Photosynthetica 2008, 46(3):329 | DOI: 10.1007/s11099-008-0061-5

Low-temperature induced changes in the ultrastructure of maize mesophyll chloroplasts strongly depend on the chilling pattern/intensity and considerably differ among inbred and hybrid genotypes

D. Holá1,*, J. Kutík2, M. Kočová1, O. Rothová1
1 Department of Genetics and Microbiology, Charles University in Prague, Faculty of Science, Praha 2, Czech Republic
2 Department of Plant Physiology, Charles University in Prague, Faculty of Science, Praha 2, Czech Republic

The ultrastructure and dimensions of chloroplasts in leaf mesophyll cells were quantitatively examined in three parental inbred lines of maize (Zea mays L.) and their four hybrids subjected to two types of four-week low-temperature (LT) treatment: the abrupt onset of chilling temperatures ("severe chilling", SC) and the gradual, more moderate one ("moderate chilling", MC). The relationship between the response of individual genotypes to one or the other type of chilling was analyzed as well as the possibility to predict the behaviour of chloroplasts in hybrids from that of their parents. Although selected parameters of chloroplast ultrastructure (e.g. volume densities of granal and intergranal thylakoids, plastoglobuli, and peripheral reticulum) and dimensions changed due to the exposure of maize plants to LT, no general pattern of such changes was found for this species due to the observed intraspecific variability. The response of some genotype to SC could not be predicted from its behaviour under MC (and vice versa) and no clear rules could be applied for the inheritance of chloroplast response to chilling in the general sense. Thus, great caution should be always taken when interpreting the results of studies aimed at the dissection of chloroplast ultrastructure as affected by LT, particularly in case such studies are made with one genotype or under one type of chilling only.

Additional key words: inheritance; peripheral reticulum; photosynthesis; plastoglobuli; stress; thylakoid; volume density

Received: October 16, 2007; Accepted: March 5, 2008; Published: September 1, 2008  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Holá, D., Kutík, J., Kočová, M., & Rothová, O. (2008). Low-temperature induced changes in the ultrastructure of maize mesophyll chloroplasts strongly depend on the chilling pattern/intensity and considerably differ among inbred and hybrid genotypes. Photosynthetica46(3), 329. doi: 10.1007/s11099-008-0061-5
Download citation

