Photosynthetica 2005, 43(1):141-146 | DOI: 10.1007/s11099-005-1146-z

Evidence for positive selection in phycoerythrin genes of red algae and cyanobacteria Prochlorococcus and Synechococcus

S. Qin1,*, F. Q. Zhao1,2, C. K. Tseng1
1 Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P.R. China
2 Graduate School of Chinese Academy of Sciences, Qingdao, P.R. China

Because of the shortage of phycoerythrin (PE) gene sequences from rhodophytes, peBA encoding β- and α -subunits of PE from three species of red algae (Ceramium boydenn, Halymenia sinensis, and Plocamium telfariae) were cloned and sequenced. Different selection forces have affected the evolution of PE lineages. 8.9 % of the codons were subject to positive selection within the PE lineages (excluding high-irradiance adapted Prochlorococcus). More than 40 % of the sites may be under positive selection, and nearly 20 % sites are weakly constraint sites in high-irradiance adapted Prochlorococcus. Sites most likely undergoing positive selection were found in the chromophore binding domains, suggesting that these sites have played important roles in environmental adaptation during PE diversification. Moreover, the heterogeneous distribution of positively selected sites along the PE gene was revealed from the comparison of low-irradiance adapted Prochlorococcus and marine Synechococcus, which firmly suggests that evolutionary patterns of PEs in these two lineages are significantly different.

Additional key words: Ceramium boydenn; Halymenia sinensis; molecular evolution; phylogenetic analysis; Plocamium telfariae; positive selection; Synechococcus

Received: July 1, 2004; Accepted: October 11, 2004; Published: March 1, 2005  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Qin, S., Zhao, F.Q., & Tseng, C.K. (2005). Evidence for positive selection in phycoerythrin genes of red algae and cyanobacteria Prochlorococcus and Synechococcus. Photosynthetica43(1), 141-146. doi: 10.1007/s11099-005-1146-z
Download citation

