Photosynthetica 2020, 58(SI):262-274 | DOI: 10.32615/ps.2019.148

Special issue in honour of Prof. Reto J. Strasser – A comparative chlorophyll a fluorescence study on isolated cells and intact leaves of Bouteloua gracilis (blue grama grass)

B. JIMÉNEZ-FRANCISCO1,†, A. STIRBET2,†, G.A. AGUADO-SANTACRUZ3, H. CAMPOS1, F.V. CONDE-MARTÍNEZ1, D. PADILLA-CHACÓN1, C. TREJO1, C.J. BERNACCHI5, G. GOVINDJEE6,a
1 Department of Botany, Postgraduate College, Carretera México-Texcoco km 36.5, Montecillo, 56230 México, México
2 Anne Burras Lane, Newport News, Virginia 23606, USA
3 National Technological Institute of Mexico/IT Roque, Carretera Celaya-Juventino Rosas km. 8, 38110 Celaya, Guanajuato, México
5 USDA-ARS and the Department of Plant Biology, 196 E.R. Madigan Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
6 Department of Biochemistry, Department of Plant Biology, and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Bouteloua gracilis (blue grama grass) is one of the most drought and grazing tolerant plants in the short-grass ecosystem. To obtain information on their photosystem activities, we measured the fast (< 1 s) chlorophyll a fluorescence transient (the OJIP curve) from their leaves, and isolated cells grown photoautotrophically in suspension in a culture medium, or with added sucrose. One of our goals was to study the effect of different sucrose concentrations (0, 0.15, 0.3, and 3%) on PSII activity in isolated cells. Our results on cells suspended in culture medium, using the JIP-test, showed a decrease in PSII activity at increasing sucrose concentrations, while the photoautotrophic cells showed an optimal PSII activity, close to that of the leaves. Further, our data on cells grown in 0, 0.15, and 0.3% sucrose, but with added CO2, and measured while the cells were deposited on filter paper, indicate that supplementary CO2 can increase the PSII activity in the presence of sucrose, although further research is necessary to understand these results.

Additional key words: kinetic parameters of the O-J, J-I, and I-P phases; osmotic stress; performance index.

Received: July 17, 2019; Accepted: November 5, 2019; Prepublished online: December 12, 2019; Published: May 28, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
JIMÉNEZ-FRANCISCO, B., STIRBET, A., CAMPOS, H., CONDE-MARTÍNEZ, F.V., PADILLA-CHACÓN, D., TREJO, C., BERNACCHI, C.J., & GOVINDJEE, G. (2020). Special issue in honour of Prof. Reto J. Strasser – A comparative chlorophyll a fluorescence study on isolated cells and intact leaves of Bouteloua gracilis (blue grama grass). Photosynthetica58(SPECIAL ISSUE), 262-274. doi: 10.32615/ps.2019.148
Download citation

