Photosynthetica 2019, 57(2):420-427 | DOI: 10.32615/ps.2019.052

The higher area-based photosynthesis in Gossypium hirsutum L. is mostly attributed to higher leaf thickness

J.M. HAN, Y.J. ZHANG, Z.Y. LEI, W.F. ZHANG, Y.L. ZHANG
The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, 832003 Shihezi, China

There is a trade-off between leaf structures and photosynthesis physiology. While numerous reports have shown a dif- ference in photosynthesis between Gossypium hirsutum L. (upland cotton) and G. barbadense L. (pima cotton), the potential contribution of leaf structures on this difference was not fully clarified. Here, we investigated the differences in area- and mass-based photosynthetic traits and leaf structures between upland and pima cottons. Our results showed that upland cotton had higher area-based net photosynthetic rate (Parea) than that of pima cotton, which was attributed to the coordination of stomatal conductance (gs), area-based mesophyll conductance (gm-area), and maximum carboxylation rate (Vcmax-area). Parea, gm-area, and Vcmax-area correlated positively with leaf mass per area. But upland and pima cotton had similar mass-based PN (Pmass), gm (gm-mass), Vcmax (Vcmax-mass), suggesting that they have a similar photosynthetic capacity of single cells. Consequently, the higher area-based values in upland cotton were only due to a higher leaf thickness (Tleaf).

Additional key words: chlorophyll fluorescence; gas exchange; leaf density; leaf mass per area; nitrogen content.

Received: August 27, 2018; Accepted: November 21, 2018; Prepublished online: February 25, 2019; Published: May 16, 2019  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
HAN, J.M., ZHANG, Y.J., LEI, Z.Y., ZHANG, W.F., & ZHANG, Y.L. (2019). The higher area-based photosynthesis in Gossypium hirsutum L. is mostly attributed to higher leaf thickness. Photosynthetica57(2), 420-427. doi: 10.32615/ps.2019.052
Download citation

