Photosynthetica 1997, 33(14):569-581 | DOI: 10.1023/A:1006873815045

Chloroplast biogenesis 76. Regulation of 4-vinyl reduction during conversion of divinyl Mg-protoporphyrin IX to monovinyl protochlorophyllide a is controlled by plastid membrane and stromal factors

J.S. Kim1,2, V. Kolossov1, C.A. Rebeiz1,*
1 Laboratory of Plant Pigment Biochemistry and Photobiology, University of Illinois, Urbana, U.S.A
2 Screening Research Division, Korea Research Institute of Chemical Technology, Taejeon 305-606, Korea

Most of the chlorophyll (Chl) a of green plants is formed via two biosynthetic routes, namely the carboxylic divinyl and monovinyl chlorophyll biosynthetic routes. These two routes are linked by (4-vinyl) reductases that convert divinyl tetrapyrroles to monovinyl tetrapyrroles by reduction of the vinyl group at position four of the macrocycle to ethyl. The activities of these two routes are very sensitive to cell disruption. For example in barley leaves, cell disruption, a mandatory step during plastid isolation, results in partial inactivation of the carboxylic divinyl route. Investigations with subplastidic fractions revealed that the carboxylic divinyl and monovinyl biosynthetic routes were regulated by a delicate interaction that involved plastid membranes, stroma, and reduced pyridine nucleotides. While the monovinyl biosynthetic route was very active in isolated plastid membranes, activation of the divinyl biosynthetic route required the joint presence of plastid membranes and stroma. Contrary to expectation, activity of the carboxylic divinyl biosynthetic route was greatly enhanced by addition of NADPH to the lysing buffer used during plastid membranes and stroma preparation. NADPH in cooperation with the plastid stroma may play an important regulatory role during the biosynthesis of divinyl and monovinyl protochlorophyllide a.

Additional key words: Hordeum vulgare; NADPH

Prepublished online: January 1, 1998; Published: December 1, 1997  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Kim, J.S., Kolossov, V., & Rebeiz, C.A. (1997). Chloroplast biogenesis 76. Regulation of 4-vinyl reduction during conversion of divinyl Mg-protoporphyrin IX to monovinyl protochlorophyllide a is controlled by plastid membrane and stromal factors. Photosynthetica34(4), 569-581. doi: 10.1023/A:1006873815045
Download citation

