Photosynthetica 2017, 55(1):58-68 | DOI: 10.1007/s11099-016-0230-x

Leaf vs. inflorescence: differences in photosynthetic activity of grapevine

M. Sawicki1,*, B. Courteaux1, F. Rabenoelina1, F. Baillieul1, C. Clement1, E. Ait Barka1, C. Jacquard1, N. Vaillant-Gaveau1
1 UFR Sciences Exactes et Naturelles, SFR Condorcet FR CNRS 3417, Unité de Recherche Vignes et Vins de Champagne -EA 4707, Laboratoire de Stress, Défenses et Reproduction des Plantes, Université de Reims Champagne-Ardenne, REIMS Cedex 2, France

Using measures of gas exchange and photosynthetic chain activity, we found some differences between grapevine inflorescence and leaf in terms of photosynthetic activity and photosynthesis regulations. Generally, the leaf showed the higher net photosynthesis (P N) and lower dark respiration than that of the inflorescence until the beginning of the flowering process. The lower (and negative) P N indicated prevailing respiration over photosynthesis and could result from a higher metabolic activity rather than from a lower activity of the photosynthetic apparatus. Considerable differences were observed between both organs in the functioning and regulation of PSI and PSII. Indeed, in our conditions, the quantum yield efficiency and electron transport rate of PSI and PSII were higher in the inflorescence compared to that of the leaf; nevertheless, protective regulatory mechanisms of the photosynthetic chain were clearly more efficient in the leaf. This was in accordance with the major function of this organ in grapevine, but it highlighted also that inflorescence seems to be implied in the whole carbon balance of plant. During inflorescence development, the global PSII activity decreased and PSI regulation tended to be similar to the leaf, where photosynthetic activity and regulations remained more stable. Finally, during flowering, cyclic electron flow (CEF) around PSI was activated in parallel to the decline in the thylakoid linear electron flow. Inflorescence CEF was double compared to the leaf; it might contribute to photoprotection, could promote ATP synthesis and the recovery of PSII.

Additional key words: cyclic electron flow; chlorophyll fluorescence; gas exchange; inflorescence; photosystem; Vitis vinifera

Received: February 3, 2016; Accepted: April 4, 2016; Published: March 1, 2017  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Sawicki, M., Courteaux, B., Rabenoelina, F., Baillieul, F., Clement, C., Ait Barka, E., Jacquard, C., & Vaillant-Gaveau, N. (2017). Leaf vs. inflorescence: differences in photosynthetic activity of grapevine. Photosynthetica55(1), 58-68. doi: 10.1007/s11099-016-0230-x
Download citation

