Photosynthetica 2003, 41(1):77-82 | DOI: 10.1023/A:1025860429593

Chlorophyll a Fluorescence Analysis in Response to Excitation Irradiance in Bean Plants (Phaseolus vulgaris L. and Vigna unguiculata L. Walp) Submitted to High Temperature Stress

E.S. Costa1, R. Bressan-Smith1,*, J.G. Oliveira1, E. Campostrini1
1 Setor de Fisiologia Vegetal, Universidade Estadual do Norte Fluminense/CCTA/LMGV, Campos dos Goytacazes, RJ, Brazil

Bean plants Phaseolus vulgaris L. (cv. Carioca and Negro Huasteco) and Vigna unguiculata L. Walp (cv. Epace-10) were grown in a growth chamber with a photosynthetic photon flux density of 200 μmol m-2 s-1 at leaf level and air temperature of 25+1 °C. Fully expanded, first pair leaves of 12-d-old plants were submitted for 90 min to high temperature (25, 30, 35, 40, 45, and 48 °C). Chlorophyll a fluorescence parameters (ETR, qP, qN, and F0) were investigated using a modulated fluorimeter at 25 °C during recovery considered here as 48 h after stress induction period. An accentuated decrease in qP and an increase in qN at 48 °C in Carioca and Negro Huasteco was not observed in Epace-10. In response to excitation irradiance a great potential for ETR was found in Negro Huasteco at 25 °C, also demonstrated by net photosynthetic rate. At 48 °C ETR was high for Epace-10 while it was equal to zero for Carioca and Negro Huasteco. Tolerance to high temperature observed in Epace-10 provided important information about the adaptative characteristics of Vigna cultivars to warm climates.

Additional key words: electron transport rate; net photosynthetic rate; photochemical and non-photochemical quenching

Published: March 1, 2003  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Costa, E.S., Bressan-Smith, R., Oliveira, J.G., & Campostrini, E. (2003). Chlorophyll a Fluorescence Analysis in Response to Excitation Irradiance in Bean Plants (Phaseolus vulgaris L. and Vigna unguiculata L. Walp) Submitted to High Temperature Stress. Photosynthetica41(1), 77-82. doi: 10.1023/A:1025860429593
Download citation

