluorescence method. - J. Agr. Food Chem. 55: 1053-1061, 2007.
Go to original source... - Agati G., Traversi M.L., Cerovic Z.G.: Chlorophyll fluorescence imaging for the noninvasive assessment of anthocyanins in whole grape (Vitis vinifera L.) bunches. - Photochem. Photobiol. 84: 1431-1434, 2008.
Go to original source... - Ammer K., Ring F.: The history of thermal imaging from 1960. -In: Ammer K., Ring F. (ed.): The Thermal Human Body: A Practical Guide to Thermal Imaging. Jenny Stanford Publishing, Boca Raton 2019.
- Awlia M., Nigro A., Fajkus J. et al.: High-throughput non-destructive phenotyping of traits that contribute to salinity tolerance in Arabidopsis thaliana. - Front. Plant Sci. 7: 1414, 2016.
Go to original source... - Barbagallo R.P., Oxborough K., Pallett K.E., Baker N.R.: Rapid, noninvasive screening for perturbations of metabolism and plant growth using chlorophyll fluorescence imaging. - Plant Physiol. 132: 485-493, 2003.
Go to original source... - Barták M., Hájek J., Vráblíková H., Dubová J.: High-light stress and photoprotection in Umbilicaria antarctica monitored by chlorophyll fluorescence imaging and changes in zeaxanthin and glutathione. - Plant Biol. 6: 333-341, 2004.
Go to original source... - Bauriegel E., Brabandt H., Gärber U., Herppich W.B.: Chloro-phyll fluorescence imaging to facilitate breeding of Bremia lactucae-resistant lettuce cultivars. - Comput. Electron. Agr. 105: 74-82, 2014.
Go to original source... - Bauriegel E., Giebel A., Herppich W.B.: Hyperspectral and chlorophyll fluorescence imaging to analyse the impact of Fusarium culmorum on the photosynthetic integrity of infected wheat ears. - Sensors-Basel 11: 3765-3779, 2011.
Go to original source... - Bayçu G., Moustaka J., Gevrek N., Moustakas M.: Chlorophyll fluorescence imaging analysis for elucidating the mechanism of photosystem II acclimation to cadmium exposure in the hyperaccumulating plant Noccaea caerulescens. - Materials 11: 2580, 2018.
Go to original source... - Belin É., Rousseau D., Boureau T., Caffier V.: Thermography versus chlorophyll fluorescence imaging for detection and quantification of apple scab. - Comput. Electron. Agr. 90: 159-163, 2013.
Go to original source... - Bellasio C., Olejníčková J., Tesař R. et al.: Computer reconstruction of plant growth and chlorophyll fluorescence emission in three spatial dimensions. - Sensors-Basel 12: 1052-1071, 2012.
Go to original source... - Berger S., Benediktyová Z., Matouą K. et al.: Visualization of dynamics plant-pathogen interaction by novel combination of chlorophyll fluorescence imaging and statistical analysis: differential effects of virulent and avirulent strains of P. syringae and of oxylipins on A. thaliana. - J. Exp. Bot. 58: 797-806, 2007.
Go to original source... - Bielczynski L.W., ٱcki M.K., Hoefnagels I. et al.: Leaf and plant age affects photosynthetic performance and photoprotective capacity. - Plant Physiol. 175: 1634-1648, 2017.
Go to original source... - Boelt B., Shrestha S., Salimi Z. et al.: Multispectral imaging - a new tool in seed quality assessment? - Seed Sci. Res. 28: 222-228, 2018.
Go to original source... - Borek M., Baçzek-Kwinta R., Rapacz M.: Photosynthetic activity of variegated leaves of Coleus × hybridus hort. cultivars characterized by chlorophyll fluorescence techniques. - Photosynthetica 54: 331-339, 2016.
Go to original source... - Borsuk A.M., Brodersen C.R.: The spatial distribution of chlorophyll in leaves. - Plant Physiol. 180: 1406-1417, 2019.
Go to original source... - Brabazon H., DeBruyn J.M., Lenaghan S.C. et al.: Plants to remotely detect human decomposition? - Trends Plant Sci. 25: 947-949, 2020.
Go to original source... - Bramley R.G.V.: Understanding variability in winegrape production systems. 2. Within vineyard variation in quality over several vintages. - Aust. J. Grape Wine Res. 11: 33-42, 2005.
Go to original source... - Bresson J., Vasseur F., Duazat M. et al.: Quantifying spatial heterogeneity of chlorophyll fluorescence during plant growth and in response to water stress. - Plant Methods 11: 23, 2015.
Go to original source... - Briantais J.-M., Merkelo H., Govindjee: Lifetime of the excited state in vivo. III. Chlorophyll during fluorescence induction in Chlorella pyrenoidosa. - Photosynthetica 6: 133-141, 1972.
- Bro L., Meyer S., Genty B.: Heterogeneity of leaf CO2 assimilation during photosynthetic induction. - Plant Cell Environ. 19: 1349-1358, 1996.
Go to original source... - Buschmann C., Lichtenthaler H.K.: Principles and characteristics of multi-colour fluorescence imaging of plants. - J. Plant Physiol. 152: 297-314, 1998.
Go to original source... - Calatayud A. Roca D., Martínez P.F.: Spatial-temporal variations in rose leaves under water stress conditions studied by chlorophyll fluorescence imaging. - Plant Physiol. Bioch. 44: 564-573, 2006.
Go to original source... - Calatayud A., San Bautista A., Pascual B. et al.: Use of chlorophyll fluorescence imaging as diagnostic technique to predict compatibility in melon graft. - Sci. Hortic.-Amsterdam 149: 13-18, 2013.
Go to original source... - Carreira C., Staal M., Middelboe M., Brussaard C.P.D.: Auto-fluorescence imaging system to discriminate and quantify the distribution of benthic cyanobacteria and diatoms. - Limnol. Oceanogr. Methods 13: 169-177, 2015.
Go to original source... - Castrisios K., Martin A., Müller M.N. et al.: Response of Antarctic sea-ice algae to an experimental decrease in pH: a preliminary analysis of chlorophyll fluorescence imaging of melting ice. - Polar Res. 37: 1438696, 2018.
Go to original source... - Cen H., Weng H., Yao J. et al.: Chlorophyll fluorescence imaging uncovers photosynthetic fingerprint of citrus Huanglongbing. -Front. Plant Sci. 8: 1509, 2017.
Go to original source... - Chaerle L., Hagenbeek D., De Bruyne E. et al.: Thermal and chlorophyll fluorescence imaging distinguish plant-pathogen interactions at an early stage. - Plant Cell Physiol. 45: 887-896, 2004.