Supplementary files

Download fileJimenez-Francisco 2338 supplement.docx

File size: 304.92 kB

References

  1. Aguado-Santacruz G.A., Cabrera-Ponce J.L., Ramírez-Chávez E. et al.: Establishment, characterization and plant regeneration from highly chlorophyllous embryogenic cell cultures of blue grama grass, Bouteloua gracilis (H.B.K.) Lag. ex Steud. - Plant Cell Rep. 20: 131-136, 2001. Go to original source...
  2. Aguilera M.O., Lauenroth W.K.: Seedling establishment in adult neighbourhoods - Intraspecific constraints in the regeneration of the bunchgrass Bouteloua gracilis. - J. Ecol. 81: 253-261, 1993. Go to original source...
  3. Andrée S., Weis E., Krieger A.: Heterogeneity and photoinhibi-tion of photosystem II studied with thermoluminiscence. - Plant Physiol. 116: 1053-1061, 1998. Go to original source...
  4. Antal T., Rubin A.: In vivo analysis of chlorophyll a fluorescence induction. - Photosynth. Res. 96: 217-226, 2008. Go to original source...
  5. Boisvert S., Joly D., Carpentier R.: Quantitative analysis of the experimental O-J-I-P chlorophyll fluorescence induction kinetics. Apparent activation energy and origin of each kinetic step. - FEBS J. 273: 4770-4777, 2006. Go to original source...
  6. Brown L.F., Trlica M.J.: Carbon dioxide exchange of blue grama swards as influenced by several ecological variables in the field. - J. Appl. Ecol. 14: 205-213, 1977. Go to original source...
  7. Cao J., Govindjee: Chlorophyll a fluorescence transient as an indicator of active and inactive photosystem II in thylakoid membranes. - BBA-Bioenergetics 1015: 180-188, 1990. Go to original source...
  8. Chang C.C., Locy R.D., Smeda R. et al.: Photoautotrophic tobacco cells adapted to grow at high salinity. - Plant Cell Rep. 16: 495-502, 1997. Go to original source...
  9. Chaumont D., Gudin C.: Transition from photomixotrophic to photoautotrophic growth of Asparagus officinalis in suspension culture. - Biomass 8: 41-58, 1985. Go to original source...
  10. De Ronde J.A., Cress W.A., Krüger G.H.J. et al.: Photosynthetic response of transgenic soybean plants, containing an Arabi-dopsis P5CR gene, during heat and drought stress. - J. Plant. Physiol. 161: 1211-1224, 2004. Go to original source...
  11. Duysens L.N.M., Sweers H.E.: Mechanism of the two photochemical reactions in algae as studied by means of fluorescence. - In: Japanese Society of Plant Physiologists (ed.): Studies on Microalgae and Photosynthetic Bacteria. Pp. 353-372. University of Tokyo Press, Tokyo 1963.
  12. Essemine J., Xiao Y., Qu M. et al.: Cyclic electron flow may provide some protection against PSII photoinhibition in rice (Oryza sativa L.) leaves under heat stress. - J. Plant Physiol. 211: 138-146, 2017. Go to original source...
  13. Feild T.S., Nedbal L., Ort D.R.: Nonphotochemical reduction of the plastoquinone pool in sunflower leaves originates from chloro-respiration. - Plant Physiol. 116: 1209-1218, 1998. Go to original source...
  14. Flores H.E., Dai Y.R., Cuello J.L. et al.: Green roots: photosyn-thesis and photoautotrophy in an underground plant organ. - Plant Physiol. 101: 363-371, 1993. Go to original source...
  15. García-Valenzuela X., García-Moya E., Rascón-Cruz Q. et al.: Chlorophyll accumulation is enhanced by osmotic stress in graminaceous chlorophyllic cells. - J. Plant Physiol. 162: 650-661, 2005. Go to original source...
  16. Govindjee: Sixty-three years since Kautsky: chlorophyll a fluorescence. - Aust. J. Plant Physiol. 22: 131-160, 1995. Go to original source...
  17. Govindjee: Chlorophyll a fluorescence: A bit of basics and history. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis: Advances in Photosynthesis and Respiration. Vol. 19. Pp. 1-41. Springer, Dordrecht 2004. Go to original source...
  18. Govindjee G., Srivastava A., Stirbet A. et al.: Reto Jörg Strasser: An innovator, a wonderful friend and 'Professor of the World'. - J. Plant Sci. Res. 35: 147-158, 2019. Go to original source...
  19. Guissé B., Srivastava A., Strasser R.J.: The polyphasic rise of the chlorophyll a fluorescence (O-K-J-I-P) in heat stressed leaves. - Arch. Sci. 48: 147-160, 1995.
  20. Hamdani S, Qu M., Xin C.-P. et al.: Variations between the photosynthetic properties of elite and landrace Chinese rice cultivars revealed by simultaneous measurements of 820 nm transmission signal and chlorophyll a fluorescence induction. -J. Plant Physiol. 177: 128-138, 2015. Go to original source...
  21. Hendrickson L., Förster B., Pogson B.J., Chow W.S.: A simple chlorophyll fluorescence parameter that correlates with the rate coefficient of photoinactivation of photosystem II. - Photosynth. Res. 84: 43-49, 2005. Go to original source...
  22. Hsu B.-D., Lee J.-Y.: A study on the fluorescence induction curve from DCMU-poisoned chloroplast. - BBA-Bioenergetics 1056: 285-292, 1991. Go to original source...
  23. Joly D., Carpentier R.: The oxidation/reduction kinetics of the plastoquinone pool controls the appearance of the I-peak in the O-J-I-P chlorophyll fluorescence rise: Effects of various electron acceptors. - J. Photoch. Photobio. B 88: 43-50, 2007. Go to original source...
  24. Joly D., Carpentier R.: Sigmoidal reduction kinetics of the photosystem II acceptor side in intact photosynthetic materials during fluorescence induction. - Photoch. Photobio. Sci. 8: 167-173, 2009. Go to original source...
