Photosynthetica 2000, 38(4):581-599 | DOI: 10.1023/A:1012465508465

Fluorescence Lifetime Imaging (FLI) in Real-Time - a New Technique in Photosynthesis Research

O. Holub1, M.J. Seufferheld2, C. Gohlke1, Govindjee2, R.M. Clegg3
1 Department of Physics, Laboratory for Fluorescence Dynamics, University of Illinois at Urbana-Champaign, Urbana, USA
2 Department of Plant Biology, 265 Morrill Hall, University of Illinois at Urbana-Champaign, Urbana, USA
3 Department of Physics, Laboratory for Fluorescence Dynamics, University of Illinois at Urbana-Champaign, Urbana, USA

We describe an instrument that allows the rapid measurement of fluorescence lifetime-resolved images of leaves as well as sub-cellular structures of intact plants or single cells of algae. Lifetime and intensity fluorescence images can be acquired and displayed in real time (up to 55 lifetime-resolved images per s). Our imaging technique therefore allows rapid measurements that are necessary to determine the fluorescence lifetimes at the maximum (P level) fluorescence following initial illumination during the chlorophyll (Chl) a fluorescence transient (induction) in photosynthetic organisms. We demonstrate the application of this new instrument and methodology to measurements of: (1) Arabidopsis thaliana leaves showing the effect of dehydration on the fluorescence lifetime images; (2) Zea mays leaves showing differences in the fluorescence lifetimes due to differences in the bundle sheath cells (having a higher amount of low yield photosystem 1) and the mesophyll cells (having a higher amount of high yield photosystem 2); and (3) single cells of wild type Chlamydomonas reinhardtii and its non-photochemical quenching mutant NPQ2 (where the conversion of zeaxanthin to violaxanthin is blocked), with NPQ2 showing lowered lifetime of Chl a fluorescence. In addition to the lifetime differences referred to in (1) and (2), structural dependent heterogeneities in the fluorescence lifetimes were generally observed when imaging mesophyll cells in leaves.

Additional key words: Arabidopsis; Chlamydomonas; FLIM; frequency domain; homodyne; microscopy; modulation; phase; photosystems 1 and 2; stress; time domain; Zea

Prepublished online: August 1, 2000; Published: November 1, 2000  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Holub, O., Seufferheld, M.J., Gohlke, C., Govindjee,, & Clegg, R.M. (2000). Fluorescence Lifetime Imaging (FLI) in Real-Time - a New Technique in Photosynthesis Research. Photosynthetica38(4), 581-599. doi: 10.1023/A:1012465508465
Download citation

References

  1. Agati, G., Cerovic, Z.G., Moya, I.: The effect of decreasing temperature up to chilling values on the in vivo F685/F735 chlorophyll fluorescence ratio in Phaseolus vulgaris and Pisum sativum: The role of the photosystem I contribution to the 735 nm fluorescence band.-Photochem. Photobiol. 72: 75-84, 2000. Go to original source...
  2. Bazzaz, M.B., Govindjee: Photochemical properties of mesophyll and bundle sheath chloroplasts of maize.-Plant Physiol. 52: 257-262, 1973. Go to original source...
  3. Berg, D., Maier, K., Otteken, D., Terjung, F.: Picosecond fluorescence decay studies on water-stressed pea leaves: energy transfer and quenching processes in Photosystem 2.-Photosynthetica 34: 97-106, 1997. Go to original source...
  4. Briantais, J.-M., Dacosta, J., Goulas, Y., Ducruet, J.-M., Moya, I.: Heat stress induces in leaves an increase of the minimum level of chlorophyll fluorescence, F0: A time-resolved analysis.-Photosynth. Res. 48: 189-196, 1996. Go to original source...
  5. Buschmann, C., Lichtenthaler, H.K.: Principles and characteristics of multi-colour fluorescence imaging of plants.-J. Plant Physiol. 152: 297-314, 1998. Go to original source...