Go to original source... - Chaerle L., Hagenbeek D., De Bruyne E., Van Der Straeten D.: Chlorophyll fluorescence imaging for disease-resistance screening of sugar beet. - Plant Cell Tiss. Org. 91: 97-106, 2007.
Go to original source... - Chaerle L., Hulsen K., Hermans C. et al.: Robotized time-lapse imaging to assess in-planta uptake of phenylurea herbicides and their microbial degradation. - Physiol. Plantarum 118: 613-619, 2003.
Go to original source... - Chen C.P., Frank T.D., Long S.P.: Is a short, sharp shock equivalent to long-term punishment? Contrasting the spatial pattern of acute and chronic ozone damage to soybean leaves via chlorophyll fluorescence imaging. - Plant Cell Environ. 32: 327-335, 2009.
Go to original source... - Chen F.-E., Wu N., Zhang Z.-W. et al.: Perspective of monitoring heavy metals by moss visible chlorophyll fluorescence parameters. - Front. Plant Sci. 10: 35, 2019.
Go to original source... - Ciscato M.: Development of a fluorescence imaging system for the quality assessment of fruit and vegetables. Ph.D. Thesis. UHasselt, D/2000/2451/125, 2000.
- Ciscato M., Sowinska M., vandeVen M. et al.: Fluorescence imaging as a diagnostic tool to detect physiological disorders during storage of apples. - Acta Hortic. 553: 507-512, 2001.
Go to original source... - Ciscato M., Valcke R.: Chlorophyll fluorescence imaging of heavy metal stress treated plants. - In: Garab G. (ed.): Photosynthesis: Mechanisms and Effects. Vol. IV. Pp. 2661-2663. Springer, Dordrecht 1998.
Go to original source... - Codrea M.C., Nevalainen O.S., Huybrechts C. et al.: Classifi-cation of apples according to physiological status measured by fluorescence imaging. TUCS Technical Reports 646. Turku Centre for Computer Science, Turku 2004b.
- Codrea M.C., Nevalainen O.S., Tyystjärvi E. et al.: Classifying apples by means of fluorescence imaging. - Int. J. Pattern Recogn. Artif. Intell. 18: 157-174, 2004a.
Go to original source... - Cogliati S., Alonso L., Zhao F. (ed.): Remote Sensing - Special Issue: 'Advances on Quantitative Remote Sensing of Sun-induced Chlorophyll Fluorescence', 2020.
- Cristianini N., Shawe-Taylor J.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Pp. 189. Cambridge University Press, Cambridge 2000.
Go to original source... - Croxdale J.G., Omasa K.: Chlorophyll a fluorescence and carbon assimilation in developing leaves of light-grown cucumber. - Plant Physiol. 93: 1078-1082, 1990a.
Go to original source... - Croxdale J.G., Omasa K.: Patterns of chlorophyll fluorescence kinetics in relation to growth and expansion in cucumber leaves. - Plant Physiol. 93: 1083-1088, 1990b.
Go to original source... - Cruz J.A., Savage L.J., Zegarac R. et al.: Dynamic environmental photosynthetic imaging reveals emergent phenotypes. - Cell Systems 2: 365-377, 2016.
Go to original source... - Cséfalvay L., Di Gaspero G., Matouą K. et al.: Pre-symptomatic detection of Plasmopara viticola infection in grapevine leaves using chlorophyll fluorescence imaging. - Eur. J. Plant Pathol. 125: 291-302, 2009.
Go to original source... - Daley P.F., Raschke K., Ball J.T., Berry J.A.: Topography of photosynthetic activity of leaves obtained from video imaging of chlorophyll fluorescence. - Plant Physiol. 90: 1233-1238, 1989.
Go to original source... - De Grave C., Verrelst J., Morcillo-Pallarés P. et al.: Quantifying vegetation biophysical variables from the Sentinel-3/FLEX tandem mission: Evaluation of the synergy of OLCI and FLORIS data sources. - Remote Sens. Environ. 251: 112101, 2020.
Go to original source... - de Sousa C.A.F., de Paiva D.S., Casari R.A. et al.: A procedure for maize genotypes discrimination to drought by chlorophyll imaging rapid light curves. - Plant Methods 13: 61, 2017.
Go to original source... - Delalieux S., Auwerkerken A., Verstraeten W.W. et al.: Hyper-spectral reflectance and fluorescence imaging to detect scab induced stress in apple leaves. - Remote Sens.-Basel 1: 858-874, 2009.
Go to original source... - Devacht S., Lootens P., Baert J. et al.: Evaluation of cold stress of young industrial chicory (Cichorum intybus L.) by chlorophyll fluorescence imaging. I. Light induction curve. - Photosynthetica 49: 161-171, 2011.
Go to original source... - Dong Z., Men Y., Li Z. et al.: Chlorophyll fluorescence imaging as a tool for analyzing the effects of chilling injury on tomato seedlings. - Sci. Hortic.-Amsterdam 246: 490-497, 2019.
Go to original source... - Dong Z., Men Y., Liu Z. et al.: Application of chlorophyll fluorescence imaging technique in analysis and detection of chilling injury of tomato seedlings. - Comput. Electron. Agr. 168: 105109, 2020.
Go to original source... - Du S., Liu L., Liu X. et al.: The solar-induced chlorophyll fluorescence imaging spectrometer (SIFIS) on board the First Terrestrial Ecosystem Carbon Inventory Satellite (TECIS-1): specifications and prospects. - Sensors-Basel 20: 815, 2020.
Go to original source... - Duan J., Fu B., Kang H. et al.: Response of gas-exchange characteristics and chlorophyll fluorescence to acute sulfur dioxide exposure in landscape plants. - Ecotox. Environ. Safe. 171: 122-129, 2019.
Go to original source... - Ehlert B., Hincha D.K.: Chlorophyll fluorescence imaging accurately quantifies freezing damage and cold acclimation responses in Arabidopsis leaves. - Plant Methods 4: 12, 2008.
Go to original source... - Ellenson J.L., Amundson R.G.: Delayed light imaging for the early detection of plant stress. - Science 215: 1104-1106, 1982.
Go to original source... - Endo R., Omasa K.: Chlorophyll fluorescence imaging of individual algal cells: effects of herbicide on Spirogyra distenta at different growth stages. - Environ. Sci. Technol. 38: 4165-4168, 2004.
Go to original source... - Endo R., Omasa K.: 3-D cell-level chlorophyll fluorescence imaging of ozone-injured sunflower leaves using a new passive light microscope system. - J. Exp. Bot. 58: 765-772, 2007.