References

  1. Arigoni, D.: Summing up.-In: Chadwick, D.J., Ackrill, K. (ed.): The Biosynthesis of the Tetrapyrrole Pigments. Pp. 285-308. John Wiley & Sons, New York 1994.
  2. Bazzaz, M.B.: New chlorophyll chromophores isolated from a chlorophyll deficient mutant of maize.-Photobiochem. Photobiophys. 2: 199-207, 1981. Go to original source...
  3. Belanger, F.C., Rebeiz, C.A.: Chloroplast biogenesis. Detection of monovinyl magnesium protoporphyrin monoester and other monovinyl magnesium porphyrins in higher plants.-J. biol. Chem. 257: 1360-1371, 1982. Go to original source...
  4. Carey, E.E., Rebeiz, C.A.: Chloroplast biogenesis 49. Differences among angiosperms in the biosynthesis and accumulation of monovinyl and divinyl protochlorophyllide during photoperiodic greening.-Plant Physiol. 79: 1-6, 1985. Go to original source...
  5. Chisholm, S.W., Frankel, S., Goericke, R., Olson, R.J., Palenik, R., Waterbury, J., West-Johnsrud, L., Zettler, E.R.: Prochlorococcus marinus nov. gen. nov. sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b.-Arch. Microbiol. 157: 297-300, 1992. Go to original source...
  6. Chisholm, S.W., Olson, R.J., Zettler, E.R., Goericke, R., Waterbury, J.B., Welschmeyer, N.A.: A novel free-living prochlorophyte abundant in the occanic euphotic zone.-Nature 334: 340-343, 1990. Go to original source...
  7. Daniell, H., Rebeiz, C.A.: Bioengineering of photosynthetic membranes. Requirement of magnesium for the conversion of chlorophyllide a to chlorophyll a during the greening of etiochloroplasts in vitro.-Biotechnol. Bioeng. 26: 481-487, 1984. Go to original source...
  8. Ellsworth, R.K., Hsing, A.S.: Activity and some properties of Mg-4-ethyl-(4-desvinyl)-protoporphyrin IX monomethyl ester:NAD+ oxidoreductase in crude homogenates from etiolated wheat seedlings.-Photosynthetica 8: 228-234, 1974.
  9. Fuesler, T.P., Castelfrance, P.A., Wong, Y.-S.: Formation of Mg-containing chlorophyll precursors from protoporphyrin IX, δ-aminolevulinic acid, and glutamate in isolated, photosynthetically competent, developing chloroplasts.-Plant Physiol. 74: 928-933, 1984. Go to original source...
  10. Goericke, R., Repeta, D.J.: The pigments of Prochlorococcus marinus. The presence of divinyl-chlorophyll a and b in a marine procaryote.-Limnol. Oceanogr. 37: 425-433, 1992. Go to original source...
  11. Joannides, I.M., Fasoula, D.A., Robertson, K.R., Rebeiz, C.A.: An evolutionary study of chlorophyll biosynthetic heterogeneity in green plants.-Biochem. Syst. Ecol. 22: 211-220, 1994. Go to original source...
  12. Kay, S.A., Griffiths, W.T.: Light-induced breakdown of NADPH-protochlorophyllide oxidoreductase in vitro.-Plant Physiol. 72: 229-236, 1983 Go to original source...
  13. Kim, J.S., Rebeiz, C.A.: Origin of the chlorophyll a biosynthetic heterogeneity in higher plants.-J. Biochem. mol. Biol. 29: 327-334, 1996. Go to original source...
  14. Lee, H.J., Ball, M.D., Parham, R., Rebeiz, C.A.: Chloroplast biogenesis 65. Enzymic conversion of protoporphyrin IX to Mg-protoporphyrin IX in a subplastidic membrane fraction of cucumber etiochloroplasts.-Plant Physiol. 99: 1134-1140, 1992. Go to original source...
  15. Lee, H.J., Ball, M.D., Rebeiz, C.A.: Intraplastidic localization of the enzymes that convert δ-aminolevulinic acid to protoporphyrin IX in etiolated cucumber cotyledons.-Plant Physiol. 96: 910-915, 1991. Go to original source...
  16. Leeper, F.: Intermediate steps in the biosynthesis of chlorophylls.-In: Scheer, H. (ed.): Chlorophylls. Pp. 407-431. CRC Press, Boca Raton 1991.
  17. Parham, R., Rebeiz, C.A.: Chloroplast biogenesis: [4-vinyl] chlorophyllide a reductase is a divinyl chlorophyllide a-specific, NADPII-dependent enzyme.-Biochemistry 31: 8460-8464, 1992. Go to original source...
  18. Parham, R., Rebeiz, C.A.: Chloroplast biogenesis 72: A [4-vinyl] chlorophyllide a reductase assay using divinyl chlorophyllide a as an exogenous substrate.-Anal. Biochem. 231: 164-169, 1995. Go to original source...
  19. Rebeiz, C.A., Daniell, H., Mattheis, J.R.: Chloroplast bioengineering: The greening of chloroplasts in vitro.-In: Scott, C.D. (ed.): Biotechnology and Bioengineering Symp. 12. Pp. 413-439. John Wiley, New York 1982.