References

  1. Bernacchi C.J., Portis A.R., Nakano H. et al.: Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. - Plant Physiol. 130: 1992-1998, 2002. Go to original source...
  2. Ellsworth P.V., Ellsworth P.Z., Koteyeva N.K., Cousins A.B.: Cell wall properties in Oryza sativa influence mesophyll CO2 conductance. - New Phytol. 219: 66-76, 2018. Go to original source...
  3. Ethier G.J., Livingston N.J.: On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar- von Caemmerer-Berry leaf photosynthesis model. - Plant Cell Environ. 27: 137-153, 2004. Go to original source...
  4. Evans J.R., Kaldenhoff R., Genty B., Terashima I.: Resistances along the CO2 diffusion pathway inside leaves. - J. Exp. Bot. 60: 2235-2248, 2009. Go to original source...
  5. Evans J.R., Sharkey T.D., Berry J.A., Farquhar G.D.: Carbon isotope discrimination measured concurrently with gas exchange to investigate CO2 diffusion in leaves of higher plants. - Aust. J. Plant Physiol. 13: 281-292, 1986. Go to original source...
  6. Farquhar G.D., von Caemmerer S., Berry J.A.: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. - Planta 149: 78-90, 1980. Go to original source...
  7. Flexas J.: Genetic improvement of leaf photosynthesis and intrinsic water use efficiency in C3 plants: Why so much little success? - Plant Sci. 251: 155-161, 2016. Go to original source...
  8. Flexas J., Barbour M.M., Brendel O. et al.: Mesophyll diffusion conductance to CO2: An unappreciated central player in pho-tosynthesis. - Plant Sci. 193-194: 70-84, 2012. Go to original source...
  9. Flexas J., Díaz-Espejo A., Conesa M.A. et al.: Mesophyll con-ductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants. - Plant Cell Environ. 39: 965-982, 2016. Go to original source...
  10. Flexas J., Diaz-Espejo A., Gago J. et al.: Photosynthetic li-mitations in Mediterranean plants: A review. - Environ. Exp. Bot. 103: 12-23, 2014. Go to original source...
  11. Flexas J., Diaz-Espejo A., Galmés J. et al.: Rapid variations of mesophyll conductance in response to changes in CO2 con-centration around leaves. - Plant Cell Environ. 30: 1284-1298, 2007. Go to original source...
  12. Flexas J., Ribas-Carbó M., Bota J. et al.: Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration. - New Phytol. 172: 73-82, 2006. Go to original source...
  13. Flexas J., Ribas-Carbó M., Diaz-Espejo A. et al.: Mesophyll con-ductance to CO2: current knowledge and future prospects. - Plant Cell Environ. 31: 602-621, 2008. Go to original source...
  14. Gago J., Daloso D.M., Figueroa C.M. et al.: Relationships of leaf net photosynthesis, stomatal conductance, and mesophyll conductance to primary metabolism: A multispecies meta-analysis approach. - Plant Physiol. 171: 265-279, 2016. Go to original source...
  15. Galmés J., Ribas-Carbó M., Medrano H., Flexas J.: Rubisco activity in Mediterranean species is regulated by the chloro-plastic CO2 concentration under water stress. - J. Exp. Bot. 62: 653-665, 2011. Go to original source...
  16. Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. - Biochim. Biophys. Acta 990: 87-92, 1989. Go to original source...
  17. Grassi G., Magnani F.: Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. - Plant Cell Environ. 28: 834-849, 2005. Go to original source...
  18. Gu L., Sun Y.: Artefactual responses of mesophyll conductance to CO2 and irradiance estimated with the variable J and online isotope discrimination methods. - Plant Cell Environ 37: 1231-1249, 2014. Go to original source...
  19. Hanba Y.T., Kogami H., Terashima I.: The effect of growth irradiance on leaf anatomy and photosynthesis in Acer species differing in light demand. - Plant Cell Environ. 25: 1021-1030, 2002. Go to original source...
  20. Hanba Y.T., Miyazawa S.I., Terashima I.: The influence of leaf thickness on the CO2 transfer. - Funct. Ecol. 13: 632-639, 1999. Go to original source...
  21. Harley P.C., Loreto F., Di Marco G., Sharkey T.D: Theoretical considerations when estimating the mesophyll conductance to CO2 flux by the analysis of the response of photosynthesis to CO2. - Plant Physiol. 98: 1429-1436, 1992. Go to original source...
  22. Hassiotou F., Renton M., Ludwig M. et al.: Photosynthesis at an extreme end of the leaf trait spectrum: how does it relate to high leaf dry mass per area and associated structural parameters? - J. Exp. Bot. 61: 3015-3028, 2010. Go to original source...
  23. Kattge J., Díaz S., Lavorel S. et al.: TRY - a global database of plant traits. - Glob. Change Biol. 17: 2905-2935, 2011. Go to original source...
  24. Nadal M., Flexas J.: Mesophyll conductance to CO2 diffusion of drought and opportunities for improvement. - In: García Tejero I.F., Durán Zuazo V.H. (ed.): Water Scarcity and Sus-tainable Agriculture in Semiarid Environment. Pp. 403-438. Academic Press 2018. Go to original source...
  25. Niinemets Ü.: Components of leaf dry mass per area - thickness and density - alter leaf photosynthetic capacity in reverse directions in woody plants. - New Phytol. 144: 35-47, 1999. Go to original source...
  26. Niinemets Ü.: Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. - Ecology 82: 453-469, 2001. Go to original source...