References

  1. Abdel-Reheem S., Belal M.H., Gupta G.: Photosynthesis inhibition of soybean leaves by insecticides. - Environ. Pollut. 74: 245-250, 1991. Go to original source...
  2. Allakhverdiev S.I., Nishiyama Y., Takahashi S. et al.: Systematic analysis of the relation of electron transport and ATP synthesis to the photodamage and repair of photosystem IIin Synechocystis. - Plant Physiol. 137: 263-273, 2005. Go to original source...
  3. Antlfinger A., Wendel L.: Reproductive effort and floral photosynthesis in Spiranthes cernua (Orchidaceae). - Am. J. Bot. 84: 769, 1997. Go to original source...
  4. Aschan G., Pfanz H.: Non-foliar photosynthesis-a strategy of additional carbon acquisition. - Flora 198: 81-97, 2003. Go to original source...
  5. Avenson T.J., Cruz J.A., Kanazawa A. et al.: Regulating the proton budget of higher plant photosynthesis. - P. Natl. Acad. Sci. USA 102: 9709-9713, 2005. Go to original source...
  6. Bazzaz F.A., Carlson R.W., Harper J.L.: Contribution to reproductive effort by photosynthesis of flowers and fruits. - Nature 279: 554-555, 1979. Go to original source...
  7. Bendall D.S., Manasse R.S.: Cyclic photophosphorylation and electron transport. - BBA-Bioenergetics 1229: 23-38, 1995. Go to original source...
  8. Bertamini M., Muthuchelian K., Rubinigg M. et al.: Photoinhibition of photosynthesis in leaves of grapevine (Vitis vinifera L. cv. Riesling). Effect of chilling nights. - Photosynthetica 43: 551-557, 2005. Go to original source...
  9. Bertamini M., Nedunchezhian N.: Photoinhibition of photosynthesis in Vitis berlandieri and Vitis rupestris leaves under field conditions. - Photosynthetica 40: 597-603, 2002. Go to original source...
  10. Blanke M.M., Lenz F.: Fruit photosynthesis. - Plant Cell Environ. 12: 31-46, 1989. Go to original source...
  11. Breyton C., Nandha B., Johnson G.N. et al.: Redox modulation of cyclic electron flow around photosystem I in C3 plants. - Biochemistry 45: 13465-13475, 2006. Go to original source...
  12. Carpentier R., Larue B., Leblanc R.M.: Photoacoustic spectroscopy of Anacystis nidulans: III. Detection of photosynthetic activities. - Arch. Biochem. Biophys. 228: 534-543, 1984. Go to original source...
  13. Carrara S., Pardossi A., Soldatini G. et al.: Photosynthetic activity of ripening tomato fruit. - Photosynthetica 39: 75-78, 2001. Go to original source...
  14. Clément C., Mischler P., Burrus M. et al.: Characteristics of the photosynthetic apparatus and CO2-fixation in the flower bud of Lilium. II. Anther. - Int. J. Plant Sci. 158: 801-810, 1997.. Go to original source...
  15. Clément C., Mischler P., Burrus M. et al.: Characteristics of the photosynthetic apparatus and CO2-fixation in the flower bud of Lilium. I. Corolla. - Int. J. Plant Sci. 158: 794-800, 1997. Go to original source...
  16. Dogane Y., Ando T.: An estimation of carbon evolution during flowering and capsule development in a Laeliocattleya orchid. - Sci. Hortic.-Amsterdam 42: 339-349, 1990. Go to original source...
  17. Dueker J., Arditti J.: Photosynthetic CO2 fixation by Green Cymbidium (Orchidaceae) flowers. - Plant Physiol. 43: 130-132, 1968. Go to original source...
  18. Finazzi G., Rappaport F., Furia A. et al.: Involvement of state transitions in the switch between linear and cyclic electron flow in Chlamydomonas reinhardtii. - EMBO Rep. 3: 280-285, 2002. Go to original source...
  19. Gambarova N.G.: Activity of photochemical reactions and accumulation of hydrogen peroxide in chloroplasts under stress conditions. - Russ. Agric. Sci. 34: 149-151, 2008. Go to original source...
  20. Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. - Biochim. Biophys. Acta 990: 87-92, 1989. Go to original source...
  21. Golbeck J.H.: Structure, function and organization of the Photosystem I reaction center complex. - BBA-Bioeneretics 895: 167-204, 1987. Go to original source...
  22. Golbeck J.H., Bryant D.A.: Photosystem I. - Curr. Top. Bioenerg. 16: 83-177, 1991. Go to original source...
  23. Heber U., Walker D.: Concerning a dual function of coupled cyclic electron transport in leaves. - Plant Physiol. 100: 1621-1626, 1992. Go to original source...
  24. Heilmeier H., Whale D.M.: Carbon dioxide assimilation in the flowerhead of Arctium. - Oecologia 73: 109-115, 1987. Go to original source...
  25. Huang W., Zhang S.B., Cao K.F.: Stimulation of cyclic electron flow during recovery after chilling-induced photoinhibition of PSII. - Plant Cell Physiol. 51: 1922-1928, 2010. Go to original source...
  26. Huang W., Zhang S.B, Cao K.F.: Cyclic electron flow plays an important role in photoprotection of tropical trees illuminated at temporal chilling temperature. - Plant Cell Physiol. 52: 297-305, 2011. Go to original source...
