Photosynthetica 2001, 39(2):263-268 | DOI: 10.1023/A:1013749108008

Juniper Shade Enables Terricolous Lichens and Mosses to Maintain High Photochemical Efficiency in a Semiarid Temperate Sand Grassland

T. Kalapos1, K. Mázsa1
1 Department of Plant Taxonomy and Ecology, L. E[ouml, Budapest, Hungary

On a semiarid sand grassland (Festucetum vaginatae) colonised by juniper (Juniperus communis L.) shrubs terricolous lichens and mosses segregate strongly between microhabitats: certain species grow in the open grassland, others almost exclusively in the shade of junipers. The contrasting irradiances of these microhabitats influence much the metabolism of these organisms, and thus affect their small-scale distribution. This was confirmed by determining the efficiency of photochemical energy conversion by measuring chlorophyll a fluorescence parameters. In the open grassland maximum photochemical efficiency of photosystem 2 (PS2, Fv/Fm) declined from the humid spring to the hot and dry summer in all species, and this was caused by an increase in base fluorescence (F0), but not by the decrease in fluorescence maximum (Fm). In summer, mosses and lichens growing in the open grassland generally possessed lower Fv/Fm than cryptogams growing in the shade cast by juniper shrubs. Thus mosses and lichens in the open grassland suffer lasting reduction in photochemical efficiency in summer, which is avoided in the shade of junipers. Juniper shrubs indeed influence the composition and small-scale spatial pattern of sympatric terricolous lichen and moss communities by-among others-providing a shelter against high light in summer.

Additional key words: bryophytes; chlorophyll a fluorescence; Cladonia; Diplosichtes; Hypnum; Neofuscelia; Polytrichum; Tortula

Published: June 1, 2001  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Kalapos, T., & Mázsa, K. (2001). Juniper Shade Enables Terricolous Lichens and Mosses to Maintain High Photochemical Efficiency in a Semiarid Temperate Sand Grassland. Photosynthetica39(2), 263-268. doi: 10.1023/A:1013749108008
Download citation

