Photosynthetica 2019, 57(2):540-547 | DOI: 10.32615/ps.2019.042

Can needle nitrogen content explain the interspecific difference in ozone sensitivities of photosynthesis between Japanese larch (Larix kaempferi) and Sakhalin fir (Abies sachalinensis)?

T. SUGAI1,3, M. KITAO2, T. WATANABE3, T. KOIKE1
1 Silviculture and Forest Ecological Studies, Graduate School of Agriculture, Hokkaido University, 060-8689 Sapporo, Japan
2 Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), 7 Hitsujigaoka, 062-8516 Sapporo, Japan
3 Plant Nutrition Laboratory, Graduate School of Agriculture, Hokkaido University, 060-8689 Sapporo, Japan

Although deciduous and evergreen conifers are expected to utilize needle nitrogen differently, their interspecific differences in the ozone sensitivity remain unclear. We compared the growth and physiological responses to elevated O3 concentrations in deciduous Japanese larch (Larix kaempferi) and evergreen Sakhalin fir (Abies sachalinensis) seedlings. Seedlings of both species were exposed to 62.5 ± 1.95 nmol(O3) mol-1 during the day time in open-top chambers. Elevated O3 had no effect on height or diameter growth in either of the species but suppressed photosynthetic parameters. A decline in photosynthetic nitrogen-use efficiency was observed in both species. However, needle N content in larch was decreased by O3, whereas it was not decreased in fir. Needle N responses to O3 were different between larch and fir seedlings, indicating that the O3 sensitivity of photosynthesis could vary depending on needle N dynamics. We also observed a higher correlation between photosynthesis and needle N even under O3 exposure, particularly in the mass-based relationship with higher accuracy. The result indicated that mass-based needle N could explain difference in O3 sensitivity of photosynthesis between the different leaf habits in larch and fir seedlings.

Additional key words: ozone; deciduous; evergreen; interspecific differences; photosynthetic nitrogen-use efficiency.

Received: August 10, 2018; Accepted: February 6, 2019; Prepublished online: April 17, 2019; Published: May 16, 2019  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
SUGAI, T., KITAO, M., WATANABE, T., & KOIKE, T. (2019). Can needle nitrogen content explain the interspecific difference in ozone sensitivities of photosynthesis between Japanese larch (Larix kaempferi) and Sakhalin fir (Abies sachalinensis)? Photosynthetica57(2), 540-547. doi: 10.32615/ps.2019.042
Download citation