  27. Jia H., Oguchi R., Hope A.B. et al.: Differential effects of severe water stress on linear and cyclic electron fluxes through Photosystem I in spinach leaf discs in CO2-enriched air. - Planta 228: 803-812, 2008. Go to original source...
  28. Joët T., Cournac L., Peltier G. et al.: Cyclic electron flow around photosystem I in C3 plants. In vivo control by the redox state of chloroplasts and involvement of the NADH-dehydrogenase complex. - Plant Physiol. 128: 760-769, 2002.
  29. Johnson G.N.: Physiology of PSI cyclic electron transport in higher plants. - BBA-Bioenergetics 1807: 384-389, 2011. Go to original source...
  30. Joliot P., Joliot A.: Cyclic electron transfer in plant leaf. - P. Natl. Acad. Sci. USA 99: 10209-10214, 2002. Go to original source...
  31. Jurik T.W.: Differential costs of sexual and vegetative reproduction in wild strawberry populations. - Oecologia 66: 394-403, 1985. Go to original source...
  32. Keijzer C.J., Willemse M.T.M.: Tissue interactions in the developing locule of Gasteria verrucosa during microsporogenesis. - Plant Biol. 37: 493-508, 1988. Go to original source...
  33. Kirichenko E.B., Chernyad'ev I., Voronkova T.V. et al.: Activity of the photosynthesis apparatus in orchids during flowering.-Fiziol. Rastenii 36: 710-716, 1989.
  34. Kirichenko E., Krendeleva T., Kukarskikh G. et al.: Photochemical activities of anther and pericarp chloroplast of cereals. - Russ. J. Plant Physl+ 40: 229-233, 1993.
  35. Klughammer C., Schreiber U.: An improved method, using saturating light pulses, for the determination of photosystem I quantum yield via P700+-absorbance changes at 830 nm. - Planta 192: 261-268, 1994. Go to original source...
  36. Klughammer C., Schreiber U.: Complementary PS IIquantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the Saturation Pulse method. - PAM Application Notes 1: 27-35, 2008.
  37. Kotakis C., Kyzeridou A., Manetas Y.: Photosynthetic electron flow during leaf senescence: Evidence for a preferential maintenance of photosystem I activity and increased cyclic electron flow. - Photosynthetica 52: 413-420, 2014. Go to original source...
  38. Kramer D.M., Johnson G., Kiirats O. et al.: New fluorescence parameters for the determination of QAredox state and excitation energy fluxes. - Photosynth. Res. 79: 209-218, 2004. Go to original source...
  39. Kubicki A., Funk E., Westhoff P. et al.: Differential expression of plastome-encoded ndh genes in mesophyll and bundlesheath chloroplasts of the C4 plant Sorghum bicolor indicates that the complex I-homologous NAD(P)H-plastoquinone oxidoreductase is involved in cyclic electron transport. - Planta 199: 276-281, 1996. Go to original source...
  40. Laisk A., Talts E., Oja V. et al.: Fast cyclic electron transport around photosystem I in leaves under far-red light: a protonuncoupled pathway? - Photosynth. Res. 103: 79-95, 2010. Go to original source...
  41. Lebon G., Brun O., Magné C. et al.: Photosynthesis of the grapevine (Vitis vinifera L.) inflorescence. - Tree Physiol. 25: 633-639, 2005. Go to original source...
  42. Lebon G., Duchêne E., Brun O. et al.: Flower abscission and inflorescence carbohydrates in sensitive and non-sensitive cultivars of grapevine. - Sex. Plant Reprod. 17: 71-79, 2004. Go to original source...
  43. Lebon G., Duchêne E., Brun O. et al.: Phenology of flowering and starch accumulation in grape (Vitis vinifera L.) cuttings and vines. - Ann. Bot.-London 95: 943-948, 2005. Go to original source...
  44. Lebon G., Wojnarowiez G., Holzapfel B. et al.: Sugars and flowering in the grapevine (Vitis vinifera L.). - J. Exp. Bot. 59: 2565-2578, 2008. Go to original source...
  45. Livak K.J, Schmittgen T.D.: Analysis of relative gene expression using real-time quantitative PCR and the 2-ΔΔCT method. - Methods 25: 402-408, 2001. Go to original source...
  46. Livingston A.K., Kanazawa A., Cruz J.A. et al.: Regulation of cyclic electron flow in C3 plants: differential effects of limiting photosynthesis at ribulose-1,5-bisphosphate carboxylase/ oxygenase and glyceraldehyde-3-phosphate dehydrogenase. - Plant Cell Environ. 33: 1779-1788, 2010. Go to original source...
  47. Marcelis L.F.M., Hofman-Eijer L.R.B.: The contribution of fruit photosynthesis to the carbon requirement of cucumber fruits as affected by irradiance, temperature and ontogeny. - Physiol. Plantarum 93: 476-483, 1995. Go to original source...
  48. Meier U.: Grapevine. - In: Meier U. (ed.): Growth Stages of Mono- and Dicotyledonous Plants BBCH Monograph Federal Biological Research Centre for Agriculture andForestry. Pp. 93-95. Blackwell Wissenschafts-Verlag, Berlin 2001.
