Photosynthetica 1997, 33(14):583-589 | DOI: 10.1023/A:1006825915953

Analysis of the gas exchange components in chilled tomato plants

D. Chołuj1, H.M. Kalaji1, B. Niemyska1
1 Department of Plant Physiology, Warsaw Agricultural University, Warsaw, Poland

A positive linear relationship between the net CO2 exchange rate (P N) and the leaf stomatal conductance (gs) under an optimal temperature, and even more distinct one after a short-term chilling (CH, 15-17 h, 2 °C in darkness), that was found in two tomato cultivars (sensitive to a low temperature cv. Robin and tolerant cv. New Yorker) suggested a partial stomatal limitation of photosynthesis. The CH treatment of cv. Robin resulted in an intercellular CO2 concentration (C i) increase because of which a negative correlation between C i and P N was observed. In cv. New Yorker a positive correlation was observed. Detrimental effect of the low temperature in cv. Robin was more evident in plants with a relatively small root system (SR), but drought-hardening positively affected the response to CH only in the plants with bigger roots (BR). On the contrary, in cv. New Yorker the favourable effect of such pre-treatment was more evident in SR than in BR plants.

Additional key words: drought acclimation; intercellular CO2 concentration; low temperature stress; Lycopersicon esculentum; net photosynthetic rate; stomatal conductance

Prepublished online: January 1, 1998; Published: December 1, 1997  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Chołuj, D., Kalaji, H.M., & Niemyska, B. (1997). Analysis of the gas exchange components in chilled tomato plants. Photosynthetica34(4), 583-589. doi: 10.1023/A:1006825915953
Download citation

