Photosynthetica 2018, 56(1):132-138 | DOI: 10.1007/s11099-018-0780-1
Application of spectrally resolved fluorescence induction to study light-induced nonphotochemical quenching in algae
- 1 Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czech Republic
The light-induced nonphotochemical quenching (NPQ) can safely dissipate excess of absorbed light to heat. Here we describe an application of spectrally resolved fluorescence induction (SRFI) method for studying spectral variability of NPQ. The approach allows detection of spectrally-resolved nonphotochemical quenching (NPQλ) representing NPQ dependency on fluorescence emission wavelength in the whole spectral range of fluorescence emission. The experimental approach is briefly described and NPQλ is studied for the cryptophyte alga Rhodomonas salina and for green alga Chlorella sp. We confirm presence of NPQλ only in membrane-bound antennae (chlorophyll a/c antennae) and not in phycobiliproteins in lumen in cryptophyte and show that NPQλ is inhibited in the whole spectral range by NPQ inhibitors in Chlorella sp. We discuss variability in the quenching in the particular spectral ranges and applicability of the NPQλ parameter to study quenching locus in vivo.
Additional key words: fluorescence parameters; light-harvesting complex; photoprotection; photosynthesis; photosystem II
Received: May 19, 2017; Accepted: October 10, 2017; Published: March 1, 2018 Show citation
Supplementary files
| Download file | phs-201801-0011_S1.pdf File size: 167.1 kB |
References
- Acuña A.M., Kaňa R., Gwizdala M. et al: Synechocystis PCC 6803 during lightinduced state transitions.-Photosynth. Res. 130: 237-249, 2016.
Go to original source... - Belgio E., Duffy C.D.P., Ruban A.V.: Switching light harvesting complex II into photoprotective state involves the lumen-facing apoprotein loop.-Phys. Chem. Chem. Phys. 15: 12253-12261, 2013.
Go to original source... - Belgio E., Kapitonova E., Chmeliov J. et al.: Economic photoprotection in photosystem II that retains a complete lightharvesting system with slow energy traps.-Nat. Commun. 5: 4433, 2014.
Go to original source... - Bernat G., Steinbach G., Kaňa R. et al.: On the origin of the slow M to T chlorophyll a fluorescence decline in cyanobacteria: interplay of short-term light-responses.-Photosynth. Res. DOI: 10.1007/s11120-017-0458-8, in press, 2018.
Go to original source... - Bilger W., Björkman O.: Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbancy changes, fluorescence and photosynthesis in leaves of Hedera canariensis.-Photosynth. Res. 25: 173-185, 19
- Briantais J.M., Vernotte C., Picaud M. et al.: Quantitative study of the slow decline of chlorophyll alpha-fluorescence in isolated-chloroplasts.-Biochim. Biophys. Acta 548: 128-138, 1979.
Go to original source... - Bruce D., Samson G., Carpenter C.: The origins of nonphotochemical quenching of chlorophyll fluorescence in photosynthesis. Direct quenching by P680+ in photosystem II enriched membranes at low pH.-Biochemistry 36: 749-755, 1997.
Go to original source... - Büchel C.: Evolution and function of light harvesting proteins.-J. Plant Physiol. 172: 62-75, 2015.
Go to original source... - Cheregi O., Kotabová E., Prášil O. et al.: Presence of state transitions in the cryptophyte alga Guillardia theta.-J. Exp. Bot. 66: 6461-6470, 2015.
Go to original source... - Cser K., Vass I.: Radiative and non-radiative charge recombination pathways in Photosystem II studied by thermoluminescence and chlorophyll fluorescence in the cyanobacterium Synechocystis 6803.-BBA-Bioenergetics 1767: 233-243, 2007.
Go to original source... - Delphin E., Duval J.C., Etienne A.L. et al.: Delta pH-dependent photosystem II fluorescence quenching induced by saturating, multiturnover pulses in red algae.-Plant Physiol. 118: 103-113, 1998.
Go to original source... - Demmig-Adams B., Garab G., Adams III W. et al.: Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Springer, Dordrecht 2014.
Go to original source... - Derks A., Schaven K., Bruce D.: Diverse mechanisms for photoprotection in photosynthesis. Dynamic regulation of photosystem II excitation in response to rapid environmental change.-BBA-Bioenergetics 1847: 468-485, 2015.
Go to original source... - Franck F., Dewez D., Popovic R.: Changes in the roomtemperature emission spectrum of chlorophyll during fast and slow phases of the Kautsky effect in intact leaves.-Photoch. Photobio. 81: 431-436, 2005.
Go to original source... - Franck F., Juneau P., Popovic R.: Resolution of the Photosystem I and Photosystem II contributions to chlorophyll fluorescence of intact leaves at room temperature.-BBA-Bioenergetics 1556: 239-246, 2002.
Go to original source... - Funk C., Alami M., Tibiletti T. et al.: High light stress and the one-helix LHC-like proteins of the cryptophyte Guillardia theta.-BBA-Bioenergetics 1807: 841-846, 20
Go to original source... - Gilmore A.M., Yamamoto H.Y.: Dark induction of zeaxanthindependent nonphotochemical fluorescence quenching mediated by ATP.-P. Natl. Acad. Sci. USA 89: 1899-1903, 1992.