Go to original source... - Erickson Z.K., Frankenberg C., Thompson D.R. et al.: Remote sensing of chlorophyll fluorescence in the ocean using imaging spectrometry: toward a vertical profile of fluorescence. - Geophys. Res. Lett. 46: 1571-1579, 2019.
Go to original source... - Feng X., Yu C., Chen Y. et al.: Non-destructive determination of shikimic acid concentration in transgenic maize exhibiting glyphosate tolerance using chlorophyll fluorescence and hyperspectral imaging. - Front. Plant Sci. 9: 468, 2018.
Go to original source... - Fenton J.M., Crofts A.R.: Computer aided fluorescence imaging of photosynthetic systems. - Photosynth. Res. 26: 59-66, 1990.
Go to original source... - Fernandez-Jaramillo A.A., Duarte-Galvan C., Contreras-Medina L.M. et al.: Instrumentation in developing chlorophyll fluorescence biosensing: a review. - Sensors-Basel 12: 11853-11869, 2012.
Go to original source... - Fortunato A.A., Debona D., Aucique-Pérez C.E. et al.: Chlorophyll a fluorescence imaging of soya bean leaflets infected by Corynespora cassiicola. - J. Phytopathol. 166: 782-789, 2018.
Go to original source... - Frankenberg C., Berry J.: Solar induced chlorophyll fluorescence: origins, relation to photosynthesis and retrieval. - Compr. Remote Sens. 3: 143-162, 2018.
Go to original source... - Frankenberg C., Köhler P., Magney T.S. et al.: The chlorophyll fluorescence imaging spectrometer (CFIS), mapping far red fluorescence from aircraft. - Remote Sens. Environ. 217: 523-536, 2018.
Go to original source... - Galletti P.A., Carvalho M.E.A., Hirai W.Y. et al.: Integrating optical imaging tools for rapid and non-invasive characterization of seed quality: tomato (Solanum lycopersicum L.) and carrot (Daucus carota L.) as study cases. - Front. Plant Sci. 11: 577581, 2020.
Go to original source... - Gashi B., Babani F., Kongjika E.: Chlorophyll fluorescence imaging of photosynthetic activity and pigment contents of the resurrection plants Ramonda serbica and Ramonda nathaliae during dehydration and rehydration. - Physiol. Mol. Biol. Pla. 19: 333-341, 2013.
Go to original source... - Gauslaa Y., Solhaug K.A., Longinotti S.: Functional traits prolonging photosynthetic active periods in epiphytic cephalolichens during desiccation. - Environ. Exp. Bot. 141: 83-91, 2017.
Go to original source... - Genty B., Briantais J.-M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. - BBA-Gen. Subjects 990: 87-92, 1989.
Go to original source... - Genty B., Meyer S.: Quantitative mapping of leaf photosynthesis using chlorophyll fluorescence imaging. - Aust. J. Plant Physiol. 22: 277-284, 1995.
Go to original source... - Gielen B., De Boeck H.J., Lemmens C.M.H.M. et al.: Grassland species will not necessarily benefit from future elevated air temperatures: a chlorophyll fluorescence approach to study autumn physiology. - Physiol. Plantarum 125: 52-63, 2005.
Go to original source... - Gielen B., Löw M., Deckmyn G. et al.: Chronic ozone exposure affects leaf senescence of adult beech trees: a chlorophyll fluorescence approach. - J. Exp. Bot 58: 785-795, 2007a.
Go to original source... - Gielen B., Naudts K., D'Haese D. et al.: Effects of climate warming and species richness on photochemistry of grasslands. - Physiol. Plantarum 131: 251-262, 2007b.
Go to original source... - Gielen B., Vandermeiren K., Horemans N. et al.: Chlorophyll a fluorescence imaging of ozone-stressed Brassica napus L. plants differing in glucosinolate concentrations. - Plant Biol. 8: 698-705, 2006.
Go to original source... - Gilmore A.M., Govindjee: How higher plants respond to excess light: energy dissipation in photosystem II. - In: Singhal G.S., Renger G., Sopory S. et al. (ed.): Concepts in Photobiology. Pp. 513-548. Springer, Dordrecht 1999.
Go to original source... - Goetz A.F.H.: Three decades of hyperspectral remote sensing of the earth: A personal view. - Remote Sens. Environ. 113: S5-S16, 2009.
Go to original source... - Gorbe E., Calatayud A.: Applications of chlorophyll fluorescence imaging technique in horticultural research: a review. - Sci. Hortic.-Amsterdam 138: 24-35, 2012.
Go to original source... - Govindjee: Sixty-three years since Kautsky: chlorophyll a fluorescence. - Aust. J. Plant Physiol. 22: 131-160, 1995.
Go to original source... - Gower J.: On the use of satellite-measured chlorophyll fluorescence for monitoring coastal waters. - Int. J. Remote Sens. 37: 2077-2086, 2016.
Go to original source... - Granum E., Pérez-Bueno M.L., Calderón C.E. et al.: Metabolic responses of avocado plants to stress induced by Rosellinia necatrix analysed by fluorescence and thermal imaging. - Eur. J. Plant Pathol. 142: 625-632, 2015.
Go to original source... - Gray G.R., Hope B.J., Qin X. et al.: The characterization of photoinhibition and recovery during cold acclimation in Arabidopsis thaliana using chlorophyll fluorescence imaging. - Physiol. Plantarum 119: 365-375, 2003.
Go to original source... - Guadagno C.R., Ewers B.E., Speckman H.N. et al.: Dead or alive? Using membrane failure and chlorophyll a fluorescence to predict plant mortality from drought. - Plant Physiol. 175: 223-234, 2017.
Go to original source... - Guárdia M., Fernández J., Elena G., Fleck I.: Stomatal patchiness in the Mediterranean holm oak (Quercus ilex L.) under water stress in the nursery and in the forest. - Tree Physiol. 32: 829-838, 2012.
Go to original source... - Hacker J., Spindelböck P., Neuner G.: Mesophyll freezing and effects of freeze dehydration visualized by simultaneous measurement of IDTA and differential imaging chlorophyll fluorescence. - Plant Cell Environ. 31: 1725-1733, 2008.
Go to original source... - Hägele F., Bauer S., Menegat A. et al.: Chlorophyll fluorescence imaging for monitoring the effects of minimal processing and warm water treatments on physiological properties and quality attributes of fresh-cut salads. - Food Bioprocess Technol. 9: 650-663, 2016.
Go to original source... - Han Q.-J., Wu H.-L., Cai C.-B. et al.: An ensemble of Monte Carlo uninformative variable elimination for wavelength selection. - Anal. Chim. Acta 612: 121-125, 2008.
