Photosynthetica 1999, 36(12):307-323 | DOI: 10.1023/A:1007120424769

Photoadaptation in the Green Alga Spongiochloris Sp. A Three-Fluorometer Study

M. Koblížek1,2, M. Ciscato3, J. Komenda1, J. Kopencký1, P. Šiffel4, J. Masojídek1
1 Department of Autotrophic Microorganisms, Institute of Microbiology, Academy of Sciences, Třeboň, Czech Republic
2 Department of Plant Physiology, University of South Bohemia, České Budějovice, Czech Republic
3 L.U.C. Department SBG Laboratory of Botany, Universitaire Campus, Diepenbeck, Belgium
4 Department of Photosynthesis, Institute of Plant Molecular Biology, Academy of Sciences, České Budějovice, Czech Republic

The dark-adapted cells of the green alga Spongiochloris sp. were exposed to "white light" of 1000 µmol(photon) m-2 s-1 for 2 h and then dark adapted for 1.5 h. Changes of photochemical activities during photoadaptation were followed by measurement of chlorophyll (Chl) fluorescence kinetics, 77 K emission spectra, photosynthetic oxygen evolution, and pigment composition. We observed a build-up of slowly-relaxing non-photochemical quenching which led to a decrease of the Fv/Fm parameter and the connectivity. In contrast to the depression of Fv/Fm (35 %) and the rise of non-photochemical quenching (∼ 1.6), we observed an increase in effective absorption cross-section (20 %), Hill reaction (30 %), photosynthetic oxygen evolution (80 %), and electron transport rate estimated from the Chl fluorescence analysis (80 %). We showed an inconsistency in the presently used interpretation schemes, and ascribe the discrepancy between the increase of effective absorption cross-section and the photosynthetic activities on one side and the effective non-photochemical quenching on the other side to the build-up of a quenching mechanism which dissipates energy in closed reaction centres. Such a type of quenching changes the ratio between thermal dissipation and fluorescence without any effect on photochemical yield. In this case the Fv/Fm ratio cannot be used as a measure of the maximum photochemical yield of PS2.

Additional key words: chlorophyll fluorescence; photochemical yield; non-photochemical quenching; connectivity; electron transport rate

Published: September 1, 1999  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Koblížek, M., Ciscato, M., Komenda, J., Kopencký, J., Šiffel, P., & Masojídek, J. (1999). Photoadaptation in the Green Alga Spongiochloris Sp. A Three-Fluorometer Study. Photosynthetica37(2), 307-323. doi: 10.1023/A:1007120424769
Download citation