Go to original source... - Giovagnetti V., Ware M.A., Ruban A.V.: Assessment of the impact of photosystem I chlorophyll fluorescence on the pulseamplitude modulated quenching analysis in leaves of Arabidopsis thaliana.-Photosynth. Res. 125: 179-189, 20
- Holzwarth A.R., Lenk D., Jahns P.: On the analysis of nonphotochemical chlorophyll fluorescence quenching curves: I. Theoretical considerations.-BBA-Bioenergetics 1827: 786-792, 2013.
Go to original source... - Holzwarth A.R., Miloslavina Y., Nilkens M. et al.: Identification of two quenching sites active in the regulation of photosynthetic light-harvesting studied by time-resolved fluorescence.-Chem. Phys. Lett. 483: 262-267, 2009.
Go to original source... - Johnson M.P., Ruban A.V.: Photoprotective Energy dissipation in higher plants involves alteration of the excited state energy of the emitting chlorophyll(s) in the light harvesting antenna II (LHCII).-J. Biol. Chem. 284: 23592-23601, 2009.
Go to original source... - Kaftan D., Trtilek M., Kroon B. et al.: Fast-response doublemodulation fluorometer.-In: Garab G. (ed.): International Congress on Photosynthesis, Vol. 5. Pp. 4297-4300. Kluwer Academic Publishers, Budapest 1997.
Go to original source... - Kaňa R., Govindjee: Role of ions in the regulation of lightharvesting.-Front. Plant Sci. 7: 1849, 2016.
Go to original source... - Kaňa R., Kotabová E., Komárek O. et al.: The slow S to M fluorescence rise in cyanobacteria is due to a state 2 to state 1 transition.-BBA-Bioenergetics 1817: 1237-1247, 2012a.
Go to original source... - Kaňa R., Kotabová E., Kopečná J. et al.: Violaxanthin inhibits nonphotochemical quenching in light-harvesting antenna of Chromera velia.-FEBS Lett. 590: 1076-1085, 2016.
Go to original source... - Kaňa R., Kotabová E., Sobotka R. et al.: Non-photochemical quenching in cryptophyte alga Rhodomonas salina is located in chlorophyll a/c antennae.-PLoS ONE 7: e29700, 2012b.
Go to original source... - Kaňa R., Prášil O., Komárek O. et al.: Spectral characteristic of fluorescence induction in a model cyanobacterium, Synechococcus sp (PCC 7942).-Biochim. Biophys. Acta 1787: 1170-1178, 2009a.
Go to original source... - Kaňa R., Prášil O., Mullineaux C.W.: Immobility of phycobilins in the thylakoid lumen of a cryptophyte suggests that protein diffusion in the lumen is very restricted.-FEBS Lett. 583: 670-674, 2009b.
Go to original source... - Kaňa R., Vass I.: Thermoimaging as a tool for studying lightinduced heating of leaves: Correlation of heat dissipation with the efficiency of photosystem II photochemistry and nonphotochemical quenching.-Environ. Exp. Bot. 64: 90-96, 2008.
Go to original source... - Komura M., Yamagishi A., Shibata Y. et al.: Mechanism of strong quenching of photosystem II chlorophyll fluorescence under drought stress in a lichen, Physciella melanchla, studied by subpicosecond fluorescence spectroscopy.-BBABioenergetics 1797: 331-338, 2010.
Go to original source... - Kotabová E., Jarešova J., Kaňa R. et al.: Novel type of red-shifted chlorophyll a antenna complex from Chromera velia. I. Physiological relevance and functional connection to photosystems.-Biochim. Biophys. Acta 1837: 734-743, 2014.
Go to original source... - Kotabová E., Kaňa R., Jarešova J. et al.: Non-photochemical fluorescence quenching in Chromera velia is enabled by fast violaxanthin de-epoxidation.-FEBS Lett. 585: 1941-1945, 2011.
Go to original source... - Kramer D.M., Johnson G., Kiirats O. et al.: New fluorescence parameters for the determination of QA redox state and excitation energy fluxes.-Photosynth. Res. 79: 209-218, 2004.
Go to original source... - Krüger T.P.J., Ilioaia C., Johnson M.P. et al.: The specificity of controlled protein disorder in the photoprotection of plants.-Biophys. J. 105: 1018-1026, 2013.
Go to original source... - Krüger T.P.J., Wientjes E., Croce R. et al.: Conformational switching explains the intrinsic multifunctionality of plant light-harvesting complexes.-P. Natl. Acad. Sci. USA 108: 13516-13521, 2011.
Go to original source... - Krupnik T., Kotabová E., van Bezouwen L.S. et al.: A reaction centre-dependent photoprotection mechanism in a highly robust photosystem II from an extremophilic red alga Cyanidioschyzon merolae.-J. Biol. Chem. 288: 23529-23542., 2013.