References

  1. Allen, D.J., Ort, D.R.: Impact of chilling temperatures on photosynthesis in warm-climate plants.-Trends Plant Sci. 6: 36-42, 2001. Go to original source...
  2. Bongard-Pierce, D.K., Evans, M.M.S., Poethig, R.S.: Heteroblastic features of leaf anatomy in maize and their genetic regulation.-Int. J. Plant Sci. 157: 331-340, 1996. Go to original source...
  3. Čiamporová, M., Trgiňová, I.: Ultrastructure of chloroplasts in leaves and of plastids in root tips of two maize lines differing in chilling tolerance.-Biológia (Bratislava) 51: 441-447, 1996.
  4. Čiamporová, M., Trgiňová, I.: Modifications of plant cell ultrastructure accompanying metabolic responses to low temperatures.-Biológia (Bratislava) 54: 349-360, 1999.
  5. Djebali, W., Zarrouk, M., Brouquisse, R., El Kahoui, S., Limam, F., Ghorbel, M.H., Chaibi, W.: Ultrastructure and lipid alterations induced by cadmium in tomato (Lycopersicon esculentum) chloroplast membranes.-Plant Biol. 7: 358-368, 2005. Go to original source...
  6. Du, Y.-C., Nose, A., Wasano, K.: Effects of chilling temperature on photosynthetic rates, photosynthetic enzyme activities and metabolite levels in leaves of three sugarcane species.-Plant Cell Environ. 22: 317-324, 1999. Go to original source...
  7. Fidalgo, F., Santos, A., Santos, I., Salema, R.: Effects of long-term salt stress on antioxidant defence systems, leaf water relations and chloroplast ultrastructure of potato plants.-Ann. appl. Biol. 145: 185-192, 2004. Go to original source...
  8. Fracheboud, Y., Haldimann, P., Leipner, J., Stamp, P.: Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize (Zea mays L.).-J. exp. Bot. 50: 1533-1540, 1999. Go to original source...
  9. Gemel, J., Golinowski, W., Kaniuga, Z.: Low-temperature induced changes in chloroplast ultrastructure in relation to changes of Hill reaction activity, manganese and free fatty acid levels in chloroplasts of chilling-sensitive and chilling-resistant plants.-Acta Physiol. Plant. 8: 135-143, 1986.
  10. Haisel, D., Pospíšilová, J., Synková, H., Schnáblová, R., Baťková, P.: Effects of abscisic acid or benzyladenine on pigment contents, chlorophyll fluorescence, and chloroplast ultrastructure during water stress and after rehydration.-Photosynthetica 44: 606-614, 2006. Go to original source...
  11. Holá, D., Kočová, M., Körnerová, M., Sofrová, D., Sopko, B.: Genetically based differences in photochemical activities of isolated maize (Zea mays L.) mesophyll chloroplasts.-Photosynthetica 36: 187-197, 1999. Go to original source...
  12. Holá, D., Kočová, M., Rothová, O., Chodová, D., Mikulka, J.: The effect of low growth temperature on Hill reaction and Photosystem 1 activities in three biotypes of Kochia scoparia (L.) Schrad. with different sensitivity to atrazine and ALS-inhibiting herbicides.-Plant Soil Environ. 50: 10-17, 2004. Go to original source...
  13. Holá, D., Kočová, M., Rothová, O., Wilhelmová, N., Benešová, M.: Recovery of maize (Zea mays L.) inbreds and hybrids from chilling stress of various duration: photosynthesis and antioxidant enzymes.-J. Plant Physiol. 164: 868-877, 2007. Go to original source...
  14. Holá, D., Langrová, K., Kočová, M., Rothová, O.: Photosynthetic parameters of maize (Zea mays L.) inbred lines and F1 hybrids: their different response to, and recovery from rapid or gradual onset of low-temperature stress.-Photosynthetica 41: 429-442, 2003. Go to original source...
  15. Holzinger, A., Buchner, O., Luetz, C., Hanson, M.R.: Temperature-sensitive formation of chloroplast protrusions and stromules in mesophyll cells of Arabidopsis thaliana.-Protoplasma 230: 23-30, 2007. Go to original source...
  16. Hudák, J., Salaj, J.: Effect of low temperatures on the structure of plant cells.-In: Pessarakli, M. (ed.): Handbook of Plant and Crop Stress. 2nd Ed. Pp. 441-464. Marcel Dekker, New York-Basel 1999. Go to original source...
  17. Jagels, R.: Photosynthetic apparatus in Selaginella. II. Changes in plastid ultrastructure and pigment content under different light and temperature regimes.-Can. J. Bot. 48: 1853-1860, 1970. Go to original source...
  18. Khavari-Nejad, R.A., Mostofi, Y.: Effects of NaCl on photosynthetic pigments, saccharides, and chloroplast ultrastructure in leaves of tomato cultivars.-Photosynthetica 35: 151-154, 1998. Go to original source...
  19. Kimball, S.L., Salisbury, F.B.: Ultrastructural changes of plants exposed to low temperatures.-Amer. J. Bot. 60: 1028-1033, 1973. Go to original source...
  20. Körnerová, M., Holá, D.: The effect of low growth temperature on Hill reaction and photosystem 1 activities and pigment contents in maize inbred lines and their F1 hybrids.-Photosynthetica 37: 477-488, 1999. Go to original source...
  21. Kratsch, H.A., Wise, R.R.: The ultrastructure of chilling stress.-Plant Cell Environ. 23: 337-350, 2000. Go to original source...
  22. Kutík, J., Holá, D., Kočová, M., Rothová, O., Haisel, D., Wilhelmová, N., Tichá, I.: Ultrastructure and dimensions of chloroplasts in leaves of three maize (Zea mays L.) inbred lines and their F1 hybrids grown under moderate chilling stress.-Photosynthetica 42: 447-455, 2004. Go to original source...
  23. Kutík, J., Kočová, M., Holá, D., Körnerová, M.: The development of chloroplast ultrastructure and Hill reaction activity during leaf ontogeny in different maize (Zea mays L.) genotypes.-Photosynthetica 36: 497-507, 1999. Go to original source...