  27. Niinemets Ü.: Is there a species spectrum within the world-wide leaf economics spectrum? Major variations in leaf functional traits in the Mediterranean sclerophyll Quercus ilex. - New Phytol. 205: 79-96, 2015. Go to original source...
  28. Niinemets Ü., Cescatti A., Rodeghiero M., Tosens T.: Leaf internal diffusion conductance limits photosynthesis more strongly in older leaves of Mediterranean evergreen broad-leaved species. - Plant Cell Environ. 28: 1552-1566, 2005. Go to original source...
  29. Niinemets Ü., Díaz-Espejo A., Flexas J. et al.: Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field. - J. Exp. Bot. 60: 2249-2270, 2009b. Go to original source...
  30. Niinemets Ü., Keenan T.F., Hallik L.: A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types. - New Phytol. 205: 973-993, 2015. Go to original source...
  31. Niinemets Ü., Reichstein M.: Controls on the emission of plant volatiles through stomata: A sensitivity analysis. - J. Geophys. Res.-Atmos. 108: 4208, 2003. Go to original source...
  32. Niinemets Ü., Sack L.: Structural determinants of leaf light-harvesting capacity and photosynthetic potentials. - In: Esser K., Luttge U.E., Beyschlag W., Murata J. (ed.): Progress in Botany. Vol. 67. Pp. 385-419. Springer Verlag, Berlin 2006. Go to original source...
  33. Niinemets Ü., Wright I.J., Evans J.R.: Leaf internal diffusion conductance in 35 Australian species covering extreme low end of foliage nutrients and high end of leaf structural robustness. - J. Exp. Bot. 60: 2433-2449, 2009a. Go to original source...
  34. Parkhurst D.F.: Diffusion of CO2 and other gases inside leaves. - New Phytol. 126: 449-479, 1994. Go to original source...
  35. Peguero-Pina J.J., Sisó S., Sancho-Knapik D. et al.: Leaf morphological and physiological adaptations of a deciduous oak (Quercus faginea Lam.) to the Mediterranean climate: a comparison with a closely related temperate species (Quercus robur L.). - Tree Physiol. 36: 287-299, 2016. Go to original source...
  36. Piel C., Frak E., Le Roux X., Genty B.: Effect of local irradiance on CO2 transfer conductance of mesophyll in walnut. - J. Exp. Bot. 53: 2423-2430, 2002. Go to original source...
  37. Pons T.L., Flexas J., von Caemmerer S. et al.: Estimating mesophyll conductance to CO2: methodology, potential errors, and recommendations. - J. Exp. Bot. 60: 2217-2234, 2009. Go to original source...
  38. Poorter H., Niinemets Ü., Poorter L. et al.: Causes and con-sequences of variation in leaf mass per area (LMA): a meta-analysis. - New Phytol. 182: 565-588, 2009. Go to original source...
  39. Reich P.B., Walters M.B., Ellsworth D.S.: From tropics to tundra: Global convergence in plant functioning. - P. Natl. Acad. Sci. USA 94: 13730-13734, 1997. Go to original source...
  40. Schuman G.E., Stanley M.A., Knudsen D.: Automated total nitrogen analysis of soil and plant samples. - Soil Sci. Soc. Am. J. 37: 480-481, 1972. Go to original source...
  41. Sharkey T.D., Bernacchi C.J., Farquhar G.D., Singsaas E.L.: Fitting photosynthetic carbon dioxide response curves for C3 leaves. - Plant Cell Environ. 30: 1035-1040, 2007. Go to original source...
  42. Sharkey T.D.: What gas exchange data can tell us about photosynthesis. - Plant Cell Environ. 39: 1161-1163, 2016. Go to original source...
  43. Terashima I., Hanba Y.T., Tazoe Y. et al.: Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. - J. Exp. Bot. 57: 343-354, 2006. Go to original source...
  44. Terashima I., Hanba Y.T., Tholen D., Niinemets Ü.: Leaf functional anatomy in relation to photosynthesis. - Plant Physiol. 155: 108-116, 2011. Go to original source...
  45. Tomás M., Flexas J., Copolovici L. et al.: Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species: quantitative limitations and scaling up by models. - J. Exp. Bot. 64: 2269-2281, 2013. Go to original source...
  46. Tosens T., Nishida K., Gago J. et al.: The photosynthetic capacity in 35 ferns and fern allies: mesophyll CO2 diffusion as a key trait. - New Phytol. 209: 1576-1590, 2016. Go to original source...
  47. Warren C.R.: Stand aside stomata, another actor deserves centre stage: the forgotten role of the internal conductance to CO2 transfer. - J. Exp. Bot. 59: 1475-1487, 2008. Go to original source...
  48. Warren C.R., Adams M.A.: Internal conductance does not scale with photosynthetic capacity: implications for carbon isotope discrimination and the economics of water and nitrogen use in photosynthesis. - Plant Cell Environ. 29: 192-201, 2006. Go to original source...
  49. Westoby M., Reich P.B., Wright I.J.: Understanding ecological variation across species: area-based vs mass-based expression of leaf traits. - New Phytol. 199: 322-323, 2013. Go to original source...
  50. Wright I.J., Groom P.K., Lamont B.B. et al.: Leaf trait re-lationships in Australian plant species - Funct. Plant Biol. 31: 551-558, 2004a. Go to original source...
  51. Wright I.J., Reich P.B., Westoby M. et al.: The world-wide leaf economics spectrum. - Nature 428: 821-827, 2004b. Go to original source...
  52. Zhang Y.L., Yao H.S., Luo Y. et al.: Difference in leaf photosynthetic capacity between pima cotton (Gossypium barbadense) and upland cotton (G. hirsutum) and analysis of potential constraints. - Acta Ecol. Sin. 31: 1803-1810, 2011. [In Chinese]