Go to original source... - Kulasek M., Bernacki M.J., Ciszak K. et al.: Contribution of PsbS Function and stomatal conductance to foliar temperature in higher plants.-Plant Cell Physiol. 57: 1495-1509, 2016.
Go to original source... - Lakowicz J.R.: Principles of Fluorescence Spectroscopy. Springer, New York 2006.
Go to original source... - Lambrev P.H., Nilkens M., Miloslavina Y. et al.: Kinetic and spectral resolution of multiple nonphotochemical quenching components in Arabidopsis leaves.-Plant Physiol. 152: 1611-1624, 2010.
Go to original source... - Lazár D.: Simulations show that a small part of variable chlorophyll a fluorescence originates in photosystem I and contributes to overall fluorescence rise.-J. Theor. Biol. 335: 249-264, 2013.
Go to original source... - Lazár D.: Parameters of photosynthetic energy partitioning.-J. Plant Physiol. 175: 131-147, 2015.
Go to original source... - Li X.P., Björkman O., Shih C. et al: A pigment-binding protein essential for regulation of photosynthetic light harvesting.-Nature 403: 391-395, 2000.
Go to original source... - MacPherson A.N., Hiller R.G.: Algae with chlorophyll c in lightharvesting antennae in photosynthesis.-In: Green B.R. and Parson W.W. (ed.): Light-Harvesting Antennas in Photosynthesis. Pp. 323-352. Kluwer Acad. Publ., Dordrecht 2003.
Go to original source... - Miloslavina Y., Wehner A., Lambrev P.H. et al.: Far-red fluorescence: A direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching.-FEBS Lett. 582: 3625-3631, 2008.
Go to original source... - Miyake H., Komura M., Itoh S. et al.: Multiple dissipation components of excess light energy in dry lichen revealed by ultrafast fluorescence study at 5 K.-Photosynth. Res. 110: 39-48, 2011.
Go to original source... - Niyogi K.K., Björkman O., Grossman A.R.: The roles of specific xanthophylls in photoprotection.-P. Natl. Acad. Sci. USA 94: 14162-14167, 1997.
Go to original source... - Novotný J.P., Chugtai A.A., Kostrouchová M. et al.: Trichoplax adhaerens reveals a network sensitive to 9-cis-retinoic acid at the base of metazoan evolution.-Peer J. 5: e3789, 2017.
Go to original source... - Ohad I., Raanan H., Keren N. et al.: Light-Induced changes within photosystem ii protects microcoleus sp in biological desert sand crusts against excess light.-PLoS ONE 5: e11000, 2010.
Go to original source... - Papageorgiou G.C., Govindjee: Chlorophyll a Fluorescence. A Signature of Photosynthesis. Springer, Dordrecht 2004.
Go to original source... - Passarini F., Wientjes E., van Amerongen H. et al.: Photosystem I light-harvesting complex Lhca4 adopts multiple conformations: Red forms and excited-state quenching are mutually exclusive.-BBA-Bioenergetics 1797: 501-508, 2010.
Go to original source... - Rizzo F., Zucchelli G., Jennings R. et al.: Wavelength dependence of the fluorescence emission under conditions of open and closed Photosystem II reaction centres in the green alga Chlorella sorokiniana.-BBA-Bioenergetics 1837: 726-733, 20
Go to original source... - Ruban A.V., Horton P.: Spectroscopy of nonphotochemical and photochemical quenching of chlorophyll fluorescence in leaves; evidence for a role of the light-harvesting complex of photosystem-ii in the regulation of energy dissipation.-Photosynth. Res. 40: 181-190, 1994.
Go to original source... - Ruban A.V., Johnson M.P., Duffy C.D.P.: The photoprotective molecular switch in the photosystem II antenna.-BBABioenergetics 1817: 167-181, 2012.
Go to original source... - Ruban A.V., Lavaud J., Rousseau B. et al.: The super-excess energy dissipation in diatom algae: comparative analysis with higher plants.-Photosynth. Res. 82: 165-175, 2004.
Go to original source... - Santabarbara S., Jennings R.C.: The size of the population of weakly coupled chlorophyll pigments involved in thylakoid photoinhibition determined by steady-state fluorescence spectroscopy.-BBA-Bioenergetics 1709: 138-149, 2005.
Go to original source... - Schreiber U.: Pulse-Amplitude-Modulation (PAM) fluorometry and saturation pulse method: An overview.-In: Papageorgiou G.C. and {ieGovindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Pp. 279-319. Springer, Dordrecht 2004.
Go to original source... - Vass I.: Role of charge recombination processes in photodamage and photoprotection of the photosystem II complex.-Physiol. Plantarum 142: 6-16, 2011.
Go to original source... - Xu P.Q., Tian L.J., Kloz M. et al.: Molecular insights into zeaxanthin-dependent quenching in higher plants.-Sci. Rep. 5: 13679, 2015.
Go to original source... - Zimorski V., Ku C., Martin W.F. et al.: Endosymbiotic theory for organelle origins.-Curr. Opin. Microbiol. 22: 38-48, 2014.
Go to original source...




