Photosynthetica 2019, 57(1):181-191 | DOI: 10.32615/ps.2019.029
Brassinosteroids increase electron transport and photosynthesis in soybean plants under water deficit
- 1 Núcleo de Pesquisa Vegetal Básica e Aplicada, Universidade Federal Rural da Amazônia. Paragominas, Pará, Brazil
- 2 Coordenação de Botânica, Museu Paraense Emílio Goeldi, Belém, Pará, Brazil
Drought frequently results in significant losses in agricultural systems, including the soybean yield. Brassinosteroids exhibit multiple actions on essential processes, including chlorophyll fluorescence and gas exchange. Considering that the electron transport rate (ETR) into photosystems can exercise interference on net photosynthetic rate (PN), this research aims to determine whether 24-epibrassinolide (EBR) affects electron transport and find out if there is any repercussion on photosynthesis in soybean plants affected by the water deficit. The experiment was performed using a randomized factorial design, with two water conditions (control and water deficit) and three EBR concentrations (0, 50, and 100 nM EBR). The water deficit reduced effective quantum yield of PSII photochemistry, ETR, PN, and water-use efficiency. However, the exogenous application of 100 nM EBR mitigated these negative effects, increasing these variables. EBR reduced the oxidant compounds (superoxide and hydrogen peroxide) and membrane damages (malondialdehyde and electrolyte leakage) in stressed plants. Our study proved that EBR increased ETR and PN in control and stressed plants, revealing that ETR had a strong relationship with PN. These results suggest that soybean plants with higher values of ETR are more efficient in relation to PN.
Additional key words: chlorophyll fluorescence; drought; gas exchange; Glycine max; 24-epibrassinolide.
Received: December 23, 2017; Accepted: April 23, 2018; Prepublished online: December 7, 2018; Published: January 30, 2019 Show citation
| ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Abdulkhani A., Alizadeh P., Hedjazi S. et al.: Potential of Soya as a raw material for a whole crop biorefinery. - Renew. Sust. Energ. Rev. 75: 1269-1280, 2017.
Go to original source... - Ahammed G.J., Choudhary S.P., Chen S. et al.: Role of brassinosteroids in alleviation of phenanthrene-cadmium co-contamination-induced photosynthetic inhibition and oxidative stress in tomato. - J. Exp. Bot. 64: 199-213, 2013.
Go to original source... - Anjum S.A., Wang L.C., Farooq M. et al.: Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. - J. Agron. Crop Sci. 197: 177-185, 2011.
Go to original source... - Aragão R.M., Silva E.N., Vieira C.F. et al.: High supply of NO3 - mitigates salinity effects through an enhancement in the efficiency of photosystem II and CO2 assimilation in Jatropha curcas plants. - Acta Physiol. Plant. 34: 2135-2143, 2012.
Go to original source... - Bajguz A., Hayat S.: Effects of brassinosteroids on the plant responses to environmental stresses. - Plant Physiol. Bioch. 47: 1-8, 2009.
Go to original source... - Bamji S.F., Corbitt C.: Glyceollins: Soybean phytoalexins that exhibit a wide range of health-promoting effects. - J. Funct. Foods 34: 98-105, 2017.
Go to original source... - Barbosa A.M, Guidorizi K.A., Catuchi T.A. et al.: Biomass and bioenergy partitioning of sugarcane plants under water deficit. - Acta Physiol. Plant. 37: 142, 2015.
Go to original source... - Behnamnia M., Kalantari K.M., Rezanejad F.: Exogenous application of brassinosteroid alleviates drought-induced oxidative stress in Lycopersicon esculentum L. - Gen. Appl. Plant Physiol. 35: 22-34, 2009a.
- Behnamnia M., Kalantari K.M., Ziaie J.: The effects of brassinosteroid on the induction of biochemical changes in Lycopersicon esculentum under drought stress. - Turk. J. Bot. 33: 417-428, 2009b.
Go to original source... - Cakmak I., Horst W.J.: Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). - Physiol. Plantarum 83: 463-468, 1991.
Go to original source... - Chaves F.J.T., Seraphin S.E.: [Change in osmotic potential and soluble carbohydrates levels in Solanum lycocarpum St.-Hil. in response to water stress]. - Rev. Bras. Bot. 24: 199-204, 2001. [In Portuguese].