Go to original source... - Harbinson J., Prinzenberg A.E., Kruijer W., Aarts M.G.M.: High throughput screening with chlorophyll fluorescence imaging and its use in crop improvement. - Curr. Opin. Biotech. 23: 221-226, 2012.
Go to original source... - Harvey E.N.: A History of Luminescence from the Earliest Times until 1900. Pp. 692. American Philosophical Society, Philadelphia 1957.
Go to original source... - Hawes I., Lund-Hansen L.C., Sorrell B.K. et al.: Photobiology of sea ice algae during initial spring growth in Kangerlussuaq, West Greenland: insights from imaging variable chlorophyll fluorescence of ice cores. - Photosynth. Res. 112: 103-115, 2012.
Go to original source... - Herritt M.T., Pauli D., Mockler T.C., Thompson A.L.: Chlorophyll fluorescence imaging captures photochemical efficiency of grain sorghum (Sorghum bicolor) in a field setting. - Plant Methods 16: 109, 2020.
Go to original source... - Hogewoning S.W., Harbinson J.: Insights on the development, kinetics, and variation of photoinhibition using chlorophyll fluorescence imaging of a chilled, variegated leaf. - J. Exp. Bot. 58: 453-463, 2007.
Go to original source... - Holub O., Seufferheld M.J., Gohlke C. et al.: Fluorescence lifetime imaging (LFI) in real-time - a new technique in photosynthesis research. - Photosynthetica 38: 581-599, 2000.
Go to original source... - Holub O., Seufferheld M.J., Gohlke C. et al.: Fluorescence lifetime imaging microscopy of Chlamydomonas reinhardtii: non-photochemical quenching mutants and the effect of photosynthetic inhibitors on the slow fluorescence transient. -J. Microsc. 226: 90-120, 2007.
Go to original source... - Humplík J.F., Lazár D., Husičková A., Spíchal L.: Automated phenotyping of plants shoots using imaging methods for analysis of plant stress responses - a review. - Plant Methods 11: 29, 2015.
Go to original source... - Hupp S., Rosenkranz M., Bonfig K. et al.: Noninvasive phenotyping of plant-pathogen interaction: consecutive in situ imaging of fluorescing Pseudomonas syringae, plant phenolic fluorescence, and chlorophyll fluorescence in Arabidopsis leaves. - Front. Plant Sci. 10: 1239, 2019.
Go to original source... - Huybrechts C.: The use of a fluorescence imaging system to study pre- and postharvest stress in fruit trees and apples. Ph.D. Thesis. UHasselt, D/2003/1942/9801, 2003.
- Jedmowski C., Brüggemann W.: Imaging of chlorophyll fluorescence induction curve (OJIP) parameters, applied in a screening study with wild barley (Hordeum spontaneum) genotypes under heat stress. - J. Photochem. Photobiol. 151: 153-160, 2015.
Go to original source... - Kaiser Y.I., Menegat A., Gerhards R.: Chlorophyll fluorescence imaging: a new method for rapid detection of herbicide resistance in Alopecurus myosuroides. - Weed Res. 53: 399-406, 2013.
Go to original source... - Kalaji H.M., Goltsev V., Bosa K. et al.: Experimental in vivo measurements of light emission in plants: a perspective dedicated to David Walker. - Photosynth. Res. 114: 69-96, 2012.
Go to original source... - Kamakura M., Kosugi Y., Takanashi S. et al.: Observation of the scale of patchy stomatal behavior in leaves of Quercus crispula using an imaging-PAM chlorophyll fluorometer. - Tree Physiol. 32: 839-846, 2012.
Go to original source... - Kasajima I.: Difference in oxidative stress tolerance between rice cultivars estimated with chlorophyll fluorescence analysis. - BMC Res. Notes 10: 168, 2017.
Go to original source... - Kautsky H., Hirsch A.: Neue Versuche zur Kohlensäure-assimilation. - Naturwissenschaften 19: 964, 1931.
Go to original source... - Keller B., Matsubara S., Rascher U. et al.: Genotype specific photosynthesis × environment interactions captured by automated fluorescence canopy scans over two fluctuating growing seasons. - Front. Plant Sci. 10: 1482, 2019.
Go to original source... - Kleefeld A., Gypser S., Herppich W.B. et al.: Identification of spatial pattern of photosynthesis hotspots in moss- and lichen-dominated biological soil crusts by combining chlorophyll fluorescence imaging and multispectral BNDVI images. - Pedobiologia 65: 1-11, 2018.
Go to original source... - Kottuparambil S., Brown M.T., Park J. et al.: Comparative assessment of single and joint effects of diuron and Irgarol 1051 on Arctic and temperate microalgae using chlorophyll a fluorescence imaging. - Ecol. Indic. 76: 304-316, 2017.
Go to original source... - Kristoffersen A., Hamre B., Frette Ø., Erga S.R.: Chlorophyll a fluorescence lifetime reveals reversible UV-induced photo-synthetic activity in the green algae Tetraselmis. - Eur. Biophys. J. 45: 259-268, 2016.
Go to original source... - Küpper H., Benedikty Z., Morina F. et al.: Analysis of OJIP chlorophyll fluorescence kinetics and QA reoxidation kinetics by direct fast imaging. - Plant Physiol. 179: 369-381, 2019.
Go to original source... - Lakowicz J.R.: Principles of Fluorescence Spectroscopy. 3rd Edition. Pp. 954. Springer, Boston 2006.
Go to original source... - Lawson T., Vialet-Chabrand S.: Chlorophyll fluorescence imaging. - In: Covshoff S. (ed.): Photosynthesis: Methods in Molecular Biology. Vol. 1770. Pp. 121-140. Humana Press, New York 2018.
Go to original source... - Lazár D., Nauą J.: Statistical properties of chlorophyll fluorescence induction parameters. - Photosynthetica 35: 121-127, 1998.
Go to original source... - Leal M.C., Jesus B., Ezequiel J. et al.: Concurrent imaging of chlorophyll fluorescence, chlorophyll a content and green fluorescent proteins-like proteins of symbiotic cnidarians. - Mar. Ecol. 36: 572-584, 2015.
Go to original source... - Lefcourt A.M., Kistler R., Gadsden S.A., Kim M.S.: Automated cart with VIS/NIR hyperspectral reflectance and fluorescence imaging capabilities. - Appl. Sci. 7: 3, 2017.