  20. Rebeiz, C.A., Mattheis, J.R., Smith, B.B., Rebeiz, C.C., Dayton, D.F.: Chloroplast biogenesis. Biosynthesis and accumulation of protochlorophyll by isolated etioplasts and developing chloroplasts.-Arch. Biochem. Biophys. 171: 549-567, 1975. Go to original source...
  21. Rebeiz, C.A., Montazer-Zouhoor, A., Daniell, H.: Chloroplast culture X: Thylakoid assembly in vitro.-Isr. J. Bot. 33: 225-235, 1984.
  22. Rebeiz, C.A., Parham, R., Fasoula, D.A., Ioannides, I.M.: Chlorophyll biosynthetic heterogencity.-In: Chadwick, D.J., Ackrill, K. (ed.): The Biosynthesis of the Tetrapyrrole Pigments. Pp. 177-193. John Wiley & Sons, New York 1994. Go to original source...
  23. Rebeiz, C.A., Wu, S.M., Kuhadja, M., Daniell, H., Perkins, E.J.: Chlorophyll a chemical heterogeneity in plants.-Mol. cell. Biochem. 58: 97-125, 1983. Go to original source...
  24. Richards, W.R.: Biosynthesis of the chlorophyll chromophore of pigmented thylakoid proteins.-In: Sundqvist, C., Ryberg, M. (ed.): Pigment Protein Complexes in Plastid Synthesis and Assembly. Pp. 91-178. Academic Press, San Diego-New York-Boston-London-Sydney-Tokyo-Toronto 1993. Go to original source...
  25. Scott, A.I.: Recent studies of the enzymically controlled steps in B12 biosynthesis.-In: Chadwick, D.J., Ackrill, K. (ed.): The Biosynthesis of the Tetrapyrrole Pigments. Pp. 285-308. John Wiley & Sons, New York 1994. Go to original source...
  26. Shioi, Y., Takamiya, K.I.: Monovinyl and divinyl protochlorophyllide pools in etiolated tissues of higher plants.-Plant Physiol. 100: 1291-1295, 1992. Go to original source...
  27. Smith, B.B., Rebeiz, C.A.: Chloroplast biogenesis XXIV. Intrachloroplastic localization of the biosynthesis and accumulation of protoporphyrin-IX, magnesium-protoporphyrin monoester, and longer wavelength metalloporphyrins during greening.-Plant Physiol. 63: 227-231, 1979. Go to original source...
  28. Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gardner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J., Klenk, D.C.: Measurement of protein using bicinchoninic acid.-Anal. Biochem. 150: 76-85, 1985. Go to original source...
  29. Suzuki, J.Y., Bauer, C.E.: Altered monovinyl and divinyl protochlorophyllide pools in bchJ mutants of Rhodobacter capsulatus. Possible monovinyl substrate discrimination of light-independent protochlorophyllide reductase.-J. biol. Chem. 270: 3732-3740, 1995. Go to original source...
  30. Tripathy, B.C., Rebeiz, C.A.: Chloroplast biogenesis. Quantitative determination of monovinyl and divinyl Mg-protoporphyrins and protochlorophyll(ides) by spectrofluorometry.-Anal. Biochem. 149: 43-61, 1985. Go to original source...
  31. Tripathy, B.C., Rebeiz, C.A.: Chloroplast biogenesis. Demonstration of the monovinyl and divinyl monocarboxylic routes of chlorophyll biosynthesis in higher plants.-J. biol. Chem. 261: 13556-13564, 1986. Go to original source...
  32. Tripathy, B.C., Rebeiz, C.A.: Chloroplast biogenesis 60. Conversion of divinyl protochlorophyllide to monovinyl protochlorophyllide in green(ing) barley, a dark monovinyl/light divinyl plant species.-Plant Physiol. 87: 89-94, 1988. Go to original source...
  33. Veldhuis, M.J.W., Kraay, G.W.: Vertical distribution of pigment composition of a picoplanktonic prochlorophyte in the subtropical North Atlantic: A combined study of HPLC-analysis of pigments and flow cytometry.-Mar. Ecol. Progr. Ser. 68: 121-127, 1990. Go to original source...
  34. Walker, C.J., Castelfranco, P.A., White, B.J.: Synthesis of divinylprotochlorophyllide. Enzymological properties of the Mg-protoporphyrin IX monomethyl ester oxidative cyclase system.-Biochem. J. 276: 691-697, 1991. Go to original source...
  35. Whyte, B.J., Griffths, W.T.: 8-Vinyl reduction and chlorophyll a biosynthesis in higher plants.-Biochem. J. 291: 939-944, 1993. Go to original source...
  36. Wu, S.-M., Mayasich, J.M., Rebeiz, C.A.: Chloroplast biogenesis: Quantitative determination of monovinyl and divinyl chlorophyll(ide) a and b by spectrofluorometry.-Anal. Biochem. 178: 294-300, 1989. Go to original source...