Photosynthetica 2002, 40(2):293-300 | DOI: 10.1023/A:1021314211953

Modelling Net Photosynthetic Rate of Winter Wheat in Elevated Air CO2 Concentrations

N. Harnos1, Z. Tuba2, K. Szente2
1 Agricultural Research Institute of the Hungarian Academy of Sciences, Martonvásár, Hungary
2 Department of Botany and Plant Physiology, Faculty of Agricultural and Environmental Sciences, St István University, Gödöllő, Hungary

Winter wheat plants were grown in open top chambers either at 365 µmol mol-1 (AC) or at 700 µmol mol-1 (EC) air CO2 concentrations. The photosynthetic response of flag leaves at the beginning of flowering and on four vertical leaf levels at the beginning of grain filling were measured. Net photosynthetic rates (PN) were higher at both developmental phases in plants grown at EC coupled with larger leaf area and photosynthetic pigment contents. The widely accepted Farquhar net photosynthesis model was parameterised and tested using several observed data. After parameterisation the test results corresponded satisfactorily with observed values under several environmental conditions.

Additional key words: acclimation; carotenoids; chlorophyll; intercellular CO2 concentration; leaf area; net photosynthetic rate; ribulose-1,5-bisphosphate carboxylase, oxygenase capacity; temperature; Triticum aestivum

Published: June 1, 2002  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Harnos, N., Tuba, Z., & Szente, K. (2002). Modelling Net Photosynthetic Rate of Winter Wheat in Elevated Air CO2 Concentrations. Photosynthetica40(2), 293-300. doi: 10.1023/A:1021314211953
Download citation