Go to original source... - Lei R., Jiang H., Hu F. et al.: Chlorophyll fluorescence lifetime imaging provides new insight into the chlorosis induced by plant virus infection. - Plant Cell Rep. 36: 327-341, 2017.
Go to original source... - Leipner J., Oxborough K., Baker N.R.: Primary sites of ozone-induced perturbations of photosynthesis in leaves: identification and characterization in Phaseolus vulgaris using high resolution chlorophyll fluorescence imaging. - J. Exp. Bot. 52: 1689-1696, 2001.
Go to original source... - Lenk S., Chaerle L., Pfündel E.E. et al.: Multispectral fluorescence and reflectance imaging at the leaf level and its possible applications. - J. Exp. Bot. 58: 807-814, 2007.
Go to original source... - Li H., Wang P., Weber J.F., Gerhards R.: Early identification of herbicide stress in soybean (Glycine max (L.) Merr.) using chlorophyll fluorescence imaging technology. - Sensors-Basel 18: 21, 2018.
Go to original source... - Lichtenthaler H.K.: The Kautsky effect: 60 years of chlorophyll fluorescence induction kinetics. - Photosynthetica 27: 45-55, 1992.
- Lichtenthaler H.K.: Multi-colour fluorescence imaging of photosynthetic activity and plant stress. - Photosynthetica 59: 364-380, 2021.
Go to original source... - Lichtenthaler H.K., Ač A., Marek M.V. et al.: Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species. - Plant Physiol. Bioch. 45: 577-588, 2007a.
Go to original source... - Lichtenthaler H.K., Babani F.: Detection of photosynthetic activity and water stress by imaging the red chlorophyll fluorescence. - Plant Physiol. Bioch. 38: 889-895, 2000.
Go to original source... - Lichtenthaler H.K., Babani F., Langsdorf G.: Chlorophyll fluorescence imaging of photosynthetic activity in sun and shade leaves of trees. - Photosynth. Res. 93: 235-244, 2007b.
Go to original source... - Lichtenthaler H.K., Lang M., Sowinska M. et al.: Detection of vegetation stress via a new high resolution fluorescence imaging system. - J. Plant Physiol. 148: 599-612, 1996.
Go to original source... - Lichtenthaler H.K., Lang M., Sowinska M. et al.: Uptake of the herbicide diuron (DCMU) as visualized by the fluorescence imaging technique. - Plant Biol. 110: 158-163, 1997.
Go to original source... - Lichtenthaler H.K., Langsdorf G., Buschmann C.: Uptake of diuron and concomitant loss of photosynthetic activity in leaves as visualized by imaging the red chlorophyll fluorescence. - Photosynth. Res. 116: 355-361, 2013.
Go to original source... - Lichtenthaler H.K., Langsdorf G., Lenk S., Buschmann C.: Chloro- phyll fluorescence imaging of photosynthetic activity with the flash-lamp fluorescence imaging system. - Photosynthetica 43: 355-369, 2005.
Go to original source... - Lichtenthaler H.K., Miehé J.A.: Fluorescence imaging as a diagnostic tool for plant stress. - Trends Plant Sci. 2: 316-320, 1997.
Go to original source... - Lootens P., Devacht S., Baert J. et al.: Evaluation of cold stress of young industrial chicory (Cichorium intybus L.) by chlorophyll fluorescence imaging. II. Dark relaxation kinetics. - Photosynthetica 49: 185-194, 2011.
Go to original source... - Lötze E., Huybrechts C., Sadie A. et al.: Fluorescence imaging as a non-destructive method for pre-harvest detection of bitter pit in apple fruit (Malus domestica Borkh.). - Postharvest Biol. Tec. 40: 287-294, 2006.
Go to original source... - Lu Y., Lu R.: Enhancing chlorophyll fluorescence imaging under structural illumination with automated vignetting correction for detection of chilling injury in cucumbers. - Comput. Electron. Agr. 168: 105145, 2020.
Go to original source... - Lyu J.I., Kim J.H., Chu H. et al.: Natural allelic variation of GVS1 confers diversity in the regulation of leaf senescence in Arabidopsis. - New Phytol. 221: 2320-2334, 2019.
Go to original source... - Mahlein A.-K.: Plant disease detection by imaging sensors - Parallels and specific demands for precision agriculture and plant phenotyping. - Plant Disease 100: 241-251, 2016.
Go to original source... - Mahlein A.-K., Alisaac E., Al Masri A. et al.: Comparison and combination of thermal, fluorescence, and hyperspectral imaging for monitoring Fusarium head blight of wheat on spikelet scale. - Sensors-Basel 19: 2281, 2019.
Go to original source... - Malkin S., Wong D., Govindjee, Merkelo H.: Parallel measure-ments on fluorescence lifetime and intensity changes from leaves during the fluorescence induction. - Photochem. Photobiophys. 1: 83-89, 1980.
- Marcano-Cedeño A., Quintanilla-Domínguez J., Cortina-Januchs M.G., Andina D.: Feature selection using sequential forward selection and classification applying artificial metaplasticity neural network. IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, Glendale, AZ, USA, 2010. Pp. 2845-2850. IEEE 2010.
Go to original source... - Marcek Chorvatova A.M., Uherek M., Mateasik A., Chorvat Jr. D.: Time-resolved endogenous chlorophyll fluorescence sensiti-vity to pH: study on Chlorella sp. algae. - Methods Appl. Fluoresc. 8: 024007, 2020.
Go to original source... - Marin J.-M., Robert C.P.: Bayesian Essentials with R. Pp. 296. Springer, New York 2014.
Go to original source... - Massacci A., Nabiev S.M., Pietrosanti L. et al.: Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging. - Plant Physiol. Bioch. 46: 189-195, 2008.
Go to original source... - Matsushima U., Kardjilov N., Hilger A. et al.: Visualization of water usage and photosynthetic activity of street trees exposed to 2 ppm SO2 - A combined evaluation by cold neutron and chlorophyll fluorescence imaging. - Nucl. Instrum. Method. Phys. Res. A 605: 185-187, 2009.
Go to original source... - McAusland L., Atkinson J.A., Lawson T., Murchie E.H.: High throughput procedure utilising chlorophyll fluorescence imaging to phenotype dynamic photosynthesis and photo-protection in leaves under controlled gaseous conditions. - Plant Methods 15: 109, 2019.
Go to original source... - McLachlan G.J.: Discriminant Analysis and Statistical Pattern Recognition. Pp. 526. Wiley Interscience, Hoboken 2004.
- Méline V., Brin C., Lebreton G. et al.: A computation method based on the combination of chlorophyll fluorescence parameters to improve discrimination of visually similar phenotypes induced by bacterial virulence factors. - Front. Plant Sci. 11: 213, 2020.
