Photosynthetica 2000, 38(2):233-241 | DOI: 10.1023/A:1007274000087

Morphological and Physiological Differences in Synechococcus elongatus during Continuous Cultivation at High Iron, Low Iron, and Iron Deficient Medium

J. Benešová1, K. Ničková1, N. Ferimazova1,2, D. Štys1,2
1 Faculty of Biological Sciences, Laboratory of Biomembranes, University of South Bohemia, Budějovice, Czech Republic
2 Department of Autotrophic Microorganisms, Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovický mlýn, Třeboň, Czech Republic

Thermophilic unicellular cyanobacterium Synechococcus elongatus Näg. var. thermalis Geitl. strain Kovrov 1972/8 was cultivated in continuous flow reactor to simulate conditions occurring in nature in regions with low iron concentration. Two degrees of iron deprivation were established: (a) low iron (LI) conditions (9.0 µM Fe) when cells still maintained maximal growth rate but already exhibited changes in photosynthetic apparatus, and (b) iron deficient (ID) conditions (0.9 µM Fe) when cell growth rate decreased and extensive morphological and functional changes were observed. A decrease in the cellular content of phycobilin antenna was observed in both ID and LI cells and an increase of carotenoid concentration only in the ID culture. Morphologically, ID cells showed a decrease in the amount of phycobilins and in the number of thylakoid membranes. This suggests that S. elongatus responds to decrease in iron availability by substitution of the phycobilisomes by antennae containing chlorophyll (Chl) and carotenoids. Photochemical activity of photosystem (PS) 2, determined as Fv/Fm ratio was similar in high iron (HI) and LI cultures and approximately five times lower in ID culture. On the other hand, the activity of the whole electron transport chain showed the opposite tendency: the relative rates of the CO2-dependent oxygen evolution in HI : LI : ID cultures were approximately 1 : 2 : 4. Thus in nutrient stress the photosynthetic apparatus preserved its activity despite the decrease in the amount of both Chl-binding complexes and thylakoid membranes.

Prepublished online: November 1, 2000; Published: August 1, 2000  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Benešová, J., Ničková, K., Ferimazova, N., & Štys, D. (2000). Morphological and Physiological Differences in Synechococcus elongatus during Continuous Cultivation at High Iron, Low Iron, and Iron Deficient Medium. Photosynthetica38(2), 233-241. doi: 10.1023/A:1007274000087
Download citation