  6. Byrdin, M., Rimke, I., Schlodder, E., Stehlik, D., Roelofs, T.A.: Decay kinetics and quantum yields of fluorescence in photosystem I from Synechococcus elongatus with P700 in the reduced and oxidized state: Are the kinetics of excited state decay trap-limited or transfer-limited?-Biophys. J. 79: 992-1007, 2000. Go to original source...
  7. Cerovic, Z.G., Goulas, Y., Gorbunov, M., Briantais, J.M., Camenen, L., Moya, I.: Fluorosensing of water stress in plants-diurnal changes of the mean lifetime and yield of chlorophyll fluorescence, measured simultaneously and at distance with a tau-LIDAR and a modified PAM-fluorimeter, in maize, sugar beet, and Kalanchoe.-Remote Sens. Environ. 58: 311-321, 1996. Go to original source...
  8. Ciscato, M.: Development of a Fluorescence Imaging System for the Quality Assessment of Fruits and Vegetables.-PhD. Thesis. Limburgs Universitair Centrum (LUC), Diepenbeek 2000.
  9. Clegg, R.M., Gadella, T.W.J., Jovin, T.M.: Lifetime-resolved fluorescence imaging.-Proc. SPIE 2137: 105-118, 1994. Go to original source...
  10. Clegg, R.M., Schneider, P.C.: Fluorescence Lifetime-resolved Imaging Microscopy: A general description of the lifetime-resolved imaging measurements.-In: Slavik, J. (ed.): Fluorescence Microscopy and Fluorescent Probes. Pp. 15-33. Plenum Press, New York 1996. Go to original source...
  11. Clegg, R.M., Schneider, P.C., Jovin, T.M.: Fluorescence Lifetime-resolved Imaging Microscopy.-In: Verga Scheggi, A.M., Martellucci, S., Chester, A.N., Pratesi, R. (ed.): Biomedical Optical Instrumentation and Laser-Assisted Biotechnology. Vol. 325. Pp. 143-156. Kluwer Academic Publ., Dordrecht-Boston-London 1996. Go to original source...
  12. Crofts, A.R., Yerkes, C.T.: A molecular mechanism for qE-quenching. FEBS Lett. 352: 265-270, 1994. Go to original source...
  13. Daley, P.F.: Chloropphyll fluorescence analysis and imaging in plant stress and disease.-Can. J. Plant Pathol. 17: 167-173, 1995. Go to original source...
  14. Dau, H.: Molecular mechanisms and quantitative models of variable photosystem II fluorescence.-Photochem. Photobiol. 60: 1-23, 1994. Go to original source...
  15. DeEll, J.R., Toivonen, P.M.A.: Chlorophyll fluorescence as a nondestructive indicator of broccoli quality during storage in modified-atmosphere packaging.-HortScience 35: 256-259, 2000. Go to original source...
  16. Demmig-Adams, B., Gilmore, A.M., Adams, W.W., III: In vivo function of carotenoids in higher plants.-FASEB J. 10: 403-412, 1996. Go to original source...
  17. Duschinsky, F.: Der zeitliche Intensitätsverlauf von intermittierend angeregter Resonanzstrahlung.-Z. Phys. 81: 7-22, 1933a. Go to original source...
  18. Duschinsky, F.: Eine allgemeine Theorie der zur Messung sehr kurzer Leuchtdauern dienenden Versuchsanordnungen (Fluorometer); A general theory of the instruments for the measurement of very short after-glows (Fluorometer).-Z. Phys. 81: 23-42, 1933b. Go to original source...
  19. Edwards, G.E., Furbank, R.T., Hatch, M.D., Osmond, C.B.: What does it take to be C4? Lessons from the evolution of C4 photosynthesis.-Plant Physiol. 125: 46-49, 2001. Go to original source...
  20. Franck, F., Schoefs, B., Barthélemy, X., My¶liwa-Kurdziel, B., Strza³ka, K., Popovic, R.: Protection of native chlorophyll(ide) forms and of photosystem II against photodamage during early stages of chloroplast differentiation.-Acta Physiol. Plant. 17: 123-132, 1995.
  21. Frank, H.A., Bautista, J.A., Josue, J.S., Young, A.J.: Mechanism of nonphotochemical quenching in green plants: Energies of the lowest excited singlet states of violaxanthin and zeaxanthin.-Biochemistry 39: 2831-2837, 2000. Go to original source...