- Dobrikova A.G., Vladkova R.S., Rashkov G.D. et al.: Effects of exogenous 24-epibrassinolide on the photosynthetic membranes under non-stress conditions. - Plant Physiol. Bioch. 80: 75-82, 2014.
Go to original source... - Elstner E.F., Heupel A.: Inhibition of nitrite formation from hydroxylammoniumchloride: A simple assay for superoxide dismutase. - Anal. Biochem. 70: 616-620, 1976.
Go to original source... - Fang X.W., Turner N.C., Li F.M. et al.: Caragana korshinskii seedlings maintain positive photosynthesis during short-term, severe drought stress. - Photosynthetica 49: 603-609, 2011.
Go to original source... - FAO.: Food and agriculture organization of the United Nation. In: FAO statistical database, 2017 - www.fao.org/statistics/databases/en/; acessed 11 December 2017.
- Fariduddin Q., Yusuf M., Hayat S. et al.: Effect of 28-homobrassinolide on antioxidant capacity and photosynthesis in Brassica juncea plants exposed to different levels of copper. - Environ. Exp. Bot. 66: 418-424, 2009.
Go to original source... - Fleta-Soriano E., Munné-Bosch S.: Stress memory and the inevitable effects of drought : a physiological perspective. - Front. Plant Sci. 7: 143, 2016.
Go to original source... - Flexas J., Ribas-Carbó M., Bota J. et al.: Decreased rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration. - New Phytol. 172: 73-82, 2006.
Go to original source... - Gill M.B., Cai K., Zhang G. et al.: Brassinolide alleviates the drought-induced adverse effects in barley by modulation of enzymatic antioxidants and ultrastructure. - Plant Growth Regul. 82: 447-455, 2017.
Go to original source... - Gill S.S., Tuteja N.: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. - Plant Physiol. Bioch. 48: 909-930, 2010.
Go to original source... - Gong M., Li Y-J., Chen S-Z.: Abscisic acid-induced thermotolerance in maize seedlings is mediated by calcium and associated with antioxidant systems. - J. Plant Physio. 153: 488-496, 1998.
Go to original source... - Hoagland D.R., Arnon D.I.: The Water-Culture Method for Growing Plants without Soil, 2nd ed. Pp. 347. California Agricultural Experiment Station, San Francisco 1950.
- Hu W., Yan X., Xiao Y. et al.: 24-epibrassinosteroid alleviate drought-induced inhibition of photosynthesis in Capsicum annuum. - Sci. Hortic.-Amsterdam 150: 232-237, 2013.
Go to original source... - Jia L., Liu Z., Chen W. et al.: Hormesis effects induced by cadmium on growth and photosynthetic performance in a hyperaccumulator, Lonicera japonica Thunb. - J. Plant Growth Regul. 34: 13-21, 2015.
Go to original source... - Khalid A., Aftab F.: Effect of exogenous application of 24-epibrassinolide on growth, protein contents, and antioxidant enzyme activities of in vitro-grown Solanum tuberosum L. under salt stress. - In Vitro Cell Dev.-Pl. 52: 81-91, 2016.
Go to original source... - Lawlor D.W., Tezara W.: Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. - Ann. Bot.-London 103: 561-579, 2009.
Go to original source... - Li J., Yang P., Gan Y. et al.: Brassinosteroid alleviates chilling-induced oxidative stress in pepper by enhancing antioxidation systems and maintenance of photosystem II. - Acta Physiol. Plant. 37: 222-232, 2015.
Go to original source... - Li Y.H., Liu Y.J., Xu X.L. et al.: Effect of 24-epibrassinolide on drought stress-induced changes in Chorispora bungeana. - Biol. Plantarum 56: 192-196, 2012.
Go to original source... - Lichtenthaler H.K., Buschmann C.: Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. - In: Lichtenthaler H.K., Buschmann C. (ed.): Current Protocols in Food Analytical Chemistry. Pp. 431-438. John Wiley & Sons, Inc., Hoboken 2001.
