Photosynthetica 2018, 56(1):275-278 | DOI: 10.1007/s11099-017-0760-x

The deep red state of photosystem II in Cyanidioschyzon merolae

J. Langley1, J. Morton1, R. Purchase1, L. Tian2, L. Shen2, G. Han2, J. R. Shen2,3, E. Krausz1,*
1 Research School of Chemistry, Australian National University, Canberra, Australia
2 Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
3 Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan

We identified and characterised the deep red state (DRS), an optically-absorbing charge transfer state of PSII, which lies at lower energy than P680, in the red algae Cyanidioschyzon merolae by means of low temperature absorption and magnetic circular dichroism spectroscopies. The photoactive DRS has been previously studied in PSII of the higher plant Spinacia oleracea, and in the cyanobacterium Thermosynechococcus vulcanus. We found the DRS in PSII of C. merolae has similar spectral properties. Treatment of PSII with dithionite leads to reduction of cytochrome (cyt) b559 and the PsbV-based cyt c550 as well as the disassembly of the oxygen-evolving complex. Whereas the overall visible absorption spectrum of PSII was little affected, the DRS absorption in the reduced sample was no longer seen. This bleaching of the DRS is discussed in terms of a corresponding lack of a DRS feature in D1D2/cyt b559 reaction centre preparations of PSII.

Additional key words: optical spectra; photosynthesis

Received: June 14, 2017; Accepted: August 21, 2017; Published: March 1, 2018  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Langley, J., Morton, J., Purchase, R., Tian, L., Shen, L., Han, G., Shen, J.R., & Krausz, E. (2018). The deep red state of photosystem II in Cyanidioschyzon merolae. Photosynthetica56(SPECIAL ISSUE), 275-278. doi: 10.1007/s11099-017-0760-x
Download citation