  49. Miyake C., Miyata M., Shinzaki Y. et al.: CO2 response of cyclic electron flow around PSI (CEF-PSI) in tobacco leaves-relative electron fluxes through PSI and PSII determine the magnitude of non-photochemical quenching (NPQ) of Chl fluorescence.-Plant Cell Physiol. 46: 629-637, 2005. Go to original source...
  50. Munekage Y., Hashimoto M., Miyake C. et al.: Cyclic electron flow around photosystem I is essential for photosynthesis. - Nature 429: 579-582, 2004. Go to original source...
  51. Munekage Y., Hojo M., Meurer J. et al.: PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. - Cell 110: 361-371, 2002. Go to original source...
  52. Nandha B., Finazzi G., Joliot P. et al.: The role of PGR5 in the redox poising of photosynthetic electron transport. - BBABioenergetics 1767: 1252-1259, 2007. Go to original source...
  53. Palliotti A., Cartechini A.: Developmental changes in gas exchange activity in flowers, berries, and tendrils of fieldgrown Cabernet Sauvignon. - Am. J. Enol.Viticult. 52: 317-323, 2001. Go to original source...
  54. Petit A.-N., Baillieul F., Vaillant-Gaveau N. et al.: Low responsiveness of grapevine flowers and berries at fruit set to UV-C irradiation. - J. Exp. Bot. 60: 1155-1162, 2009. Go to original source...
  55. Reekie E.G., Bazzaz F.A.: Reproductive effort in plants. I. Carbon allocation to reproduction. - Am. Nat. 129: 876-896, 1987. Go to original source...
  56. Sawicki M., Aït Barka E., Clément C. et al.: Cross-talk between environmental stresses and plant metabolism during reproductive organ abscission. - J. Exp. Bot. 66: 1707-1719, 2015. Go to original source...
  57. Sawicki M., Jeanson E., Celiz V. et al.: Adaptation of grapevine flowers to cold involves different mechanisms depending on stress intensity. - PLoS ONE 7: e46976, 2012. Go to original source...
  58. Sawicki M., Jacquens L., Baillieul F. et al.: Distinct regulation in inflorescence carbohydrate metabolism according to grapevine cultivars during floral development.-Physiol. Plantarum 154: 447-467, 2015. Go to original source...
  59. Sawicki M., Aït Barka E., Clément C. et al.: Cold-night responses in grapevine inflorescences. - Plant Sci. 239: 115-127, 2015. Go to original source...
  60. Schreiber U., Bilger W., Neubauer C.: Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. - In: Schulze E..D, Caldwell M.M. (ed.): Ecophysiology of Photosynthesis. Pp. 49-70. Springer, Berlin Heidelberg 1994. Go to original source...
  61. Shikanai T.: Central role of cyclic electron transport around photosystem I in the regulation of photosynthesis.-Curr. Opin. Biotech. 26: 25-30, 2014. Go to original source...
  62. Sonoike K.: Selective photoinhibition of photosystem I in isolated thylakoid membranes from cucumber and spinach. - Plant Cell Physiol. 36: 825-830, 1995. Go to original source...
  63. Takahashi S., Milward S.E., Fan D.Y. et al.: How does cyclic electron flow alleviate photoinhibition in Arabidopsis? - Plant Physiol. 149: 1560-1567, 2009. Go to original source...
  64. Vaillant-Gaveau N., Maillard P., Wojnarowiez G. et al.: Inflorescence of grapevine (Vitis vinifera L.): a high ability to distribute its own assimilates. - J. Exp. Bot. 62: 4183-4190, 2011. Go to original source...
  65. Vemmos S., Goldwin G.: The photosynthetic activity of Cox's Orange Pippin apple flowers in relation to fruit setting. - Ann. Bot.-London 73: 385-391, 1994. Go to original source...
  66. von Caemmerer S., Farquhar G.: Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. - Planta 153: 376-387, 1981. Go to original source...
  67. Weiss D., Shomer-Ilan A., Vainstein A. et al.: Photosynthetic carbon fixation in the corollas of Petunia hybrida. - Physiol. Plantarum 78: 345-350, 1990. Go to original source...
  68. Weiss D., Schönfeld M., Halevy A.H.: Photosynthetic activities in the Petunia corolla. - Plant Physiol. 87: 666-670, 1988. Go to original source...
  69. Werk K.S., Ehleringer J.R.: Photosynthesis by flowers in Encelia farinosa and Encelia californica (Asteraceae). - Oecologia 57: 311-315, 1983. Go to original source...
  70. Yonemori K., Itai A., Nakano R. et al.: Role of calyx lobes in gas exchange and development of Persimmon fruit. - J. Am. Soc. Hortic. Sci. 121: 676-679, 1996. Go to original source...
  71. Zapata C., Deléens E., Chaillou S. et al.: Mobilisation and distribution of starch and total N in two grapevine cultivars differing in their susceptibility to shedding. - Funct. Plant Biol. 31: 1127-1135, 2004. Go to original source...
  72. Zapata C., Deléens E., Chaillou S. et al.: Partitioning and mobilization of starch and N reserves in grapevine (Vitis vinifera L.). - J. Plant Physiol. 161: 1031-1040, 2004.. Go to original source...