Go to original source... - Lima J .V., Lobato A.K.S.: Brassinosteroids improve photosystem II efficiency, gas exchange, antioxidant enzymes and growth of cowpea plants exposed to water deficit. - Physiol. Mol. Biol. Plants 23: 59-72, 2017
Go to original source... - Liu E.K., Mei X.R., Yan C.R. et al.: Effects of water stress on photosynthetic characteristics, dry matter translocation and WUE in two winter wheat genotypes. - Agr. Water Manage. 167: 75-85, 2016.
Go to original source... - Martineau E., Domec J., Bosc A. et al.: The effects of potassium nutrition on water use in field-grown maize (Zea mays L.). - Environ. Exp. Bot. 134: 62-71, 2017.
Go to original source... - Ma C.C., Gao Y.B., Guo H.Y. et al.: Photosynthesis, transpiration, and water use efficiency of Caragana microphylla, C. intermedia, and C. korshinskii. - Photosynthetica 42: 65-70, 2004.
Go to original source... - Maxwell K., Johnson G.N.: Chlorophyll fluorescence - a practical guide. - J. Exp. Bot. 51: 659-668, 2000.
Go to original source... - Ozkur O., Ozdemir F., Bor M. et al.: Physiochemical and antioxidant responses of the perennial xerophyte Capparis ovata Desf. to drought. - Environ. Exp. Bot. 66: 487-492, 2009.
Go to original source... - Rajasekar M., Rabert G.A., Manivannan P.: The effect of triazole induced photosynthetic pigments and biochemical constituents of Zea mays L. (Maize) under drought stress. - Appl. Nanosci. 6: 727-735, 2016.
Go to original source... - Rivas R., Falcão H.M., Ribeiro R.V. et al.: Drought tolerance in cowpea species is driven by less sensitivity of leaf gas exchange to water deficit and rapid recovery of photosynthesis after rehydration. - S. Afr. J. Bot. 103: 101-107, 2016.
Go to original source... - Rochaix J.D.: Regulation of photosynthetic electron transport. - Biochim. Biophys. Acta. 1807: 375-383, 2011.
Go to original source... - Rutherford A.W., Boussac A.: Water photolysis in biology. - Science 303: 1782-1784, 2004.
Go to original source... - Scholander P.F., Hammel H.T., Hemmingsen E.A. et al.: Hydrostatic pressure and osmotic potential in leaves of mangroves and some other plants. - P. Natl. Acad. Sci. USA 52: 119-125, 1964.
Go to original source... - Shao H-B., Chu L-Y., Jaleel C.A. et al.: Water-deficit stress-induced anatomical changes in higher plants. - C. R. Biol. 331: 215-225, 2008.
Go to original source... - Silva F.A.S., Azevedo C.A.V.: [Assistat computational program version for the Windows operating system.] - Rev. Bras. Prod. Agroind. 4: 71-78, 2002. [In Portuguese]
Go to original source... - Silva E.N., Ribeiro R.V., Ferreira-Silva SL. et al.: Coordinate changes in photosynthesis, sugar accumulation and antioxidative enzymes improve the performance of Jatropha curcas plants under drought stress. - Biomass Bioenerg. 45: 270-279, 2012.
Go to original source... - Silveira J.A.G., Araújo S.A.M, Lima J.P.M.S. et al.: Roots and leaves display contrasting osmotic adjustment mechanisms in response to NaCl-salinity in Atriplex nummularia. - Environ. Exp. Bot. 66: 1-8, 2009.
Go to original source... - Singh S., Prasad S.M.: Growth, photosynthesis and oxidative responses of Solanum melongena L. seedlings to cadmium stress: mechanism of toxicity amelioration by kinetin. - Sci. Hortic.-Amsterdam 176: 1-10, 2014.
Go to original source... - Singh S.K., Reddy K.R.: Regulation of photosynthesis, fluorescence, stomatal conductance and water-use efficiency of cowpea (Vigna unguiculata [L.] Walp.) under drought. - J. Photoch. Photobio. B. 105: 40-50, 2011.
Go to original source... - Souza R.P., Machado E.C., Silva J.A.B. et al.: Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. - Environ. Exp. Bot. 51: 45-56, 2004.