Go to original source... - Meng Q., Siebke K., Lippert P. et al.: Sink-source transition in tobacco leaves visualized using chlorophyll fluorescence imaging. - New Phytol. 151: 585-595, 2001.
Go to original source... - Meroni M., Rossini M., Guanter L. et al.: Remote sensing of solar-induced chlorophyll fluorescence. Review of methods and applications. - Remote Sens. Environ. 113: 2037-2051, 2009.
Go to original source... - Mir R.R., Reynolds M., Pinto F. et al.: High-throughput phenotyping for crop improvement in the genomics era. - Plant Sci. 282: 60-72, 2019.
Go to original source... - Mishra A., Heyer A.G., Mishra K.B.: Chlorophyll fluorescence emission can screen cold tolerance of cold acclimated Arabidopsis thaliana accessions. - Plant Methods 10: 38, 2014.
Go to original source... - Mishra K.B., Mishra A., Novotná K. et al.: Chlorophyll a fluorescence under half of the adaptive growth-irradiance, for high-throughput sensing of leaf-water deficit in Arabidopsis thaliana accessions. - Plant Methods 12: 46, 2016.
Go to original source... - Mohammed G.H., Colombo R., Middleton E.M. et al.: Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress. - Remote Sens. Environ. 231: 111177, 2019.
Go to original source... - Morales F., Belkhodja R., Goulas Y. et al.: Remote and near-contact chlorophyll fluorescence during photosynthetic induction in iron-deficient sugar beet leaves. - Remote Sens. Environ. 69: 170-178, 1999.
Go to original source... - Moreno J. (ed.): Remote Sensing - Special Issue: 'Remote Sensing of Vegetation Fluorescence and Photosynthetic Efficiency', 2017.
- Moustakas M., Hanć A., Dobrikova A. et al.: Spatial heterogeneity of cadmium effects on Salvia sclarea leaves revealed by chlorophyll fluorescence imaging analysis and laser ablation inductively coupled plasma mass spectrometry. - Materials 12: 2953, 2019.
Go to original source... - Muller R., Schreiber U., Escher B. et al.: Rapid exposure assessment of PSII herbicides in surface water using a novel chlorophyll a fluorescence imaging assay. - Sci. Total Environ. 401: 51-59, 2008.
Go to original source... - Munns R., James R.A., Sirault X.R.R. et al.: New phenotyping methods for screening wheat and barley for beneficial responses to water deficit. - J. Exp. Bot. 61: 3499-3507, 2010.
Go to original source... - Nedbal L., Soukupová J., Kaftan D. et al.: Kinetic imaging of chlorophyll fluorescence using modulated light. - Photosynth. Res. 66: 3-12, 2000.
Go to original source... - Nedbal L., Whitmarsh J.: Chlorophyll fluorescence imaging of leaves and fruits. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence. Advances in Photosynthesis and Respiration. Vol. 19. Pp. 389-407. Springer, Dordrecht 2004.
Go to original source... - Niyogi K.K., Björkman O., Grossman A.R.: Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching. - Plant Cell 9: 1369-1380, 1997.
Go to original source... - Noble E., Kumar S., Görlitz F.G. et al.: In vivo label-free mapping of the effect of a photosystem II inhibiting herbicide in plants using chlorophyll fluorescence lifetime. - Plant Methods 13: 48, 2017.
Go to original source... - Omasa K., Shimazaki K.-I., Aiga I. et al.: Image analysis of chlorophyll fluorescence transients for diagnosing the photosynthetic system of attached leaves. - Plant Physiol. 84: 748-752, 1987.
Go to original source... - Ooms D., Destain M.-F.: Evaluation of chicory seeds maturity by chlorophyll fluorescence imaging. - Biosyst. Eng. 110: 168-177, 2011.
Go to original source... - Ortiz-Bustos C.M., Pérez-Bueno M.L., Barón M., Molinero-Ruiz L.: Use of blue-green fluorescence and thermal imaging in the early detection of sunflower infection by the root parasitic weed Orobanche cumana Wallr. - Front. Plant Sci. 8: 833, 2017.
Go to original source... - Osmond C.B., Berry J.A., Balachandran S. et al.: Potential consequences of virus infection for shade-sun acclimation in leaves. - Plant Biol. 103: 226-229, 1990.
Go to original source... - Oxborough K.: Using chlorophyll a fluorescence imaging to monitor photosynthetic performance. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence. Advances in Photosynthesis and Respiration. Vol. 19. Pp. 409-428. Springer, Dordrecht 2004.
Go to original source... - Oxborough K., Hamlon A.R.M., Underwood G.J.C., Baker N.R.: In vivo estimation of the photosystem II photochemical efficiency of individual microphytobenthic cells using high-resolution imaging of chlorophyll a fluorescence. - Limnol. Oceanogr. 45: 1420-1425, 2000.
Go to original source... - Papageorgiou G.C.: Chlorophyll fluorescence: an intrinsic probe of photosynthesis. - In: Govindjee (ed.): Bioenergetics of Photosynthesis. Pp. 319-371. Academic Press, New York 1975.
Go to original source... - Penella C., Pina A., San Bautista A. et al.: Chlorophyll fluorescence imaging can reflect development of vascular connection in grafting union in some Solanaceae species. - Photosynthetica 55: 671-678, 2017.
Go to original source... - Pérez-Bueno M.L., Ciscato M., vandeVen M. et al.: Imaging viral infection: studies on Nicotiana benthamiana plants infected with the pepper mild mottle tobamovirus. - Photosynth. Res. 90: 111, 2006.
Go to original source... - Pérez-Bueno M.L., Pineda M., Barón M.: Phenotyping plant responses to biotic stress by chlorophyll fluorescence imaging. - Front. Plant Sci. 10: 1135, 2019.
Go to original source... - Pérez-Bueno M.L., Pineda M., Cabezza F.M., Barón M.: Multicolour fluorescence imaging as a candidate for disease detection in plant phenotyping. - Front. Plant Sci. 7: 1790, 2016.
Go to original source... - Pfanz H., Mombour J., Wittmann C. et al.: Chlorophyll fluorescence for visualizing the spatial and temporal spread of Phytophthora alni subsp. alni in alder bark tissue. - Plant Pathol. 64: 467-477, 2015.
Go to original source... - Phinney N.H., Solhaug K.A., Gauslaa Y.: Rapid resurrection of chlorolichens in humid air: specific thallus mass drives rehydration and reactivation kinetics. - Environ. Exp. Bot. 148: 184-191, 2018.