References

  1. Allen, J.F.: Protein phosphorylation in regulation of photosynthesis.-Biochim. biophys. Acta 1098: 275-335, 1992. Go to original source...
  2. Bartoš, J., Berková, E., Šetlík, I.: A versatile chamber for gas exchange measurements in suspensions of algae and chloroplasts.-Photosynthetica 9: 395-406, 1975.
  3. Bilger, W., Schreiber, U.: Energy-dependent quenching of dark-level chlorophyll fluorescence in intact leaves.-Photosynth. Res. 10: 303-308, 1986. Go to original source...
  4. Butler, W.L.: Energy distribution in the photochemical apparatus of photosynthesis.-Annu. Rev. Plant Physiol. 29: 345-378, 1978. Go to original source...
  5. Butler, W.L., Kitajima, M.: Fluorescence quenching in photosystem II of chloroplasts.-Biochim. biophys. Acta 376: 116-125, 1975. Go to original source...
  6. Casper-Lindley, C., Björkman, O.: Fluorescence quenching in four unicellular algae with different light-harvesting and xanthophyll-cycle pigments.-Photosynth. Res. 56: 277-289, 1998. Go to original source...
  7. Dau, H.: Molecular mechanisms and quantitative models of variable photosystem II fluorescence.-Photochem. Photobiol. 60: 1-23, 1994a. Go to original source...
  8. Dau, H.: Short-term adaptation of plants to changing light intensities and its relation to Photosystem II photochemistry and fluorescence emission.-J. Photochem. Photobiol. B 26: 3-27, 1994b. Go to original source...
  9. Demmig-Adams, B.: Carotenoids and photoprotection in plants: A role for the xanthophyll zeaxanthin.-Biochim. biophys. Acta 1020: 1-24, 1990. Go to original source...
  10. Falkowski, P.G., Kolber, Z., Mauzerall, D.: A comment on the call to throw away your fluorescence induction apparatus.-Biophys. J. 66: 923-925, 1994. Go to original source...
  11. Falkowski, P.G., Wyman, K., Ley, A.C., Mauzerall, D.C.: Relationship of steady-state photosynthesis to fluorescence in eucaryotic algae.-Biochim. biophys. Acta 849: 183-192, 1986. Go to original source...
  12. Genty, B., Briantais, J.-M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.-Biochim. biophys. Acta 990: 87-92, 1989. Go to original source...
  13. Gilmore, M.A.: Mechanistic aspects of xanthophyll cycle-dependent photoprotection in higher plant chloroplasts and leaves.-Physiol. Plant. 99: 197-209, 1997. Go to original source...
  14. Gilmore, M.A., Yamamoto, H.Y.: Resolutions of lutein and zeaxanthin using a non-endcapped, lightly carbon-loaded C18 high-performance liquid chromatographic column.-J. Chromatogr. 543: 137-145, 1991. Go to original source...
  15. Govindjee: Sixty-three years since Kautsky: Chlorophyll a fluorescence.-Aust. J. Plant Physiol. 22: 131-160, 1995. Go to original source...
  16. Groot, M.-L., van Grondelle, R., Leegwater, J.-A., van Mourik, F.: Radical pair quantum yield in reaction centers of photosystem II of green plants and of the bacterium Rhodobacter sphaeroides. Saturation behavior with sub-picosecond pulses.-J. phys. Chem. B 101: 7869-7873, 1997. Go to original source...
  17. Holzwarth, A.R.: Is it time to throw away your apparatus for chlorophyll fluorescence induction?-Biophys. J. 64: 1280-1281, 1993. Go to original source...
  18. Joliot, A., Joliot, P.: Etudes cinétique de la réaction photochimique libérant l'oxygene au cours de la photosynthèse.-Compt. rend. Acad. Sci. Paris 258: 4622-4625, 1964.
  19. Kitajima, M., Butler, W.L.: Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone.-Biochim. biophys. Acta 376: 105-115, 1975. Go to original source...
  20. Kolber, Z., Falkowski, P.G.: Use of active fluorescence to estimate phytoplankton photosynthesis in situ.-Limnol. Oceanogr. 38: 1646-1665, 1993. Go to original source...
  21. Kolber, Z., Prášil, O., Falkowski, P.: Measurements of variable chlorophyll fluorescence using fast repetition rate technique: defining methodology and experimental protocols.-Biochim. biophys. Acta 1367: 88-106, 1998. Go to original source...
  22. Kramer, H., Mathis, P.: Quantum yield and rate of formation of the carotenoid triplet state in photosynthetic structures.-Biochim. biophys. Acta 593: 319-329, 1980. Go to original source...
  23. Krause, G.H., Vernotte, C., Briantais, J.-M.: Photoinduced quenching of chlorophyll fluorescence in intact chloroplasts and algae. Resolution into two components.-Biochim. biophys. Acta 679: 116-124, 1982. Go to original source...
  24. Lavergne, J., Leci, E.: Properties of inactive Photosystem II centers.-Photosynth. Res. 38: 323-343, 1993. Go to original source...
  25. Lavergne, J., Trissl, H.-W.: Theory of fluorescence induction in Photosystem II: Derivation of analytical expressions in a model including exciton-radical-pair equilibrium and restricted energy transfer between photosynthetic units.-Biophys. J. 68: 2474-2492, 1995. Go to original source...
  26. Lavorel, J., Joliot, P.: A connected model of the photosynthetic unit.-Biophys. J. 12: 815-831, 1972. Go to original source...
  27. Lazár, D.: Chlorophyll a fluorescence induction.-Biochim. biophys. Acta 1412: 1-28, 1999. Go to original source...