References

  1. Adachi H., Umena Y., Enami I. et al.: Towards structural elucidation of eukaryotic photosystem II: Purification, crystallization and preliminary X-ray diffraction analysis of photosystem II from a red alga.-BBA-Bioenergetics 1787: 121-128, 2009. Go to original source...
  2. Ago H., Adachi H., Umena Y. et al.: Novel features of eukaryotic photosystem II revealed by its crystal structure analysis from a red alga.-J. Biol. Chem. 291: 5676-5687, 2016. Go to original source...
  3. Butler W.L., Okayama S.: The photoreduction of C-550 in chloroplasts and its inhibition by lipase.-BBA-Bioenergetics 245: 237-239, 1971. Go to original source...
  4. Cox N., Hughes J.L., Steffen R. et al.: Identification of the QY excitation of the primary electron acceptor of photosystem II: CD determination of its coupling environment.-J. Phys. Chem. B 113: 12364-12374, 2009. Go to original source...
  5. Enami I., Okumura A., Nagao R. et al.: Structures and functions of the extrinsic proteins of photosystem II from different species.-Photosynth. Res. 98: 349-363, 2008. Go to original source...
  6. Hughes J.L., Cox N., Rutherford A.W. et al.: D1 protein variants in Photosystem II from Thermosynechococcus elongatus studied by low temperature optical spectroscopy.-BBABioenergetics 1797: 11-19, 2010. Go to original source...
  7. Hughes J.L., Rutherford A.W., Sugiura M. et al.: Quantum efficiency distributions of photo-induced side-pathway donor oxidation at cryogenic temperature in photosystem II.-Photosynth. Res. 98: 199-206, 2008. Go to original source...
  8. Hughes J.L., Smith P., Pace R. et al.: Charge separation in photosystem II core complexes induced by 690-730 nm excitation at 1.7 K.-BBA-Bioenergetics 1757: 841-851, 2006. Go to original source...
  9. Hughes J.L., Smith P.J., Pace R.J. et al.: Low energy absorption and luminescence of higher plant photosystem II core samples.-J. Lumin. 122-123: 284-287, 2007. Go to original source...
  10. Ifuku K.: Localization and functional characterization of the extrinsic subunits of photosystem II: an update.-Biosci. Biotech. Bioch. 79: 1223-1231, 2015. Go to original source...
  11. Krausz E.: Selective and differential optical spectroscopies in photosynthesis.-Photosynth. Res. 116: 411-426, 2013. Go to original source...
  12. Krausz E., Cox N., Arsköld S.P.: Spectral characteristics of PS II reaction centres: as isolated preparations and when integral to PS II core complexes.-Photosynth. Res. 98: 207-217, 2008. Go to original source...
  13. Krausz E., Hughes J.L., Smith P. et al.: Oxygen-evolving photosystem II core complexes: A new paradigm based on the spectral identification of the charge-separating state, the primary acceptor and assignment of low-temperature fluorescence.-Photoch. Photobio. Sci. 4: 744-753, 2005. Go to original source...
  14. Krupnik T., Kotabová E., van Bezouwen L.S. et al: A reaction center-dependent photoprotection mechanism in a highly robust photosystem II from an extremophilic red alga, Cyanidioschyzon merolae.-J. Biol. Chem. 288: 23529-23542, 2013. Go to original source...
  15. Morton J., Akita F., Nakajima Y. et al.: Optical identification of the long-wavelength (700-1700 nm) electronic excitations of the native reaction centre, Mn4CaO5 cluster and cytochromes of photosystem II in plants and cyanobacteria.-BBABioenergetics 1847: 153-161, 2015. Go to original source...
  16. Morton J., Hall J., Smith P. et al.: Determination of the PS I content of PS II core preparations using selective emission: A new emission of PS II at 780 nm.-BBA-Bioenergetics 1837: 167-177, 2014. Go to original source...
  17. Morton J., Chrysina M., Craig V. et al.: Structured Near-Infrared Magnetic Circular Dichroism spectra of the Mn4CaO5 cluster of PS II in T. vulcanus are dominated by Mn(IV) d-d' spin-flip' transitions.-BBA-Bioenergetics 1859: 88-98, 2018. Go to original source...
  18. Nanba O., Satoh K.: Isolation of a Photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b-559.-P. Natl. Acad. Sci. USA 84: 109-112, 1987. Go to original source...
  19. Nilsson H., Krupnik T., Kargul J. et al.: Substrate water exchange in photosystem II core complexes of the extremophilic red alga Cyanidioschyzon merolae.-BBA-Bioenergetics 1837: 1257-1262, 2014. Go to original source...
  20. Pettai H., Oja V., Freiberg A. et al.: Photosynthetic activity of far-red light in green plants.-BBA-Bioenergetics 1708: 311-321, 2005. Go to original source...
  21. Piepho S.B., Schatz P.N.: Group Theory in Spectroscopy with Applications to Magnetic Circular Dichroism. Wiley-Interscience, New York, Chichester, Brisbane, Toronto, Singapore 1983.
  22. Reimers J.R., Biczysko M., Bruce D. et al.: Challenges facing an understanding of the nature of low-energy excited states in photosynthesis.-BBA-Bioenergetics 1857: 1627-1640, 2016. Go to original source...
  23. Schlodder E., Lendzian F., Meyer J. et al.: Long-wavelength limit of photochemical energy conversion in photosystem I.-J. Am. Chem. Soc. 136: 3904-3918, 2014. Go to original source...
  24. Shen J.R.: The structure of photosystem II and the mechanism of water oxidation in photosynthesis.-Annu. Rev. Plant Biol. 66: 23-48, 2015. Go to original source...
  25. Suga M., Akita F., Hirata K. et al.: Native structure of photosystem II at 1.95 A resolution viewed by femtosecond X-ray pulses.-Nature 517: 99-103, 2015. Go to original source...
  26. Umena Y., Kawakami K., Shen J.-R. et al.: Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å.-Nature 473: 55-60, 2011. Go to original source...