  24. Ladygin, V.G.: Composition of complexes, activity of photosystems and architecture of chloroplast membranes in leaves of Pisum sativum at iron deficit and root anoxia.-Biol. Membr. 20: 451-463, 2003.
  25. Ladygin, V.G.: Photochemical activity, spectral properties, and structure of chloroplasts in leaves of Pisum sativum L. under iron deficit and root anaerobiosis.-Biofizika 50: 86-100, 2005.
  26. Li, W.X., Chen, T.B., Huang, Z.C., Lei, M., Liao, X.Y.: Effect of arsenic on chloroplast ultrastructure and calcium distribution in arsenic hyperaccumulator Pteris vittata L.-Chemosphere 62: 803-809, 2006. Go to original source...
  27. McCain, D.C.: Combined effects of light and water stress on chloroplast volume regulation.-Biophys. J. 69: 1105-1110, 1995. Go to original source...
  28. Murphy, C., Wilson, J.M.: Ultrastructural features of chilling injury in Episcia reptans.-Plant Cell Environ. 4: 261-265, 1981. Go to original source...
  29. Musser, R.L., Thomas, S.A., Wise, R.R., Peeler, T.C., Naylor, A.W.: Chloroplast ultrastructure, chlorophyll fluorescence, and pigment composition in chilling stressed soybeans.-Plant Physiol. 74: 749-754, 1984. Go to original source...
  30. Papadakis, I.E., Giannakoula, A., Therios, I.N., Bosabalidis, A.M., Moustakas, M., Nastou, A.: Mn-induced changes in leaf structure and chloroplast ultrastructure of Citrus volkameriana (L.) plants.-J. Plant Physiol. 164: 100-103, 2007. Go to original source...
  31. Pechová, R., Kutík, J., Holá, D., Kočová, M., Haisel, D., Vičánková, A.: The ultrastructure of chloroplasts, content of photosynthetic pigments, and photochemical activity of maize (Zea mays L.) as influenced by different concentrations of the herbicide amitrole.-Photosynthetica 41: 127-136, 2003. Go to original source...
  32. Pinhero, R.G., Paliyath, G., Yada, R.Y., Murr, D.: Chloroplast membrane organization in chilling-tolerant and chilling-sensitive maize seedlings.-J. Plant Physiol. 155: 691-698, 1999. Go to original source...
  33. Ristic, Z., Cass, D.D.: Chloroplast structure after water and high-temperature stress in two lines of maize that differ in endogenous levels of abscisic acid.-Int. J. Plant Sci. 153: 186-196, 1992. Go to original source...
  34. Semenova, G.A.: Structural reorganization of thylakoid systems in response to heat treatment.-Photosynthetica 42: 521-527, 2004. Go to original source...
  35. Sharkova, V.E., Bubolo, L.S.: Effect of heat stress on the arrangement of thylakoid membranes in the chloroplasts of mature wheat leaves.-Russ. J. Plant Physiol. 43: 358-365, 1996.
  36. Smillie, R.M., Critchley, C., Bain, J.M., Nott, R.: Effect of growth temperature on chloroplast structure and activity in barley.-Plant Physiol. 62: 191-196, 1978. Go to original source...
  37. Sowinski, P., Rudzinska-Langwald, A., Adamczyk, J., Kubica, W., Fronk, J.: Recovery of maize seedling growth, development and photosynthetic efficiency after initial growth at low temperature.-J. Plant Physiol. 162: 67-80, 2005. Go to original source...
  38. Taylor, A.O., Craig, A.S.: Plants under climatic stress. II. Low temperature, high light effects on chloroplast ultrastructure.-Plant Physiol. 47: 719-725, 1971. Go to original source...
  39. Vani, B., Saradhi, P.P., Mohanty, P.: Alteration in chloroplast structure and thylakoid membrane composition due to in vivo heat treatment of rice seedlings: correlation with the functional changes.-J. Plant Physiol. 158: 583-592, 2001. Go to original source...
  40. Vega, S.H., Sauer, M., Orkwiszewski, J.A.J., Poethig, R.S.: The early phase change gene in maize.-Plant Cell 14: 133-147, 2002. Go to original source...
  41. Weibel, E.R.: Stereological Methods. Vol. 1. Practical Methods for Biological Morphometry.-Academic Press, London 1979.
  42. Wheeler, W.S., Fagerberg, W.R.: Exposure to low levels of photosynthetically active radiation induces rapid increases in palisade cell chloroplast volume and thylakoid surface area in sunflower (Helianthus annuus L.).-Protoplasma 212: 38-45, 2000. Go to original source...
  43. Wise, R.R., McWilliam, J.R., Naylor, A.W.: A comparative study of low-temperature-induced ultrastructural alterations of three species with different chilling sensitivities.-Plant Cell Environ. 6: 525-535, 1983. Go to original source...
  44. Wu, J., Lightner, J., Warwick, N., Browse, J.: Low-temperature damage and subsequent recovery of fab1 mutant Arabidopsis exposed to 2 °C.-Plant Physiol. 113: 347-356, 1997. Go to original source...
  45. Xu, S., Li, J.L., Zhang, X.Q., Wei, H., Cui, L.J.: Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress.-Environ. exp. Bot. 56: 274-285, 2006. Go to original source...
  46. Yamane, K., Hayakawa, K., Kawasaki, M., Taniguchi, M., Miyake, H.: Bundle sheath chloroplasts of rice are more sensitive to drought stress than mesophyll chloroplasts.-J. Plant Physiol. 160: 1319-1327, 2003. Go to original source...
  47. Yamane, K., Rahman, M.S., Kawasaki, M., Taniguchi, M., Miyake, H.: Pretreatment with a low concentration of methyl viologen decreases the effects of salt stress on chloroplast ultrastructure in rice leaves (Oryza sativa L.).-Plant Product. Sci. 7: 435-441, 2004. Go to original source...
  48. Zellnig, G., Zechmann, B., Perktold, A.: Morphological and quantitative data of plastids and mitochondria within drought-stressed spinach leaves.-Protoplasma 223: 221-227, 2004. Go to original source...