References

  1. Apt, K.E., Collier, J.L., Grossman, A.R.: Evolution of the phycobiliproteins. - J. mol. Biol. 248: 79-96, 1995. Go to original source...
  2. Bernard, C., Etienne, A., Thomas, J.C.: Synthesis and binding of phycoerythrin and its associated linkers to the phycobilisomes in Rhodella violacea (Rhodophyta): compared effects of high light and translation inhibitors. - J. Phycol. 32: 265-271, 1996. Go to original source...
  3. Bryant, D.A.: Cyanobacterial phycobilisomes: Progress toward complete structural and functional analysis via molecular genetics. - In: Bogorad, L., Vasil, K. (ed.): The Photosynthetic Apparatus: Molecular Biology and Operation. Pp. 257-300. Academic Press, San Diego - New York - Boston - London - Sydney - Tokyo - Toronto 1991. Go to original source...
  4. Felsenstein, J.: Phylogeny inference package (version 3.2) - Cladistics 5: 164-166, 1989.
  5. Gabrielson, P.W., Garbary, D.J.: Systematics of red algae (Rhodophyta). - CRC crit. Rev. Plant Sci. 3: 325-366, 1986. Go to original source...
  6. Gabrielson, P.W., Garbary, D.J.: A cladistic analysis of Rhodophyta: Florideophycidean orders. - Brit. Phycol. J. 22: 125-138, 1987. Go to original source...
  7. Glazer, A.N.: Phycobilisomes. - In: Abelson, L.N., Simon, M.I. (ed.): Methods in Enzymology. Vol. 167. Pp. 304-312. Academic Press, San Diego - New York - Berekeley - Boston - London - Sydney - Tokyo - Toronto 1988.
  8. Hess, W.R., Partensky, F., Van der Staay, G.W.M., Garcia-Fernandez, J.M., Börner, T., Vaulot, D.: Coexistence of phycoerythrin and a chlorophyll a/b antenna in a marine prokaryote. - Proc. nat. Acad. Sci. USA 93: 11126-11130, 1996. Go to original source...
  9. Janson, S., Graneli, E.: Phylogenetic analyses of nitrogen-fixing cyanobacteria from the Baltic Sea reveal sequence anomalies in the phycocyanin operon. - Int. J. system. evol. Microbiol. 52: 1397-1404, 2002. Go to original source...
  10. Lokstein, H., Steglich, C., Hess, W.R.: Light-harvesting antenna function of phycoerythrin in Prochlorococcus marinus. - Biochim. biophys. Acta 1410: 97-98, 1999. Go to original source...
  11. MacColl, R.: Cyanobacterial phycobilisomes. - J. struct. Biol. 124: 311-334, 1998. Go to original source...
  12. Nielsen, R., Yang, Z.H.: Likelihood models for detecting positively selected amino acid sites and applications to HIV-1 envelope gene. - Genetics 148: 929-936, 1998. Go to original source...
  13. Oliveira, M.C., Bhattacharya, D.: Phylogeny of the Bangiophycidae (Rhodophyta) and the second endosymbiotic origin of algal plastids. - Amer. J. Bot. 87: 482-492, 2000. Go to original source...
  14. Robertson, B.R., Tezuka, N.R., Watanabe, M.M.: Phylogenetic analyses of Synechococcus strains (cyanobacteria) using sequences of 16s rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content. - Int. J. system. evol. Microbiol. 51: 861-871, 2001. Go to original source...
  15. Roell, M.K., Morse, D.E.: Organization, expression and nucleotide sequence of the operon encoding R-phycoerythrin α and β subunits from the red alga Polysiphonia boldii. - Plant mol. Biol. 21: 47-58, 1993. Go to original source...
  16. Sambrook, J., Fritsch, E., Mantiatis, T.: Molecular Cloning: A Laboratory Manual. - Cold Spring Harbor Laboratory Press, Cold Spring Harbor - New York 1989.
  17. Steglich, C., Mullineaux, C.W., Teuchner, K., Hess, W.R., Lokstein, H.: Photophysical properties of Prochlorococcus marinus SS120 divinyl chlorophylls and phycoerythrin in vitro and in vivo. - FEBS Lett. 553: 79-84, 2003a. Go to original source...
  18. Steglich, C., Psot, A.F., Hess, W.R.: Analysis of natural populations of Prochlorococcus spp. in the northern Red Sea using phycoerythrin gene sequence. - Environ. Microbiol. 5: 681-690, 2003b. Go to original source...
  19. Sui, Z.H., Zhang, X.C.: Cloning and analysis phycoerythrin genes in Gracilaria lemaneiformis (Rhodophyceae). - Chin. J. Oceanol. Liminol. 18: 42-46, 2000. Go to original source...
  20. Swanson, R.V., Ong, L.J., Wilbanks, S.M., Glazer, A.N.: Phycoerythrins of marine unicellular cynanobacteria. II. Characterization of phycobiliproteins with unusually high phycourobilin content. - J. biol. Chem. 266: 9528-9534, 1991. Go to original source...
  21. Thompson, J.D., Higgins, D.G., Gibson, T.J.: CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. - Nucl. Acids Res. 22: 4673-4680, 1994. Go to original source...
  22. Ting, S.C., Rocap, G., King, J., Chisholm, S.W.: Phycobiliprotein genes of the marine photosynthetic prokaryote Prochlorococcus: evidence for rapid evolution of genetic heterogeneity. - Microbiology 147: 3171-3182, 2001. Go to original source...
  23. Wilbanks, S.M., de Lorimier, R., Glazer, A.N.: Phycoerythrins of marine unicellular cyanobacteria. III. Sequence of a class II phycoerythrin. - J. biol. Chem. 266: 9535-9539, 1991. Go to original source...
  24. Yang, Z.H.: PAML: a program package for phylogenetic analysis by maximum likelihood. - CABIOS 13: 555-556, 1997. Go to original source...
  25. Yang, Z.H., Nielsen, R.: Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. - Mol. biol. Evolut. 19: 908-917, 2002. Go to original source...
  26. Yang, Z.H., Nielsen, R., Goldman, N., Pedersen, A.-M.K.: Codon-substitution models for heterogeneous selection pressure at amino acid sites. - Genetics 155: 431-449, 2000. Go to original source...
  27. Zuber, H.: Structure of light-harvesting antenna complexes of photosynthetic bacteria and red algae. - Trends biochem. Sci. 11: 414-419, 1986. Go to original source...