  22. French, T.: The Development of Fluorescence Lifetime Imaging and an Application in Immunology.-PhD. Thesis. University of Illinois at Urbana-Champaign, Urbana 1996.
  23. Gadella, T.W.J., Jr.: Fluorescence Lifetime Imaging Microscopy (FLIM): Instrumentation and applications.-In: Mason, W.T. (ed.): Fluorescent and Luminescent Probes for Biological Activity. Pp. 467-479. Academic Press, San Diego 1999. Go to original source...
  24. Gadella, T.W.J., Jr., Clegg, R.M., Jovin, T.M.: Fluorescence lifetime imaging microscopy: pixel-by-pixel analysis of phase-modulation data.-Bioimaging 2: 139-159, 1994. Go to original source...
  25. Gadella, T.W.J., Jr., Jovin, T.M., Clegg, R.M.: Fluorescence lifetime imaging microscopy (FLIM): Spatial resolution of microstructures on the nanosecond time scale.-Biophys. Chem. 48: 221-239, 1993. Go to original source...
  26. Genty, B., Meyer, S.: Quantitative mapping of leaf photosynthesis using chlorophyll fluorescence imaging.-Aust. J. Plant Physiol. 22: 277-284, 1995. Go to original source...
  27. Gilmore, A.M., Govindjee: How higher plants respond to excess light: Energy dissipation in photosystem II.-In: Singhal, G.S., Renger, G., Sopory, S., Irrgang, K.D., Govindjee (ed.): Concepts in Photobiology. Pp. 513-548. Narosa Publ. House, Delhi-Madras-Bombay-Calcuta-London; Kluwer Academic Publ., Boston-Dordrecht-London 1999. Go to original source...
  28. Gilmore, A.M., Hazlett, T.L., Debrunner, P.G., Govindjee: Comparative time-resolved photosystem II chlorophyll a fluorescence analyses reveal distinctive differences between photoinhibitory reaction center damage and xanthophyll cycle-dependent energy dissipation.-Photochem. Photobiol. 64: 552-563, 1996a. Go to original source...
  29. Gilmore, A.M., Hazlett, T.L., Debrunner, P.G., Govindjee: Photosystem II chlorophyll a fluorescence lifetimes and intensity are independent of the antenna size differences between barley wild-type and chlorina mutants. Photochemical quenching and xanthophyll cycle-dependent nonphotochemical quenching of fluorescence.-Photosynth. Res. 48: 171-187, 1996b. Go to original source...
  30. Gilmore, A.M., Hazlett, T.L., Govindjee: Xanthophyll cycle-dependent quenching of photosystem II chlorophyll a fluorescence: Formation of a quenching complex with a short fluorescence lifetime.-Proc. nat. Acad. Sci. USA 92: 2273-2277, 1995. Go to original source...
  31. Gilmore, A.M., Itoh, S., Govindjee: Global spectral-kinetic analysis of room temperature chlorophyll a fluorescence from light-harvesting antenna mutants of barley.-Phil. Trans. roy. Soc. London B 355: 1371-1384, 2000. Go to original source...
  32. Gilmore, A.M., Shinkarev, V.P., Hazlett, T.L., Govindjee: Quantitative analysis of the effects of intrathylakoid pH and xanthophyll cycle pigments on chlorophyll a fluorescence lifetime distributions and intensity in thylakoids.-Biochemistry 37: 13582-13593, 1998. Go to original source...
  33. Govindjee: Sixty-three years since Kautsky: Chlorophyll a fluorescence.-Aust. J. Plant Physiol. 22: 131-160, 1995. Go to original source...
  34. Govindjee, Amesz, J., Fork, D.C. (ed.): Light Emission by Plants and Bacteria.-Academic Press, Orlando-San Diego-New York-Austin-Boston-London-Sydney-Tokyo-Toronto 1986.
  35. Harris, E.H.: The Chlamydomonas Sourcebook.-Academic Press, San Diego-New York-Berkeley-Boston-London-Sydney-Tokyo-Toronto 1989.