References

  1. Agathokleous E., Saitanis C.J., Koike T.: Tropospheric O3, the nightmare of wild plants: a review study. - J. Agric. Meteorol. 71: 142-152, 2015. Go to original source...
  2. Agathokleous E., Vanderstock A., Kita K., Koike T.: Stem and crown growth of Japanese larch and its hybrid F1 grown in two soils and exposed to two free-air O3 regimes. - Environ. Sci. Pollut. R. 24: 6634-6647, 2017. Go to original source...
  3. Akimoto H.: Overview of Policy Actions and Observational Data for PM2.5 and O3 in Japan: A Study of Urban Air Quality Improvement in Asia. Pp. 19. JICA Research Institute, Tokyo 2017.
  4. Bernacchi C.J., Singsaas E.L., Pimentel C. et al.: Improved temperature response functions for models of Rubisco-limited photosynthesis. - Plant Cell Environ. 24: 253-259, 2001. Go to original source...
  5. Beyers L., Riechers H., Temple J.: Effects of long-term ozone exposure and drought on the photosynthetic capacity of ponderosa pine (Pinus ponderosa Laws.). - New Phytol. 122: 81-90, 1992. Go to original source...
  6. Bussotti F.: Functional leaf traits, plant communities and acclimation processes in relation to oxidative stress in trees: A critical overview. - Glob. Change Biol. 14: 2727-2739, 2008. Go to original source...
  7. Cao J., Shang H., Chen Z. et al.: Effects of elevated ozone on stoichiometry and nutrient pools of Phoebe bournei (Hemsl.) Yang and Phoebe zhennan S. Lee et F. N. Wei seedlings in subtropical China. - Forests 7: 78, 2016. Go to original source...
  8. Farquhar G.D., von Caemmerer S., Berry J.A.: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. - Planta 149: 78-90, 1980. Go to original source...
  9. Feng Z., Büker P., Pleijel H. et al.: A unifying explanation for variation in ozone sensitivity among woody plants. - Glob. Change Biol. 24: 78-84, 2018. Go to original source...
  10. Field C., Mooney H.A.: Photosynthesis-nitrogen relationship in wild plants. - In: Givnish T. (ed.): On the Economy of Plant Form and Function. Pp. 25-55. Cambridge University Press, Cambridge 1986.
  11. Goto S., Iijima H., Ogawa H., Ohya K.: Outbreeding depression caused by intraspecific hybridization between local and nonlocal genotypes in Abies sachalinensis. - Restor. Ecol. 19: 243-250, 2011. Go to original source...
  12. Hatakeyama S.: Aerosols. - In: Izuta T. (ed.): Air Pollution Impacts on Plants in East Asia. Pp. 21-42. Springer, Tokyo 2017. Go to original source...
  13. Hayes F., Jones L.M., Mills G., Ashmore M.: Meta-analysis of the relative sensitivity of semi-natural vegetation species to ozone. - Environ. Pollut. 146: 754-762, 2007. Go to original source...
  14. Hikosaka K.: Interspecific difference in the photosynthesis-nitrogen relationship: patterns, physiological causes, and ecological importance. - J. Plant. Res. 117: 481-494, 2004. Go to original source...
  15. Kam D.-G., Shi C., Watanabe M. et al.: Growth of Japanese and hybrid larch seedlings grown under free-air O3 fumigation - an initial assessment of the effects of adequate and excessive nitrogen. - J. Agric. Meteorol. 71: 239-244, 2015. Go to original source...
  16. Kita K., Fujimoto T., Uchiyama K. et al.: Estimated amount of carbon accumulation of hybrid larch in three 31-year-old progeny test plantations. - J. Wood Sci. 55: 425-434, 2009. Go to original source...
  17. Kitao M., Yasuda Y., Komatsu M. et al.: Flux based O3 risk assessment for Japanese temperate forests. - In: Izuta T. (ed.): Air Pollution Impacts on Plants in East Asia. Pp. 125-133. Springer, Tokyo 2017. Go to original source...
  18. Kitaoka S., Koike T.: Seasonal and year-to-year variation in light use and nitrogen use of four deciduous broad-leaved tree seedling species invading larch plantations. - Tree Physiol. 25: 467-475, 2005. Go to original source...
  19. Koike T., Mao Q., Inada N. et al.: Growth and photosynthetic responses of cuttings of a hybrid larch (Larix gmelinii var. japonica × L. kaempferi) to elevated ozone and/or carbon dioxide. - Asian J. Atmos. Environ. 6: 104-110, 2012. Go to original source...
  20. Koike T., Watanabe M., Hoshika Y. et al.: Effects of ozone on forest ecosystems in East and Southeast Asia. - In: Matyssek R., Clarke N., Cudlin P. et al. (ed.): Climate Change, Air Pollution and Global Challenges. Understanding and Perspectives from Forest Research. Pp. 371-390. Elsevier, Oxford 2013. Go to original source...
  21. Larcher W.: Carbon utilization and dry matter production. - In: Larcher W. (ed.): Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups. Pp. 69-184. Springer, Berlin-Heidelberg 2003. Go to original source...
  22. Li P., Calatayud V., Gao F. et al.: Differences in ozone sensitivity among woody species are related to leaf morphology and antioxidant levels. - Tree Physiol. 36: 1105-1116, 2016. Go to original source...
  23. Li P., Feng Z., Catalayud V. et al.: A meta-analysis on growth, physiological, and biochemical responses of woody species to ground-level ozone highlights the role of plant functional types. - Plant Cell Environ. 40: 2369-2380, 2017. Go to original source...
  24. Long S.P., Bernacchi C.J.: Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. - J. Exp. Bot. 54: 2393-2401, 2003. Go to original source...
  25. Manderscheid R., Jager H.-J., Kress L.W.: Effects of ozone on foliar nitrogen metabolism of Pinus taeda L. and implications for carbohydrate metabolism. - New Phytol. 121: 623-633, 1992. Go to original source...
  26. Matsuda K., Shibuya M., Koike T.: Maintenance and rehabilitation of the mixed conifer-broadleaf forests in Hokkaido, Northern Japan. - Eurasian J. Forest Res. 5: 119-130, 2002.