References

  1. Brooks, A., Farquhar, G.D.: Effect of temperature on the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light. Estimates from gas-exchange experiments on spinach.-Planta 165: 397-406, 1985. Go to original source...
  2. Cure, J.D., Acock, B.: Crop responses to carbon dioxide doubling: a literature survey.-Agr. Forest Meteorol. 38: 127-145, 1986. Go to original source...
  3. Farquhar, G.D., Caemmerer, S. von: Modelling of photosynthetic response to environmental conditions.-In: Lange, O.L., Nobel, P.S., Osmond, C.B, Ziegler, H. (ed.) Physiological Plant Ecology II. Pp. 549-587. Springer-Verlag, Berlin-Heidelberg-New York 1982. Go to original source...
  4. Farquhar, G.D., Caemmerer, S. von, Berry, J.A.: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species.-Planta 149: 78-90, 1980. Go to original source...
  5. Ferris, R., Wheeler, T.R., Hadley, P., Ellis, R.H.: Greenhouse experiment on the effects of high temperature episodes and drought under elevated CO2 on soya bean.-In: Harrison, P.A., Butterfield, R.E., Downing, T.E. (ed.): Climate Change, Climatic Variability and Agriculture in Europe. An Integrated Assessment. Environmental Change Institute, University of Oxford, Oxford Ann. Rep. Jan. to Dec. 1996.
  6. Ferris, R., Wheeler, T.R., Hadley, P., Ellis, R.H.: Recovery of photosynthesis after environmental stress in soybean grown under elevated CO2.-Crop Sci. 38: 948-955, 1998. Go to original source...
  7. Ghildiyal, M.C., Rafique, S., Sharma-Natu, P.: Photosynthetic acclimation to elevated CO2 in relation to leaf saccharide constituents in wheat and sunflower.-Photosynthetica 39: 447-452, 2001. Go to original source...
  8. Harley, P.C., Sharkey, T.D.: An improved model of C3 photosynthesis at high CO2: Reversed O2 sensitivity explained by lack of glycerate reentry into the chloroplast.-Photosynth. Res. 27: 169-178, 1991. Go to original source...
  9. Harley, P.C., Thomas, R.B., Raynolds, J.F., Strain, B.R.: Modelling photosynthesis of cotton grown in elevated CO2.-Plant Cell Environ. 15: 271-282, 1992. Go to original source...
  10. Harnos, N.: [Use of simulation models to analyse the predicted effects of climatic changes on wheat production.]-Növénytermelés 2000(1-2): 41-55, 2000. [In Hung.]
  11. Harnos, N., Veisz, O., Tischner, T.: Effects of elevated CO2 concentration on the development and yield components of cereals.-Acta agron. hung. 46: 15-24, 1998.
  12. Haszpra, L.: Carbon dioxide concentration measurements at a rural site in Hungary.-Tellus 47B: 17-22, 1995. Go to original source...
  13. Hofmann, D.J., Peterson, J.T. (ed.): Climate Monitoring and Diagnostics Laboratory No. 23.-Summary Report 1994-95. Boulder 1996.
  14. Ingram, K.T., Manalo, P.A., Namuco, O.S., Pamplona, R.R., Weerakoon, W.M., Peng, S., Ingram, K.T., Neue, H.U., Ziska, L.H. (ed.): Interactive effects of elevated carbon dioxide and temperature on rice growth and development.-In: Peng, S., Ingram, K.T., Neue, H.U. (ed.): Climate Change and Rice. Pp. 278-287. Springer-Verlag, Berlin 1995. Go to original source...
  15. Jauhiainen, J., Silvola, J.: Photosynthesis of Sphagnum fuscum at long-term raised CO2 concentrations.-Ann. bot. fenn. 36: 11-19, 1999.
  16. Johnson, F., Eyring, H., Williams, R.: The nature of enzyme inhibitions in bacterial luminescence: sulfanilamide, urethane, temperature and pressure.-J. Cell Comp. Physiol. 20: 247-268, 1942. Go to original source...
  17. Jordan, D.B., Orgen, W.L.: The CO2/O2 specificity of ribulose 1,5-bisphosphate carboxylase/oxygenase. Dependence on ribulosebisphosphate concentration, pH and temperature.-Planta 161: 308-313, 1984. Go to original source...
  18. Keeling, C.D., Adams, J.A., Ekhdal, C.A., Guenther, P.R.: Atmospheric carbon dioxide variations at the South Pole.-Tellus 28: 552-564, 1976b. Go to original source...
  19. Keeling, C.D., Bacastow, R.B., Bainbridge, A.E., Ekhdal, C.A., Guenther, P.R., Waterman, T.S., Chin, J.F: Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii.-Tellus 28: 538-551, 1976a. Go to original source...
  20. Krenzer, E.G., Jr., Moss, D.N.: Carbon dioxide enrichment effects upon yield and yield components in wheat.-Crop Sci. 15: 71-74, 1975. Go to original source...
  21. Lichtenthaler, H.K.: Chlorophylls and carotenoids - pigments of photosynthetic biomembranes.-In: Colowick, S.P., Kaplan, N.O. (ed.): Methods in Enzymology. Vol. 148. Pp. 350-382. Academic Press, San Diego-New York-Berkeley-Boston-London-Sydney-Tokyo-Toronto 1987. Go to original source...
  22. Pospíąilová, J., Čatský, J.: Development of water stress under increased atmospheric CO2 concentration.-Biol. Plant. 42: 1-24, 1999. Go to original source...
  23. Sharkey, T.D.: Photosynthesis in intact leaves of C3 plants: physics, physiology and rate limitations.-Bot. Rev. 51: 53-105, 1985. Go to original source...
  24. Sionit, N., Hellmers, H., Strain, B.R.: Growth and yield of wheat under CO2 enrichment and water stress.-Crop Sci. 20: 687-690, 1980. Go to original source...
  25. Smith, E.: The influence of light and carbon dioxide on photosynthesis.-Gen. Physiol. 20: 807-830, 1937. Go to original source...
  26. Szente, K., Nagy, Z., Tuba, Z.: Enhanced water use efficiency in dry loess grassland species grown at elevated air CO2 concentration.-Photosynthetica 35: 637-640, 1998. Go to original source...
  27. Tuba, Z., Szente, K., Koch, J.: Response of photosynthesis, stomatal conductance, water use efficiency and production to long-term elevated CO2 in winter wheat.-J. Plant Physiol. 144: 661-668, 1994. Go to original source...
  28. Tuba, Z., Szente, K., Nagy, Z., Csintalan, Z., Koch, J.: Responses of CO2 assimilation, transpiration and water use efficiency to long-term elevated CO2 in perennial C3 xeric loess steppe species.-J. Plant Physiol. 148: 356-361, 1996. Go to original source...
  29. Wheeler, T.R., Hong, T.D., Ellis, R.H., Batts, G.R., Morison, J.I.L., Hadley, P.: The duration and rate of grain growth and harvest index of wheat (Triticum aestivum L.) in response to temperature and CO2.-J. exp. Bot. 47: 623-630, 1996. Go to original source...
  30. Wullschleger, S.D.: Biochemical limitations to carbon assimilation in C3 plants - A retrospective analysis of the A/Ci curves from 109 species.-J. exp. Bot. 44: 907-920, 1993. Go to original source...