  36. Hartel, H., Lokstein, H., Grimm, B., Rank, B.: Kinetic studies on the xanthophyll cycle in barley leaves. Influence of antenna size and relations to nonphotochemical chlorophyll fluorescence quenching.-Plant Physiol. 110: 471-482, 1996. Go to original source...
  37. Holzwarth, A.R.: Excited-state kinetics in chlorophyll systems and its relationship to the functional organization of the photosystems.-In: Scheer, H. (ed.): Chlorophylls. Pp. 1125-1151. CRC Press, Boca Raton-Ann Arbor-Boston-London 1991.
  38. Horváth, G., Droppa, M., Mustárdy, L., Faludi-Dániel, Á.: Functional characteristics of intact chloroplasts isolated from mesophyll protoplasts and bundle sheath cells of maize.-Planta 141: 239-244, 1978. Go to original source...
  39. Jahns, P., Depka, B., Trebst, A.: Xanthophyll cycle mutants from Chlamydomonas reinhardtii indicate a role for zeaxanthin in the D1 protein turnover.-Plant Physiol. Biochem. 38: 371-376, 2000. Go to original source...
  40. Jalink, H., van der Schoor, R., Frandas, A., van Pijlen, J.G., Bino, R.J.: Chlorophyll fluorescence of Brassica oleracea seeds as a non-destructive marker for seed maturity and seed performance.-Seed Sci. Res. 8: 437-443, 1998. Go to original source...
  41. Jameson, D.M.: The Seminal Contributions of Gregorio Weber to Modern Fluorescence Spectroscopy. Methods and Applications of Fluorescence Spectroscopy.-Springer-Verlag, Heidelberg 2001. Go to original source...
  42. Jameson, D.M., Gratton, E., Hall, R.D.: The measurement and analysis of heterogeneous emissions by multifrequency phase and modulation fluorometry.-Appl. Spectrosc. Rev. 20: 55-106, 1984. Go to original source...
  43. Karukstis, K.K.: Chlorophyll fluorescence as a physiological probe of the photosynthetic apparatus.-In: Scheer, H. (ed.): Chlorophylls. Pp. 769-795. CRC Press, Boca Raton-Ann Arbor-Boston-London 1991.
  44. Kautsky, H., Hirsch, A.: Neue Versuche zur Kohlensäure-assimilation.-Naturwissenschaften 19: 964, 1931. Go to original source...
  45. König, K., Boehme, S., Leclerc, N., Ahuja, R.: Time-gated autofluorescence microscopy of motile green microalga in an optical trap.-Cell. mol. Biol. 44: 763-770, 1998. Go to original source...
  46. Kramer, D.M., Crofts, A.R.: Control and measurement of photosynthetic electron transport in vivo.-In: Baker, N.R. (ed.): Photosynthesis and the Environment. Pp. 25-66. Kluwer Academic Publ., Dordrecht-Boston-London 1996. Go to original source...
  47. Lavorel, J., Breton, J., Lutz, M.: Methodological principles of measurement of light emitted by photosynthetic systems.-In: Govindjee, Amesz, J., Fork, D.C. (ed.): Light Emission by Plants and Bacteria. Pp. 57-98. Academic Press, Orlando-San Diego-New York-Austin-Boston-London-Sydney-Tokyo-Toronto 1986. Go to original source...
  48. Lazár, D.: Chlorophyll a fluorescence induction.-Biochim. biophysica Acta 1412: 1-28, 1999. Go to original source...
  49. Li, X.P., Björkman, O., Shih, C., Grossman, A.R., Rosenquist, M., Jansson, S., Niyogi, K.K.: A pigment-binding protein essential for regulation of photosynthetic light harvesting.-Nature 403: 391-395, 2000. Go to original source...
  50. Malkin, S., Kok, B.: Fluorescence induction studies in isolated chloroplast. I. Number of components involved in the reaction and quantum yields.-Biochim. biophys. Acta 126: 413-432. 1966. Go to original source...