Go to original source... - Phinney N.H., Solhaug K.A, Gauslaa Y.: Photobiont-dependent humidity threshold for chlorolichen photosystem II activa-tion. - Planta 250: 2023-2031, 2019.
Go to original source... - Pieczywek P.M., Cybulska J., Szymańska-Chargot M. et al.: Early detection of fungal infection of stored apple fruit with optical sensors - Comparison of biospeckle, hyperspectral imaging and chlorophyll fluorescence. - Food Control 85: 327-338, 2018.
Go to original source... - Pineda M., Pérez-Bueno M.L., Barón M.: Detection of bacterial infection in melon plants by classification methods based on imaging data. - Front. Plant Sci. 9: 164, 2018.
Go to original source... - Pinto F., Damm A., Schickling A. et al.: Sun-induced chlorophyll fluorescence from high-resolution imaging spectroscopy data to quantify spatio-temporal patterns of photosynthetic function in crop canopies. - Plant Cell Environ. 39: 1500-1512, 2016.
Go to original source... - Pinto F., Müller-Linow M., Schickling A. et al.: Multiangular observation of canopy sun-induced chlorophyll fluorescence by combining imaging spectroscopy and stereoscopy. - Remote Sens.-Basel 9: 415, 2017.
Go to original source... - Prinzenberg A.E., Víquez-Zamora M., Harbinson J. et al.: Chlorophyll fluorescence imaging reveals genetic variation and loci for a photosynthetic trait in diploid potato. - Physiol. Plantarum 164: 163-175, 2018.
Go to original source... - Rascher U., Alonso L., Burkart A. et al.: Sun-induced fluo-rescence - a new probe of photosynthesis: first maps from the imaging spectrometer HyPlant. - Glob. Change Biol. 21: 4683-4684, 2015.
Go to original source... - Rascher U., Lüttge U.: High-resolution chlorophyll fluorescence imaging serves as a non-invasive indicator to monitor the spatio-temporal variations of metabolism during the day-night cycle and during the endogenous rhythm in continuous light in the CAM plant Kalanchoë daigremontiana. - Plant Biol. 4: 671-681, 2002.
Go to original source... - Rees H., Duncan S., Gould P. et al.: A high-throughput delayed fluorescence method reveals underlying differences in the control of circadian rhythms in Triticum aestivum and Brassica napus. - Plant Methods 15: 51, 2019.
Go to original source... - Rolfe S.A., Scholes J.D.: Quantitative imaging of chlorophyll fluorescence. - New Phytol. 131: 69-79, 1995.
Go to original source... - Rousseau C., Belin E., Bove E. et al.: High throughput quantitative phenotyping of plant resistance using chlorophyll fluorescence image analysis. - Plant Methods 9: 17, 2013.
Go to original source... - Rousseau C., Hunault G., Gaillard S. et al.: Phenoplant: a web resource for the exploration of large chlorophyll fluorescence image datasets. - Plant Methods 11: 24, 2015a.
Go to original source... - Rousseau D., Chéné Y., Belin E. et al.: Multiscale imaging of plants: current approaches and challenges. - Plant Methods 11: 6, 2015b.
Go to original source... - Rühle T., Reiter B., Leister D.: Chlorophyll fluorescence video imaging: a versatile tool for identifying factors related to photosynthesis. - Front. Plant Sci. 9: 55, 2018.
Go to original source... - Ryan K.G., Tay M.L., Martin A. et al.: Chlorophyll fluorescence imaging analysis of the responses of Antarctic bottom-ice algae to light and salinity during melting. - J. Exp. Mar. Biol. Ecol. 399: 156-161, 2011.
Go to original source... - Sánchez-Moreiras A.M., Graña E., Reigosa M.J., Araniti F.: Imaging of chlorophyll a fluorescence in natural compound-induced stress detection. - Front. Plant Sci. 11: 583590, 2020.
Go to original source... - Sandmann M., Grosch R., Graefe J.: The use of features from fluorescence, thermography, and NDVI imaging to detect biotic stress in lettuce. - Plant Disease 102: 1101-1107, 2018.
Go to original source... - Scharte J., Schön H., Weis E.: Photosynthesis and carbohydrate metabolism in tobacco leaves during an incompatible interaction with Phytophthora nicotianae. - Plant Cell Environ. 28: 1421-1435, 2005.
Go to original source... - Schreiber U., Quayle P., Schmidt S. et al.: Methodology and evaluation of a highly sensitive algae toxicity test based on multiwell chlorophyll fluorescence imaging. - Biosens. Bioelectron. 22: 2554-2563, 2007.
Go to original source... - Schreiber U., Schliwa U., Bilger W.: Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. - Photosynth. Res. 10: 51-62, 1986.
Go to original source... - Segečová A., Pérez-Bueno M., Barón M. et al.: Noninvasive determination of toxic stress biomarkers by high-throughput screening of photoautothrophic cell suspensions cultures with multicolour fluorescence imaging. - Plant Methods 15: 100, 2019.
Go to original source... - Serôdio J., Schmidt W., Frommlet J.C. et al.: An LED-based multi-actinic illumination system for the high throughput study of photosynthetic light responses. - PeerJ 6: e5589, 2018.
Go to original source... - Shakhnarovich G., Darrell T., Indyk P. (ed.): Nearest-Neighbor Methods in Learning and Vision. Pp. 280. MIT Press, Cambridge 2005.
Go to original source... - Shu S., Tang Y., Yuan Y. et al.: The role of 24-epibrassinolide in the regulation of photosynthetic characteristics and nitrogen metabolism of tomato seedlings under a combined low temperature and weak light stress. - Plant Physiol. Bioch. 107: 344-353, 2016.
Go to original source... - Siebke K., Weis E.: Assimilation images of leaves of Glechoma hederacea: analysis of non-synchronous stomata related oscillations. - Planta 196: 155-165, 1995.
Go to original source... - Siegmann B., Alonso L., Celesti M. et al.: The high-performance airborne imaging spectrometer HyPlant - From raw images tot top-of-canopy reflectance and fluorescence products: introduction of an automated processing chain. - Remote Sens.-Basel 11: 2760, 2019.
Go to original source... - Simkin A.J., McAusland L., Lawson T., Raines C.A.: Overexpression of the RieskeFeS protein increases electron transport rates and biomass yield. - Plant Physiol. 175: 134-145, 2017.
Go to original source... - Simko I., Hayes R.J., Furbank R.T.: Non-destructive phenotyping of lettuce plants in early stages of development with optical sensors. - Front. Plant Sci. 7: 1985, 2016.