References

  1. Brüggemann, W., van der Kooij, T.A.W., van Hasselt, P.R.: Long-term chilling of young tomato plants under low light and subsequent recovery. I. Growth, development and photosynthesis.-Planta 186: 172-178, 1992a. Go to original source...
  2. Brüggemann, W., van der Kooij, T.A.W., van Hasselt, P.R.: Long-term chilling of young tomato plants under low light and subsequent recovery. II. Chlorophyll fluorescence, carbon metabolism and activity of ribulose-1,5-bisphosphate carboxylase/oxygenase.-Planta 186: 179-187, 1992b. Go to original source...
  3. Engels, C., Marschner, H.: Root to shoot translocation of macronutrients in relation to shoot demand in maize (Zea mays L.) grown at different root zone temperatures.-Z. Pflanzenernähr. Bodenkunde 155: 121-128, 1992. Go to original source...
  4. Engels, C., Münkle, L., Marschner, H.: Effect of root zone temperature and shoot demand on uptake and xylem transport of macronutrients in maize (Zea mays L.).-J. exp. Bot. 43: 537-547, 1992. Go to original source...
  5. Guye, M.G., Wilson, J.M.: The effects of chilling and chill-hardening temperatures on stomatal behaviour in a range of chill-sensitive species and cultivars.-Plant Physiol. Biochem. 25: 717-721, 1987.
  6. Irigoyen, J.J., Pérez de Juan, J., Sánchez-Diaz, M.: Physiological and biochemical aspects of maize chilling acclimation by drought.-In: Dörffling, K., Brettschneider, B., Tantau, H., Pitham, K. (ed.): Crop Adaptation to Cool Climates. Pp. 626-632. European Commission, European Cooperation in the Field of Scientific and Technical Research, Brussels-Luxembourg 1994.
  7. Janowiak, F., Dörffling, K.: Response of maize seedlings to chilling of roots with special emphasis on root-to-shoot communication.-In: Dörffling, K., Brettschneider, B., Tantau, H., Pitham, K. (ed.): Crop Adaptation to Cool Climates. Pp. 607-615. European Commission, European Cooperation in the Field of Scientific and Technical Research, Brussels-Luxembourg 1994.
  8. Janssen, L.H.J., van Oeveren, J.C., van Hasselt, P.R., Kuiper, P.J.C.: Genotypic variation in chlorophyll fluorescence parameters, photosynthesis and growth of tomato grown at low temperature and low irradiance.-Photosynthetica 31: 301-314, 1995.
  9. King, A.I., Reid, M.S.: Diurnal chilling sensitivity and desiccation in seedlings of tomato.-J. amer. Soc. hort. Sci. 112: 821-824, 1987. Go to original source...
  10. Markhart, A.H., III: Chilling injury: A review of possible causes.-HortScience 21: 1329-1333, 1986. Go to original source...
  11. Martin, B., Ort, D.R.: Insensitivity of water-oxidation and photosystem II activity in tomato to chilling temperatures.-Plant Physiol. 70: 689-694, 1982. Go to original source...
  12. Martin, B., Ort, D.R.: The recovery of photosynthesis in tomato subsequent to chilling exposure.-Photosynth. Res. 6: 121-132, 1985. Go to original source...
  13. McKersie, B.D., Leshem, Y.Y.: Chilling stress.-In: McKersie, B.D., Leshem, Y.Y. (ed.): Stress and Stress Coping in Cultivated Plants. Pp. 79-103. Kluwer Academic Publishers, Dordrecht-Boston-London 1994. Go to original source...
  14. McWilliam, J.R., Kramer, P.J., Musser, R.L.: Temperature-induced water stress in chilling-sensitive plants.-Aust. J. Plant Physiol. 9: 343-352, 1982. Go to original source...
  15. Morgan, J.A., LeCain, D.R., McCaig, T.N., Quick, J.S.: Gas exchange, carbon isotope discrimination, and productivity in winter wheat.-Crop Sci. 33: 178-186, 1993. Go to original source...
  16. Ort, D.R., Martin, B.: Chilling-induced inhibition of photosynthesis in tomato.-In: Marcelle, R., Clijsters, H., Van Poucke, M. (ed.): Effects of Stress on Photosynthesis. Pp. 227-235. Martinus Nijhoff/Dr W. Junk Publ., The Hague-Boston-London 1983. Go to original source...
  17. Pardossi, A., Vernieri, P., Tognoni, F.: Involvement of abscisic acid in regulating water status of Phaseolus vulgaris L. during chilling.-Plant Physiol. 100: 1243-1250, 1992. Go to original source...
  18. Sasson, N., Bramlage, W.J.: Effects of chemical protectants against chilling injury of young cucumber seedlings.-J. amer. Soc. hort. Sci. 106: 282-284, 1981. Go to original source...
  19. Shen, J.-R., Terashima, I., Katoh, S.: Cause for dark, chilling-induced inactivation of photosynthetic oxygen-evolving system in cucumber leaves.-Plant Physiol. 93: 1354-1357, 1990. Go to original source...
  20. Stamp, P.: Impact of chilling on maize - an overview.-In: Dörffling, K., Brettschneider, B., Tantau, H., Pithan, K. (ed.): Crop Adaptation To Cool Climates. Pp. 433-441. European Commission, European Cooperation in the Field of Scientific and Technical Research, Brussels-Luxembourg 1994.
  21. Starck, Z., Chołuj, D., Kalaji, H.M.: Photosynthesis and biomass allocation as response to chilling in tomato plants.-In: Dörffling, K., Brettschneider, B., Tantau, H., Pithan, K. (ed.): Crop Adaptation to Cool Climates. Pp. 125-132. European Commission, European Cooperation in the Field of Scientific and Technical Research, Brussels-Luxembourg 1994a.
  22. Starck, Z., Chołuj, D., Niemyska, B.: Effect of preceding temperature and subsequent conditions on response of tomato plants to chilling.-Acta Physiol. Plant. 16: 329-336, 1994b.
  23. Starck, Z., Chołuj, D., Niemyska, B.: Source-sink response to chilling stress in tomato plants.-Biol. Plant. 36(Suppl.): S254, 1994c.
  24. Wilson, J.M.: The mechanism of chill-and drought-hardening of Phaseolus vulgaris leaves.-New Phytol. 76: 257-270, 1976. Go to original source...
  25. Wong, S.C., Cowan, I.R., Farquhar, G.D.: Stomatal conductance correlates with photosynthetic capacity.-Nature 282: 424-426, 1979. Go to original source...