References

  1. Calatayud, A., Deltoro, V.I., Barreno, E., del Valle-Tascon, S.: Changes in in vivo chlorophyll fluorescence quenching in lichen thalli as a function of water content and suggestion of zeaxanthin-associated photoprotection.-Physiol. Plant. 101: 93-102, 1998. Go to original source...
  2. Csintalan, Z., Proctor, M.C.F., Tuba, Z.: Chlorophyll fluorescence during drying and rehydration in the mosses Rhytidiadelphus loreus (Hedw.) Warnst., Anomodon viticulosus (Hedw.) Hook. & Tayl. and Grimmia pulvinata (Hedw.) Sm.-Ann. Bot. 84: 235-244, 1999. Go to original source...
  3. Deltoro, V.I., Calatayud, A., Gimeno, C., Barreno, E.: Water relations, chlorophyll fluorescence, and membrane permeability during desiccation in bryophytes from xeric, mesic, and hydric environments.-Can. J. Bot. 76: 1923-1929, 1998. Go to original source...
  4. Demmig-Adams, B., Máguas, C., Adams, W.W., III, Meyer, A., Kilian, E., Lange, O.L.: Effect of high light on the efficiency of photochemical energy conversion in a variety of lichen species with green and blue-green phycobionts.-Planta 180: 400-409, 1990. Go to original source...
  5. Gauslaa, Y., Solhaug, K.A.: The significance of thallus size for the water economy of the cyanobacterial old-forest lichen Degelia plumbea.-Oecologia 116: 76-84, 1998. Go to original source...
  6. Gauslaa, Y., Solhaug, K.A.: High-light-intensity damage to the foliose lichen Lobaria pulmonaria within a natural forest: the applicability of chlorophyll fluorescence methods.-Lichenologist 32: 271-289, 2000. Go to original source...
  7. Green, T.G.A., Lange, O.L.: Photosynthesis in poikilohydric plants: A comparison of lichens and bryophytes.-In: Schulze, E.-D., Caldwell, M.M. (ed.): Ecophysiology of Photosynthesis. Pp. 319-341. Springer-Verlag, Berlin 1994. Go to original source...
  8. Hawksworth, D.L, Kirk, P.H., Sutton, B.C., Pegler D.N.: Ainsworth & Bisby's Dictionary of the Fungi.-University Press, Cambridge 1995.
  9. Heber, U., Bilger, W., Bligny, R., Lange, O.L.: Phototolerance of lichens, mosses and higher plants in an alpine environment: analysis of photoreactions.-Planta 211: 770-780, 2000. Go to original source...
  10. Jensen, M., Chakir, S., Feige, G.B.: Osmotic and atmospheric dehydration effects in the lichens Hypogymnia physodes, Lobaria pulmonaria, and Peltigera aphthosa: an in vivo study of the chlorophyll fluorescence induction.-Photosynthetica 37: 393-404, 1999. Go to original source...
  11. Kakas, J. (ed.): Klima Atlas von Ungarn. Band II. Tabellen.-Akadémiai Kiadó, Budapest 1967.
  12. Kovács-Láng, E.: Examination of dynamics of organic matter in a perennial open sandy steppe-meadow (Festucetum vaginatae danubiale) at the Csévharaszt IBP sample area (Hungary).-Acta bot. hung. 20: 309-326, 1974.
  13. Kovács-Láng, E.: Distribution and dynamics of phosphorus, nitrogen and potassium in perennial sandy steppe-meadow (Festucetum vaginatae danubiale).-Acta bot. hung. 21: 77-90, 1975.
  14. Lange, O.L., Green, T.G.A., Reichenberger, H., Meyer, A.: Photosynthetic depression at high thallus water content in lichens: concurrent use of gas exchange and fluorescence techniques with a cyanobacterial and a green algal Peltigera species.-Bot. Acta 109: 43-50, 1996. Go to original source...
  15. Láposi, R., Veres, Sz., Mile, O., Bai, E., Bibók, B., Mészáros, I.: Effects of growth irradiances on the photosynthetic apparatus and accumulation of flavonoids in leaves of beech forest species.-Plant Physiol. Biochem. 38(Suppl.): s212, 2000.
  16. Leisner, J.M.R, Bilger, W., Lange, O.L.: Chlorophyll fluorescence characteristics of the cyanobacterial lichen Peltigera rufescens under field conditions. I. Seasonal patterns of photochemical activity and the occurrence of photosystem II inhibition.-Flora 191: 261-273, 1996. Go to original source...
  17. Lichtenthaler, H.K.: In vivo chlorophyll fluorescence as a tool for stress detection in plants.-In: Lichtenthaler, H.K. (ed.): Applications of Chlorophyll Fluorescence. Pp. 129-142. Kluwer Academic Publ., Dordrecht-Boston-London 1988. Go to original source...
  18. Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence-a practical guide.-J. exp. Bot. 51: 659-668, 2000. Go to original source...
  19. Mázsa, K.: Field studies on CO2 fixation of Cladonia furcata and Cladonia convoluta.-Cryptogam. Bot. 4: 207-211, 1994.
  20. Mázsa, K., Kovács-Láng, E., Snakin, V.V.: Changes in soil pH along the zonation of cryptogamous synusia at Bugac (Hungary).-Symp. biol. hung. 35A: 33-37, 1987.
  21. Mázsa, K., Mészáros, R., Kalapos, T.: Ecophysiological background of microhabitat preference by soil-living lichens in a sand grassland-forest mosaic; study plan and initial results.-Sauteria 9: 237-243, 1998.
  22. Renhorn, K.-E., Essen, P.-A., Palmquist, K., Sundberg, B.: Growth and vitality of epiphytic lichens. I. Responses to microclimate along a forest edge-interior gradient.-Oecologia 109: 1-9, 1997. Go to original source...
  23. Roden, J.S., Wiggings, D.J., Ball, M.C.: Photosynthesis and growth of two rain forest species in simulated gaps under elevated CO2.-Ecology 78: 385-393, 1997. Go to original source...
  24. Schreiber, U., Bilger, W., Neubauer, C.: Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis.-In: Schulze, E.-D., Caldwell, M.M. (ed.): Ecophysiology of Photosynthesis. Pp. 49-70. Springer-Verlag, Berlin 1994. Go to original source...
  25. Seel, W.E., Baker, N.R., Lee, J.A.: Analysis of the decrease in photosynthesis on desiccation of mosses from xeric and hydric environments.-Physiol. Plant. 86: 451-458, 1992a. Go to original source...
  26. Seel, W.E., Hendry, G.A.F., Lee, J.A.: The combined effects of desiccation and irradiance on mosses from xeric and hydric habitats.-J. exp. Bot. 43: 1023-1030, 1992b. Go to original source...
  27. Shumway, S.W.: Facilitative effects of a sand dune shrub on species growing beneath the shrub canopy.-Oecologia 124: 138-148, 2000. Go to original source...
  28. Simon, T., Mészáros-Draskovits, R.: The vegetation map of the nature reserve area of Csévharaszt in Hungary.-Ann. Univ. Sci. Budapest, Sect. Biol. 14: 159-164, 1972.
  29. Simon, T., Szerényi, G.: Moss ecological investigation in the forest-steppe associations of the IBP-area at Csévharaszt.-Acta bot. hung. 21: 117-136, 1975.
  30. Sokal, R.R., Rohlf, F.J.: Biometry. 2nd Ed.-W.H. Freeman, New York 1981.
  31. Tehler, A.: Systematics, phylogeny and classification.-In: Nash, T.H., III (ed.): Lichen Biology. Pp. 217-239. Cambridge Univ. Press, Cambridge 1996.
  32. Tuba, Z.: Light, temperature and desiccation responses of CO2 exchange in the desiccation-tolerant moss, Tortula ruralis.-Symp. biol. hung. 35A: 137-149, 1987.
  33. Tuba, Z., Csintalan, Z., Proctor, M.C.F.: Photosynthetic responses of a moss, Tortula ruralis, ssp. ruralis, and the lichens Cladonia convoluta and C. furcata to water deficit and short periods of desiccation, and their ecophysiological significance: baseline study at present-day CO2 concentration.-New Phytol. 133: 353-361, 1996. Go to original source...
  34. Verseghy, K., Kovács-Láng, E.: Investigations on production of grassland communities of sandy soil in the IBP area near Csévharaszt (Hungary). I. Production of lichens.-Acta biol. hung. 22: 393-411, 1971.