Go to original source... - Simko I., Jimenez-Berni J.A., Furbank R.T.: Detection of decay in fresh-cut lettuce using hyperspectral imaging and chlorophyll fluorescence imaging. - Postharvest Biol. Tec. 106: 44-52, 2015.
Go to original source... - Sinha S.K., Padalia H., Patel N.R., Chauhan P.: Estimation of seasonal sun-induced fluorescence dynamics of Indian tropical deciduous forests using SCOPE and Sentinel-2 MSI. - Int. J. Appl. Earth Obs. Geoinf. 91: 102155, 2020.
Go to original source... - Song X., Zhou G., Xu Z. et al.: Detection of photosynthetic performance of Stipa bungeana seedlings under climatic change using chlorophyll fluorescence imaging. - Front. Plant Sci. 6: 1254, 2016.
Go to original source... - Sun D., Zhu Y., Xu H. et al.: Time-series chlorophyll fluorescence imaging reveals dynamic photosynthetic fingerprints of sos mutants to drought stress. - Sensors-Basel 19: 2649, 2019.
Go to original source... - Sun J., Yang W., Feng M. et al.: An efficient variable selection method based on random frog for the multivariate calibration of NIR spectra. - RSC Adv. 10: 16245-16253, 2020.
Go to original source... - Sundbom E., Björn L.O.: Phytoluminography: imaging plants by delayed emission. - Physiol. Plantarum 40: 39-41, 1977.
Go to original source... - Taria S., Rane J., Alam B. et al.: Combining IR imaging, chlorophyll fluorescence and phenomic approach for assessing diurnal canopy temperature dynamics and desiccation stress management in Azadirachta indica and Terminalia mantaly. - Agroforest. Syst. 94: 941-951, 2020.
Go to original source... - Tietz S., Hall C.C., Cruz J.A., Kramer D.M.: NPQ(T): a chlorophyll fluorescence parameter for rapid estimation and imaging of non-photochemical quenching of excitons in photosystem-II-associated antenna complexes. - Plant Cell Environ. 40: 1243-1255, 2017.
Go to original source... - Trampe E., Kolbowski J., Schreiber U., Kühl M.: Rapid assessment of different oxygenic phototrophs and single-cell photosynthesis with multicolour variable chlorophyll fluorescence imaging. - Mar. Biol. 158: 1667-1675, 2011.
Go to original source... - Tschiersch H., Junker A., Meyer R.C., Altmann T.: Establishment of integrated protocols for automated high throughput kinetic chlorophyll fluorescence analysis. - Plant Methods 13: 54-72, 2017.
Go to original source... - van Bezouw R.F.H.M., Kuerentjes J.J.B., Harbinson J., Aarts M.G.M.: Converging phenomics and genomics to study natural variation in plant photosynthetic efficiency. - Plant J. 97: 112-133, 2019.
Go to original source... - Verrelst J., Caicedo J.P.R., Muñoz-Marí J. et al.: SCOPE-based emulators for fast generation of synthetic canopy reflectance and sun-induced fluorescence spectra. - Remote Sens.-Basel 9: 927, 2017.
Go to original source... - Walker B.J., Busch F.A., Driever S.M. et al.: Survey tools for measuring in vivo photosynthesis. - In: Covshoff S. (ed.): Photosynthesis: Methods in Molecular Biology. Vol. 1770. Pp. 3-24. Humana Press, New York 2018.
Go to original source... - Wang H., Qian X., Zhang L. et al.: A method of high throughput monitoring crop physiology using chlorophyll fluorescence and multispectral imaging. - Front. Plant Sci. 9: 407, 2018.
Go to original source... - Wang L., Poque S., Valkonen J.P.T.: Phenotyping viral infection in sweetpotato using a high-throughput chlorophyll fluorescence and thermal imaging platform. - Plant Methods 15: 116, 2019.
Go to original source... - Wangpraseurt D., Lichtenberg M., Jacques S.L. et al.: Optical properties of corals distort variable chlorophyll fluorescence measurements. - Plant Physiol. 179: 1608-1619, 2019.
Go to original source... - Weber J.F., Kunz C., Peteinatos G.G. et al.: Utilization of chlorophyll fluorescence imaging technology to detect plant injury by herbicides in sugar beet and soybean. - Weed Technol. 31: 523-535, 2017.
Go to original source... - Weis E., Berry J.A.: Quantum efficiency of photosystem II in relation to energy-dependent quenching of chlorophyll fluorescence. - BBA-Bioenergetics 894: 198-208, 1987.
Go to original source... - Wen Z., Raffaello T., Zeng Z. et al.: Chlorophyll fluorescence imaging for monitoring effects of Heterobasidion parviporum small secreted protein induced cell death and in planta defense gene expression. - Fungal Genet. Biol. 126: 37-49, 2019.
Go to original source... - Wingler A., Marès M., Pourtau N. et al.: Spatial patterns and metabolic regulation of photosynthetic parameters during leaf senescence. - New Phytol. 161: 781-789, 2004.
Go to original source... - Wu Y., Zeng Y., Qu J.Y., Wang W.-X.: Mercury effects on Thalassiosira weissflogii: applications of two-photon excita-tion chlorophyll fluorescence lifetime imaging and flow cytometry. - Aquat. Toxicol. 110-111: 133-140, 2012.
Go to original source... - Yao J., Sun D., Cen H. et al.: Phenotyping of Arabidopsis drought stress response using kinetic chlorophyll fluorescence and multicolor fluorescence imaging. - Front. Plant Sci. 9: 603, 2018.
Go to original source... - Zeng Y., Wu Y., Li D. et al.: Two-photon excitation chlorophyll fluorescence lifetime imaging: a rapid and noninvasive method for the assessment of cadmium toxicity in a marine Thalassiosira weissflogii. - Planta 236: 1653-1663, 2012.
Go to original source... - Zhao H., Wang L., Zhao F.-J. et al.: SpHMA1 is a chloroplast cadmium exporter protecting photochemical reactions in the Cd hyperaccumulator Sedum plumbizincicola. - Plant Cell Environ. 42: 1112-1124, 2019.
Go to original source... - Zhao L.-J., Xie J.-F., Zhang H. et al.: Enzymatic activity and chlorophyll fluorescence imaging of maize seedlings (Zea mays L.) after exposure to low doses of chlorsulfuron and cadmium. - J. Integr. Agr. 17: 826-836, 2018.
Go to original source... - Zhuang J., Wang Y., Chi Y. et al.: Drought stress strengthens the link between chlorophyll fluorescence parameters and photosynthetic traits. - PeerJ 8: e10046, 2020.
Go to original source...