References

  1. Bolhàr-Nordenkampf, H.R., Long, S.P., Baker, N.R., Öquist, G., Shreiber, U., Lechner, E.G.: Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current instrumentation.-Funct. Ecol. 3: 497-514, 1989. Go to original source...
  2. Bolhàr-Nordenkampf, H.R., Öquist. G.: Chlorophyll fluorescence as a tool in photosynthesis research.-In: Hall, D.O., Scurlock, J.M.O., Bolhàr-Nordenkampf, H.R., Leegood, R.C., Long, S.P. (ed.): Photosynthesis and Production in a Changing Environment. A Field and Laboratory Manual. Pp. 193-206. Chapman & Hall, London-Glasgow-New York-Tokyo-Melbourne-Madras 1993. Go to original source...
  3. Burkey, O.K., Gizlice, Z., Carter, T.E., Jr.: Genetic variation in soybean photosynthetic electron transport capacity is related to plastocyanin concentration in the chloroplast.-Photosynth. Res. 49: 141-149, 1996. Go to original source...
  4. Caemmerer, S. von: Biochemical Models of Leaf Photosynthesis.-CSIRO Publishing, Collingwood 2000. Go to original source...
  5. Cleland, E.R.: Voltameric measurement of the plastoquinone redox state in isolated thylakoids.-Photosynth. Res. 58: 183-192, 1998. Go to original source...
  6. Costa, E.S., Bressan-Smith, R., Oliveira, J.G., Campostrini, E., Pimentel, C.: Photochemical efficiency in bean plants (Phaseolus vulgaris L. and Vigna unguiculata L. Walp) during recovery from high temperature stress.-Braz. J. Plant Physiol. 14: 105-110, 2002. Go to original source...
  7. Demmig-Adams, B., Adams, W.W., III: The role of xanthophyll cycle carotenoids in the protection of photosynthesis.-Trends Plant Sci. 1: 21-26, 1996. Go to original source...
  8. Edwards, G.E., Baker, N.R.: Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis?-Photosynth. Res. 37: 89-102, 1993. Go to original source...
  9. Genty, B., Briantais, J.-M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.-Biochim. biophys. Acta 990: 87-92, 1989. Go to original source...
  10. Havaux, M., Gruszecki, W.I.: Heat-induced and light-induced chlorophyll a fluorescence changes in potato leaves containing high or low levels of the carotenoid zeaxanthin: Indications of a regulatory effect of zeaxanthin on thylakoid membrane fluidity.-Photochem. Photobiol. 58: 607-614, 1993. Go to original source...
  11. Horton, P., Ruban, A.V., Walters, R.G.: Regulation of light harvesting in green plants.-Annu. Rev. Plant Physiol. Plant. mol. Biol. 47: 655-684, 1996. Go to original source...
  12. Krause, G.H., Santarius, K.A.: Relative permeability of the chloroplast envelope.-Planta 127: 285-299, 1975. Go to original source...
  13. Krause, G.H., Weis, E.: Chlorophyll fluorescence as a tool in plant physiology. II. Interpretation of fluorescence signals.-Photosynth. Res. 5: 139-157, 1984. Go to original source...
  14. Lee, B.H., Won, S.H., Lee, H.S., Miyao, M., Chung, W.I., Kim, I.J., Jo, J.: Expression of the chloroplast-localized small heat shock protein by oxidative stress in rice.-Gene 45: 283-290, 2000. Go to original source...
  15. Masaya, P., White, J.W.: Adaptation to photoperiod and temperature.-In: Van Schoonhoven, A., Voysest, O. (ed.): Common Beans - Research for Crop Improvement. Pp. 445-500. CIAT, Colômbia 1991.
  16. Noctor, G., Foyer, C.H.: Ascorbate and glutathione: Keeping active oxygen under control.-Annu. Rev. Plant Physiol. Plant. mol. Biol. 49: 249-279, 1998. Go to original source...
  17. Oberhuber, W., Dai, Z.-Y., Edwards, G.E.: Light dependence of quantum yields of Photosystem II and CO2 fixation in C3 and C4 plants.-Photosynth. Res. 35: 265-274, 1993. Go to original source...
  18. Panchuk, I.I., Volvov, R.A., Schöffl, F.: Heat stress-and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis.-Plant Physiol. 129: 838-853, 2002. Go to original source...
  19. Pastenes, C., Horton, P.: Effect of high temperature on photosynthesis in beans. II. Oxygen evolution and chlorophyll fluorescence.-Plant Physiol. 112: 1245-1251, 1996. Go to original source...
  20. Pastenes, C., Horton, P.: Resistance of photosynthesis to high temperature in two bean varieties (Phaseolus vulgaris L.).-Photosynth. Res. 62: 197-203, 1999. Go to original source...
  21. Pimentel, C., Roy-Macauley, H., Abboud, A.C.S., Diouf, O., Sarr, B.: Effects of irrigation regimes on the water status of cowpea cultivated in the field.-Physiol. mol. Biol. Plants 5: 153-159, 1999.
  22. Raison, J.K., Roberts, J.K.M., Berry, J.A.: Correlations between the thermal stability of chloroplast (thylakoid) membranes and the composition and fluidity of their polar lipids upon acclimation of the higher plant, Nerium oleander, to growth temperature.-Biochim. biophys. Acta 688: 218-228, 1982. Go to original source...
  23. Santarius, K.A., Exner, M., Thebud-Lassak, R.: Effects of high temperature on the photosynthetic apparatus in isolated mesophyll protoplasts of Valirianella locusta L. Betcke.-Photosynthetica 25: 17-26, 1991.
  24. Schreiber, U., Bilger, W.: Rapid assessment of stress effects on plant leaves by chlorophyll fluorescence measurements.-In: Tenhunen, J.D., Catarino, E.M., Lange, O.L., Oechel, W.C. (ed.): Plant Response to Stress. Pp. 27-53. Springer-Verlag, Berlin-Heidelberg-New York-London-Paris-Tokyo 1987. Go to original source...
  25. Schreiber, U., Bilger, W., Neubauer, C.: Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis.-In: Schulze, E.-D., Caldwell, M.M. (ed.): Ecophysiology of Photosynthesis. Pp. 49-70. Springer-Verlag, Berlin 1994. Go to original source...
  26. Yamane, Y., Kashino, Y., Koile, H., Satoh, K.: Increase in the fluorescence Fo level reversible inhibition of Photosystem II reaction center by high-temperature treatments in higher plants.-Photosynth. Res. 52: 57-64, 1997. Go to original source...