Go to original source... - Steel R.G.D., Torrie J.H., Dickey D.A.: Principles and Procedures of Statistics: a Biometrical Approach, 3rd ed. Pp. 666. Academic Internet Publishers, Moorpark 2006.
- Thilakarathna M.S., Raizada M.N.: A meta-analysis of the effectiveness of diverse rhizobia inoculants on soybean traits under field conditions. - Soil Biol. Biochem. 105: 177-196, 2017.
Go to original source... - Tukaj Z., Ba¶cik-Remisiewicz A., Skowroñski T. et al.: Cadmium effect on the growth, photosynthesis, ultrastructure and phytochelatin content of green microalga Scenedesmus armatus: a study at low and elevated CO2 concentration. - Environ. Exp. Bot. 60: 291-299, 2007.
Go to original source... - Turner N.C.: Measurement of plant water status by the pressure chamber technique. - Irrig. Sci. 9: 289-308, 1988.
Go to original source... - Velikova V., Yordanov I., Edreva A.: Oxidative stress and some antioxidant systems in acid rain-treated bean plants protective role of exogenous polyamines. - Plant Sci. 151: 59-66, 2000.
Go to original source... - Vriet C., Russinova E., Reuzeau C.: From squalene to brassinolide: The steroid metabolic and signaling pathways across the plant kingdom. - Mol. Plant 6: 1738-1757, 2013.
Go to original source... - Wang Z., Zheng P., Meng J. et al.: Effect of exogenous 24-epibrassinolide on chlorophyll fluorescence, leaf surface morphology and cellular ultrastructure of grape seedlings (Vitis vinifera L.) under water stress. - Acta Physiol. Plant. 37: 1729, 2015.
Go to original source... - Wei Z., Li J.: Brassinosteroids regulate root growth, development, and symbiosis. - Mol. Plant 9: 86-100, 2016.
Go to original source... - Wu Q.-S., Xia R.-X., Zou Y.-N.: Reactive oxygen metabolism in mycorrhizal and non-mycorrhizal citrus (Poncirus trifoliata) seedlings subjected to water stress. - J. Plant Physio. 163: 1101-1110, 2006.
Go to original source... - Wu X., Yao X., Chen J. et al.: Brassinosteroids protect photosynthesis and antioxidant system of eggplant seedlings from high-temperature stress. - Acta Physiol. Plant. 36: 251-261, 2014.
Go to original source... - Xia X.-J., Huang L.-F., Zhou Y.-H. et al.: Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus. - Planta 230: 1185-1196, 2009.
Go to original source... - Yi X.P., Zhang Y.L., Yao H.S. et al.: Rapid recovery of photosynthetic rate following soil water deficit and re-watering in cotton plants (Gossypium herbaceum L.) is related to the stability of the photosystems. - J. Plant Physiol. 194: 23-34 , 2016.
Go to original source... - Yu J.Q., Huang L.F., Hu W.H. et al.: A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. - J. Exp. Bot. 55: 1135-1143, 2004.
Go to original source... - Yuan G.-F., Jia C.-G., Li Z. et al.: Effect of brassinosteroids on drought resistance and abscisic acid concentration in tomato under water stress. - Sci. Hortic.-Amsterdam 126: 103-108, 2010.
Go to original source... - Yuan X.K., Yang Z.Q., Li Y.X. et al.: Effects of different levels of water stress on leaf photosynthetic characteristics and antioxidant enzyme activities of greenhouse tomato. - Photosynthetica 54: 28-39, 2016.
Go to original source... - Zhang C., Zhan D.X., Luo H.H. et al.: Photorespiration and photoinhibition in the bracts of cotton under water stress. - Photosynthetica 54: 12-18, 2016.
Go to original source... - Zhang M., Zhai Z., Tian X. et al.: Brassinolide alleviated the adverse effect of water deficits on photosynthesis and the antioxidant of soybean (Glycine max L.). - Plant Growth Regul. 56: 257-264, 2008.
Go to original source... - Zhang Y., Xu S., Yang S. et al.: Salicylic acid alleviates cadmium-induced inhibition of growth and photosynthesis through upregulating antioxidant defense system in two melon cultivars (Cucumis melo L.). - Protoplasma 252: 911-924, 2015.
Go to original source...