References

  1. Bartoš, J., Berková, E., Šetlík, I.: A versatile chamber for gas exchange measurements in suspensions of algae and chloroplasts.-Photosynthetica 9: 395-406, 1975.
  2. Beale, S.I., Cornejo, J.: Biosynthesis of phycocyanobilin form exogenous labeled biliverdin in Cyanidium caldarium.-Arch. Biochem. Biophys. 227: 279-286, 1983. Go to original source...
  3. Behrenfeld, M.J., Kolber, Z.S.: Widespread iron limitation of phytoplankton in the South Pacific Ocean.-Science 283: 840-843, 1999. Go to original source...
  4. Boyer, G., Gilliam, A.H., Trick, C.: Iron chelation and uptake.-In: Fay, P., Van Baalen, C. (ed.): The Cyanobacteria. Pp. 415-436. Elsevier, Amsterdam-New York-Oxford 1987.
  5. Bryant, D.A., Guglielmi, G., Tandeau de Marsac, N., Castets, A.-M., Cohen-Bazire, G.: The structure of cyanobacterial phycobilisomes: a model.-Arch. Microbiol. 123: 113-127, 1979. Go to original source...
  6. Burnap, R.L., Troyan, T., Sherman, L.A.: The highly abundant chlorophyll-protein complex of low iron Synechococcus sp. PCC7942 (CP43) is encoded by the isiA gene.-Plant Physiol. 103: 893-902, 1993. Go to original source...
  7. Funk, C., Vermaas, W.: A cyanobacterial gene family coding for single-helix proteins resembling part of the light-harvesting proteins from higher plants.-Biochemistry 38: 9397-9404, 1999. Go to original source...
  8. Greene, R.M., Geider, R.J., Kolber, Z., Falkowski, P.G.: Iron-induced changes in light harvesting and photochemical energy conversion processes in eukaryotic marine algae.-Plant Physiol. 100: 565-575, 1992. Go to original source...
  9. Gunnars, A., Blomqvist, S.: Phosphate exchange across the sediment-water interface when shifting from anoxic to oxic conditions - an experimental comparison of freshwater and brackish-marine systems.-Biogeochemistry 37: 203-226, 1997. Go to original source...
  10. Henley, W.J., Yin, Y.: Growth and photosynthesis of marine Synechococcus (Cyanophyceae) under iron stress.-J. Phycol. 34: 94-103 1998. Go to original source...
  11. Holt, T.K., Krogmann, D.W.: A carotenoid-protein from cyanobacteria.-Biochim. biophys. Acta 637: 408-414, 1981. Go to original source...
  12. Hutber, G.N., Hutson, K.G., Rogers, L.J.: Effect of iron deficiency on levels of two ferredoxins and flavodoxin in a cyanobacterium.-FEMS Microbiol. Lett. 1: 193-196, 1977. Go to original source...
  13. Hutchins, D.A., Bruland, K.W.: Iron-limited diatom growth and Si:N uptake ratios in coastal upwelling regime.-Nature 393: 561-564, 1998. Go to original source...
  14. Koblížek, M., Komenda, J., Pechar, L., Masojídek, J.: Cell aggregation of the cyanobacterium Synechococcus elongatus. Role of electron transport chain.-J. Phycol., in press, 2000. Go to original source...
  15. Komenda, J., Masojídek, J.: Functional and structural changes of the photosystem II complex induced by high irradiance in cyanobacterial cells.-Eur. J. Biochem. 233: 677-682, 1995. Go to original source...
  16. Komenda, J., Masojídek, J., Prášil, O., Boček, J.: Two mechanisms of photosystem 2 photoinactivation: Do they exist in vivo?-Photosynthetica 27: 99-108, 1992.
  17. Kratz, W.A., Myers J.: Nutrition and growth of several blue-green algae.-Amer. J. Bot. 42: 282-287, 1955. Go to original source...
  18. Krause, G.H., Weis, E.: Chlorophyll fluorescence and photosynthesis: The basics.-Annu. Rev. Plant Physiol. Plant mol. Biol. 42: 313-319, 1991. Go to original source...
  19. Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4.-Nature 227: 680-685, 1970. Go to original source...
  20. Lovčinský, M., Dědic, R., Pšenčík, J., Benešová, J., Štys, D., Hála, J.: Spectroscopic characterization of pigment binding proteins in normal-grown and iron-stressed thermophilic cyanobacteria Synechococcus sp.-J. mol. Struct. 481: 573-576, 1999. Go to original source...
  21. Michel, K.-P., Pistorius, E.K.: Isolation of a photosystem II associated 36 kDa polypeptide and an iron-stress 34 kDa polypeptide from thylakoid membranes of the cyanobacterium Synechococcus PCC6301 grown under mild iron deficiency.-Z. Naturforsch. 47c: 867-874, 1992. Go to original source...
  22. Michel, K.-P., Exss-Sonne, P., Scholten-Beck, G., Kahmann, U., Ruppel, H.G., Pistorius, E.K.: Immunocytochemical localisation of IdiA, a protein expressed under iron or manganese limitation in the mesophilic cyanobacterium Synechococcus PCC 6301 and the thermophilic cyanobacterium Synechococcus elongatus.-Planta 205: 73-81, 1998. Go to original source...
  23. Öquist, G.: Changes in pigment composition and photosynthesis induced by iron-deficiency in the blue-green alga Anacystis nidulans.-Physiol. Plant. 25: 188-191, 1971. Go to original source...
  24. Park, Y.-I., Sandström, S., Gustafsson, P., Öquist, G.: Expression of the isiA gene is essential for the survival of the cyanobacterium Synechococcus sp. PCC 7942 by protecting photosystem II form excess light under iron limitation.-Mol. Microbiol. 32: 123-129, 1999. Go to original source...
  25. Pechar, L., Masojídek, J.: Colonial forms of the cyanobacterium Aphanizomenon flos-aquae represents protection against photosystem II photo-inactivation-fluorescence quenching analysis.-Algol. Stud. 77: 37-43, 1995. Go to original source...
  26. Porra, R.J., Thompson, W.A., Kriedemann, P.E.: Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy.-Biochim. biophys. Acta 975: 348-394, 1989. Go to original source...
  27. Sandmann, G.: Consequences of iron deficiency on photosynthetic and respiratory electron transport in blue-green algae.-Photosynth. Res. 6: 261-271, 1985. Go to original source...
  28. Schreiber, U.: Detection of rapid induction kinetics with a new type of high-frequency modulated chlorophyll fluorometer.-Photosynth. Res. 9: 261-272, 1986. Go to original source...
  29. Sherman, D.M., Sherman, L.A.: Effect of iron deficiency and iron restoration on ultrastructure of Anacystis nidulans.-J. Bacteriol. 156: 393-401, 1983. Go to original source...
  30. Straus, N.A.: Iron deprivation: Physiology and gene regulation.-In: Bryant, D.A. (ed.): The Molecular Biology of Cyanobacteria. Pp. 731-750. Kluwer Academic Publ., Dordrecht-Boston-Lancaster 1994. Go to original source...
  31. Vassiliev, I.R., Kolber, Z., Wyman, K.D., Mauzerall, D., Shukla, V.K., Falkowski, P.G.: Effects of iron limitation on photosystem II composition and light utilization in Dunaliella tertiolecta.-Plant Physiol. 109: 963-972, 1995. Go to original source...
  32. Wetzel, R.G.: Iron, sulfur and silica cycles.-In: Wetzel, R.G. (ed.): Limnology. Pp. 246-248. W.B. Saunders, Philadelphia 1975.