  28. Ley, A.C., Mauzerall, D.C.: Absolute absorption cross-sections for photosystem II and the minimum quantum requirement for photosynthesis in Chlorella vulgaris.-Biochim. biophys. Acta 680: 95-106, 1982. Go to original source...
  29. Lichtenthaler, H.K.: Chlorophylls and carotenoids-the pigments of photosynthetic biomembranes.-In: Colowick, S.P., Kaplan, N.O. (ed.): Methods in Enzymology. Vol. 148. Pp. 350-382. Academic Press, San Diego-New York-Berkeley-Boston-London-Sydney-Tokyo-Toronto 1987. Go to original source...
  30. Malkin, S., Kok, B.: Fluorescence induction studies in isolated chloroplast. I. Number of components involved in the reaction and quantum yields.-Biochim. biophys. Acta 126: 413-432, 1966. Go to original source...
  31. Masojídek, J., Torzillo, G., Koblížek, M., Kopecký, J., Bernardini, P., Sacchi, A., Komenda, J.: Photoadaptation of two Chlorophyta (Scenedesmus and Chlorella) in laboratory and outdoor cultures: Changes of chlorophyll fluorescence quenching and the xanthophyll cycle.-Planta 209: 126-135, 1999. Go to original source...
  32. Mauzerall, D.: Light-induced fluorescence changes in Chlorella, and the primary photoreactions for the production of oxygen.-Proc. nat. Acad. Sci. USA 69: 1358-1362, 1972. Go to original source...
  33. Mauzerall, D., Greenbaum, N.L.: The absolute size of a photosynthetic unit.-Biochim. biophys. Acta 974: 119-140, 1989. Go to original source...
  34. Nedbal, L., Trtílek, M., Kaftan, D.: Flash fluorescence induction: a novel method to study regulation of Photosystem II.-J. Photochem. Photobiol. B 48: 154-157, 1999. Go to original source...
  35. Prášil, O., Adir, N., Ohad, I.: Dynamics of photosystem II: mechanism of photoinhibition and recovery processes.-In: Barber, J. (ed.): The Photosystems: Structure, Function and Molecular Biology. Pp. 295-348. Elsevier Publ., Amsterdam-London-New York-Tokyo 1992. Go to original source...
  36. Roelofs, T.A., Lee, C.-H., Holzwarth, A.R.: Global target analysis of picosecond chlorophyll fluorescence kinetics from PEA chloroplasts. A new approach to the characterization of the primary processes in photosystem II α-and β-units.-Biophys. J. 61: 1147-1163, 1992. Go to original source...
  37. Schatz, G.H., Brock, H., Holzwarth, A.R.: Kinetic and energetic model for the primary processes in photosystem II.-Biophys. J. 54: 397-405, 1988. Go to original source...
  38. Schindler, C., Lichtenthaler, H.K.: Photosynthetic CO2-assimilation, chlorophyll fluorescence and zeaxanthin accumulation in field grown maple trees in the course of a sunny and a cloudy day.-J. Plant Physiol. 148: 399-412, 1996. Go to original source...
  39. Schreiber, U., Bilger, W., Neubauer, C.: Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis.-In: Schulze, E.-D., Caldwell, M.M. (ed.): Ecophysiology of Photosynthesis. Pp. 49-70. Springer-Verlag, Berlin-Heidelberg-New York 1995. Go to original source...
  40. Schreiber, U., Schliwa, U., Bilger, W.: Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer.-Photosynth. Res. 10: 51-62, 1986. Go to original source...
  41. Strasser, R.J.: The grouping model of plant photosynthesis.-In: Akoyunoglou, G., Argyroudi-Akoyunoglou, J.H. (ed.): Chloroplast Development. Pp. 513-524. Elsevier/North-Holland Biomedical Press, Amsterdam-New York-Oxford 1978.
  42. Strasser, R.J., Greppin, H.: Primary reactions of photochemistry in higher plants.-In Akoyonoglou, G. (ed.): Photosynthesis. Vol. III. Pp. 717-726. Balaban International Science Services, Philadelphia 1981.
  43. Strasser, R.J., Srivastava, A., Govindjee: Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria.-Photochem. Photobiol. 61: 32-42, 1995. Go to original source...
  44. Strasser, R.J., Srivastava, A., Tsimilli-Michael, M.: The fluorescence transient as a tool to characterize and screen photosynthetic samples.-In: Mohanty, R.P., Yunus, M., Pathre, U. (ed.): Probing Photosynthesis: Mechanism, Regulation and Adaptation. In press. Taylor & Francis, London 1999.
  45. Trissl, H.-W.: Response to Falkowski et al.-Biophys. J. 66: 925-926, 1994. Go to original source...
  46. Trissl, H.-W., Gao, Y., Wulf, K.: Theoretical fluorescence induction curves derived from coupled differential equations describing the primary photochemistry of photosystem II by an excitonradical pair equilibrium.-Biophys. J. 64: 974-988, 1993. Go to original source...
  47. Trissl, H.-W., Lavergne, J.: Fluorescence induction from photosystem II: Analytical equations for the yields of photochemistry and fluorescence derived from analysis of a model including excitonradical pair equilibrium and restricted energy transfer between photosynthetic units.-Aust. J. Plant Physiol. 22: 183-193, 1995. Go to original source...
  48. Trtílek, M., Kramer, D.M., Koblížek, M., Nedbal, L.: Dual-modulation LED kinetic fluorometer.-J. Luminescence 72-74: 597-599, 1997. Go to original source...
  49. Weber, G.: Fluorescence parameters and photosynthesis.-In: Allen, M.B. (ed.): Comparative Biochemistry of Photoreactive Systems. Pp. 395-411. Academic Press, New York 1960.
  50. Young, A.J., Frank, H.A.: Energy transfer reactions involving carotenoids: quenching of chlorophyll fluorescence.-J. Photochem. Photobiol. B 36: 3-15, 1996. Go to original source...