  27. Matyssek R.: Carbon, water and nitrogen relations in evergreen and deciduous conifers. - Tree Physiol. 2: 177-187, 1986. Go to original source...
  28. Matyssek R., Agerer R., Ernst D. et al.: The plant's capacity in regulating resource demand. - Plant Biol. 7: 560-580, 2005. Go to original source...
  29. Matyssek R., Bytnerowicz A., Karlsson P.E. et al.: Promoting the O3 flux concept for European forest trees. - Environ. Pollut. 146: 587-607, 2007. Go to original source...
  30. Matyssek R., Sandermann H., Wieser G. et al.: The challenge of making ozone risk assessment for forest trees more mechanistic. - Environ. Pollut. 146: 587-607, 2008. Go to original source...
  31. Millard P., Proe M.F.: Storage and internal cycling of nitrogen in relation to seasonal growth of Sitka spruce. - Tree Physiol. 10: 33-43, 1992. Go to original source...
  32. Mortensen L.M.: The influence of carbon dioxide or ozone concentration on growth and assimilate partitioning in seedlings of nine conifers. - Acta Agr. Scand. B-S. P. 44: 157-163, 1994. Go to original source...
  33. Niinements Ü.: Components of leaf dry mass per area - thickness and density - alter leaf photosynthetic capacity in reverse directions in woody plants. - New Phytol. 144: 35-47, 1999. Go to original source...
  34. Noguchi M., Kayama M., Yoshida T., Koike T.: [Photosynthetic traits of seedlings of Sakhalin fir grown under selective cutting in a fir forest.] - Transactions of the Meeting in Hokkaido Branch of the Japanese Forest Society 51: 36-38, 2003. [In Japanese]
  35. Peterson A.G.: Reconciling the apparent difference between mass-and area-based expressions of the photosynthesis-nitrogen relationship. - Oecologia 118: 144-150, 1999. Go to original source...
  36. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna 2017. https://www.R-project.org
  37. Reich P.B., Walters M.B., Ellsworth D.S.: Leaf life-span in relation to leaf, plant and stand characteristics among diverse ecosystems. - Ecol. Monogr. 62: 365-392, 1992. Go to original source...
  38. Reich P.B., Walters M.B., Kloeppel B.D., Ellsworth D.S.: Different photosynthesis-nitrogen relations in deciduous hardwood and evergreen coniferous tree species. - Oecologia 104: 24-30, 1995. Go to original source...
  39. Ryu K., Watanabe M., Shibata H. et al.: Ecophysiological responses of the larch species in northern Japan to environmental changes as a basis for afforestation. - Landsc. Ecol. Eng. 5: 99-106, 2009. Go to original source...
  40. Schneider C.A., Rasband W.S., Eliceiri K.W.: NIH Image to ImageJ: 25 years of image analysis. - Nat. Methods 9: 671-675, 2012. Go to original source...
  41. Shang B., Xu Y., Dai L., Feng Z.: Elevated ozone reduced leaf nitrogen allocation to photosynthesis in poplar. - Sci. Total Environ. 657: 169-178, 2018. Go to original source...
  42. Shi C., Watanabe T., Koike T.: Leaf stoichiometry of deciduous tree species in different soils exposed to free-air O3 enrichment over two growing seasons. - Environ. Exp. Bot. 138: 148-163, 2017. Go to original source...
  43. Small E.: Photosynthetic rates in relation to nitrogen recycling as an adaptation to nutrient deficiency in peat bog plants. - Can. J. Bot. 50: 2227-2233, 1972. Go to original source...
  44. Sugai T., Kam D.G., Agathokleous E. et al.: Growth and photosynthetic response of two larches exposed to O3 mixing ratios ranging from preindustrial to near future. - Photosynthetica 56: 901-910, 2018. Go to original source...
  45. Takashima T., Hikosaka K., Hirose T.: Photosynthesis or persistence: Nitrogen allocation in leaves of evergreen and deciduous Quercus species. - Plant Cell Environ. 27: 1047-1054, 2004. Go to original source...
  46. Temple P., Riechers G.: Nitrogen allocation in ponderosa pine seedlings exposed to interacting ozone and drought stresses. - New Phytol. 130: 87-104, 1995. Go to original source...
  47. Wang X., Qu L., Mao Q. et al.: Ectomycorrhizal colonization and growth of the hybrid larch F1 under elevated CO2 and O3. - Environ. Pollut. 197: 116-126, 2015. Go to original source...
  48. Watanabe M., Yamaguchi M., Iwasaki M. et al.: Effects of ozone and/or nitrogen load on the growth of Larix kaempferi, Pinus densiflora and Cryptomeria japonica seedlings. - J. Japan Soc. Atmos. Environ. 41: 320-334, 2006.
  49. Weigt R.B., Haberle K.H., Millard P. et al.: Ground-level ozone differentially affects nitrogen acquisition and allocation in mature European beech (Fagus sylvatica) and Norway spruce (Picea abies) trees. - Tree Physiol. 32: 1259-1273, 2012. Go to original source...
  50. Wieser G., Havranek M.: Evaluation of ozone impact on mature spruce and larch in the field. - J. Plant Physiol. 148: 189-194, 1996. Go to original source...
  51. Wieser G., Hecke K., Tausz M., Matyssek R.: Foliage type specific susceptibility to ozone in Picea abies, Pinus cembra and Larix decidua at treeline: A synthesis. - Environ. Exp. Bot. 90: 4-11, 2013. Go to original source...
  52. Wright J., Reich P.B., Westoby M. et al.: The worldwide leaf economics spectrum. - Nature 428: 821-827, 2004. Go to original source...
  53. Yamaguchi M., Watanabe M., Iwasaki M. et al.: Growth and photosynthetic responses of Fagus crenata seedlings to O3 under different nitrogen loads. - Trees 21: 707-718, 2007. Go to original source...
  54. Yamaguchi M., Watanabe M., Matsumura H. et al.: Experimental studies on the effects of ozone on growth and photosynthetic activity of Japanese forest tree species. - Asian J. Atmos. Environ. 5: 65-78, 2011. Go to original source...
  55. Zhang W., Feng Z., Wang K., Niu F.: Responses of native broadleaved woody species to elevated ozone in subtropical China. - Environ. Pollut. 163: 149-157, 2012. Go to original source...