  51. Mazza, C.A., Boccalandro, H.E., Giordano, C.V., Battista, D., Scopel, A.L., Ballare, C.L.: Functional significance and induction by solar radiation of ultraviolet-absorbing sunscreens in field-grown soybean crops.-Plant Physiol. 122: 117-125, 2000. Go to original source...
  52. Morales, F., Belkhodja, R., Goulas, Y., Abadia, J., Moya, I.: Remote and near-contact chlorophyll fluorescence during photosynthetic induction in iron-deficient sugar beet leaves.-Remote Sens. Environ. 69: 170-178, 1999. Go to original source...
  53. Moya, I., Sebban, P., Haehnel, W.: Lifetime of excited states and quantum yield of chlorophyll a fluorescence in vivo.-In: Govindjee, Amesz, J., Fork, D.C. (ed.): Light Emission by Plants and Bacteria. Pp. 161-190. Academic Press, Orlando-San Diego-New York-Austin-Boston-London-Sydney-Tokyo-Toronto 1986. Go to original source...
  54. Murata, N., Nishimura, M., Takamiya, A.: Fluorescence of chlorophyll in photosynthetic systems. II. Induction of fluorescence in isolated spinach chloroplasts.-Biochim. biophys. Acta 120: 23-33, 1966. Go to original source...
  55. Niyogi, K.K.: Photoprotection revisited: Genetic and molecular approaches.-Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 333-359, 1999. Go to original source...
  56. Niyogi, K.K., Björkman, O., Grossman, A.R.: Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching.-Plant Cell 9: 1369-1380, 1997. Go to original source...
  57. Oxborough, K., Baker, N.R.: An instrument capable of imaging chlorophyll a fluorescence from intact leaves at very low irradiance and at cellular and subcellular levels of organization.-Plant Cell Environ. 20: 1473-1483, 1997. Go to original source...
  58. Papageorgiou, G.C.: The photosynthesis of cyanobacteria (blue bacteria) from the perspective of signal analysis of chlorophyll a fluorescence.-J. sci. ind. Res. 55: 596-617, 1996.
  59. Samson, G., Prá¹il, O., Yaakoubd, B.: Photochemical and thermal phases of chlorophyll a fluorescence.-Photosynthetica 37: 163-182, 1999. Go to original source...
  60. Sanders, R., Van Zandvoort, M.A.M.J., Draaijer, A., Levine, Y.K., Gerritsen, H.C.: Confocal fluorescence lifetime imaging of chlorophyll molecules in polymer matrices.-Photochem. Photobiol. 64: 817-820, 1996. Go to original source...
  61. Schneider, P.C., Clegg, R.M.: Rapid acquisition, analysis, and display of fluorescence lifetime-resolved images for real-time applications.-Rev. sci. Instrum. 68: 4107-4119, 1997. Go to original source...
  62. Scholes, J.D., Rolfe, S.A.: Photosynthesis in localised regions of oat leaves infected with crown rust (Puccinia coronata). Quantitative imaging of chlorophyll fluorescence.-Planta 199: 573-582, 1996. Go to original source...
  63. Spencer, R.D., Weber, G.: Measurement of subnanosecond fluorescence lifetimes with a cross-correlation phase fluorometer.-Ann. New York Acad. Sci. 158: 361-376, 1969. Go to original source...
  64. Stirbet, A., Govindjee, Strasser, B.J., Strasser, R.J.: Chlorophyll a fluorescence induction in higher plants: Modelling and numerical simulation.-J. theor. Biol. 193: 131-151, 1998. Go to original source...
  65. Verveer, P.J., Squire, A., Bastiaens, P.I.H.: Global analysis of fluorescence lifetime imaging microscopy data.-Biophys. J. 78: 2127-2137, 2000. Go to original source...
  66. Wang, X.F., Periasamy, A., Herman, B., Coleman, D.M.: Fluorescence lifetime imaging microscopy (FLIM): instrumentation and applications.-Crit. Rev. anal. Chem. 23: 369-395, 1992. Go to original source...
  67. Weber, G.: Resolution of the fluorescence lifetimes in a heterogeneous system by phase and modulation measurements.-J. phys. Chem. 85: 949-953, 1981. Go to original source...