  25. Kalaji H.M., Jajoo A., Oukarroum A. et al.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. - Acta Physiol. Plant. 38: 102, 2016. Go to original source...
  26. Kalaji H.M., Schansker G., Brestiè M. et al.: Frequently asked questions about chlorophyll fluorescence, the sequel. - Photosynth. Res. 132: 13-66, 2017. Go to original source...
  27. Kalaji H.M., Schansker G., Ladle R.J. et al.: Frequently asked questions about chlorophyll fluorescence: practical issues. - Photosynth. Res. 122: 121-158, 2014. Go to original source...
  28. Kitajima M., Butler W.L.: Quenching of chlorophyll fluores-cence and primary photochemistry in chloroplasts by dibromothymoquinone. - BBA-Bioenergetics 376: 105-115, 1975. Go to original source...
  29. Kou J., Oguchi R., Fan D.-Y., Chow W.S.: The time course of photoinactivation of photosystem II in leaves revisited. - Photosynth. Res. 113: 157-164, 2012. Go to original source...
  30. Lavergne J., Briantais J.-M.: Photosystem II heterogeneity. - In: Ort D.R, Yocum C.F. (ed.): Oxygenic Photosynthesis: The Light Reactions. Pp. 265-287. Kluwer, Dordrecht 1996. Go to original source...
  31. Lavergne J., Trissl H.-W.: Theory of fluorescence induction in photosystem II: Derivation of analytical expressions in a model including exciton-radical-pair equilibrium and restricted energy transfer between photosynthetic units. - Biophys. J. 68: 2474-2492, 1995. Go to original source...
  32. Lazár D.: Simulations show that a small part of variable chlorophyll a fluorescence originates in photosystem I and contributes to overall fluorescence rise. - J. Theor. Biol. 335: 249-264, 2013. Go to original source...
  33. Lazár D., Ilík P., Nau¹ J.: An appearance of K-peak in fluorescence induction depends on the acclimation of barley leaves to higher temperatures. - J. Lumin. 72-74: 595-596, 1997. Go to original source...
  34. Lazár D., Tomek P., Ilík P., Nau¹ J.: Determination of the antenna heterogeneity of Photosystem II by direct simultaneous fitting of several fluorescence rise curves measured with DCMU at different light intensities. - Photosynth. Res. 68: 247-257, 2001. Go to original source...
  35. Majerus M.E.: Response of root and shoot growth of three grass species to decreases in soil water potential. - J. Range Manage. 28: 473-476, 1975. Go to original source...
  36. Malkin S., Kok B.: Fluorescence induction studies in isolated chloroplasts. I. Number of components involved in the reaction and quantum yields. - BBA-Biophysics 126: 413-432, 1966. Go to original source...
  37. Melis A.: Functional properties of photosystem IIβ in spinach chloroplasts. - BBA-Bioenergetics 808: 334-342, 1985. Go to original source...
  38. Monson R.K., Sackschewsky M.R., Williams III G.J.: Field measurements of photosynthesis, water-use efficiency, and growth in Agropyron smithii (C3) and Bouteloua gracilis (C4) in the Colorado shortgrass steppe. - Oecologia 68: 400-409, 1986. Go to original source...
  39. Moreno-Gómez B., García-Moya E., Aguado-Santacruz G.A.: [Growth and establishment of Bouteloua gracilis (Kunth) Lag. ex Griffiths and Eragrostis curvula var. Conferta Stapf seedlings under a simulated rainfall regime.] - Rev. Fitotec. Mex. 35: 299-308, 2012. [In Spanish] Go to original source...
  40. Munday Jr. J.C., Govindjee: Light-induced changes in the fluo-rescence yield of chlorophyll a in vivo. III. The dip and the peak in the fluorescence transient of Chlorella pyrenoidosa. -Biophys. J. 9: 1-21, 1969. Go to original source...
  41. Oukarroum A., Goltsev V., Strasser R.J.: Temperature effects on pea plants probed by simultaneous measurements of the kinetics of prompt fluorescence, delayed fluorescence and modulated 820 nm reflection. - PLoS ONE 8: e59433, 2013. Go to original source...
  42. Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis: Advances in Photosynthesis and Respiration, Vol. 19. Pp. 820. Springer, Dordrecht 2004. Go to original source...
  43. Papageorgiou G.C., Govindjee: Photosystem II fluorescence: Slow changes - scaling from the past. - J. Photoch. Photobio. B. 104: 258-270, 2011. Go to original source...
  44. Pospí¹il P., Dau H.: Chlorophyll fluorescence transients of photosystem II membrane particles as a tool for studying photosynthetic oxygen evolution. - Photosynth. Res. 65: 41-52, 2000. Go to original source...
  45. Pospí¹il P., Dau H.: Valinomycin sensitivity proves that light induced thylakoid voltages result in millisecond phase of chlorophyll fluorescence transients. - BBA-Bioenergetics 1554: 94-100, 2002. Go to original source...
  46. Rogers S.M.D., Ogren W.L., Widholm J.M.: Photosynthetic characteristics of a photoautotrophic cell suspension culture of soybean. - Plant Physiol. 84: 1451-1456, 1987. Go to original source...
  47. Sarvikas P., Tyystjärvi T., Tyystjärvi E.: Kinetics of prolonged photoinhibition revisited: Photoinhibited photosystem II centres do not protect the active ones against loss of oxygen evolution. - Photosynth. Res. 103: 7-17, 2010. Go to original source...
  48. Shevela D., Eaton-Rye J.J., Shen J.R., Govindjee: Photosystem II and the unique role of bicarbonate: A historical perspective. -BBA-Bioenergetics 1817: 1134-1151, 2012. Go to original source...
  49. Singh-Tomar R., Mathur S., Allakhverdiev S.I., Jajoo A.: Changes in PS II heterogeneity in response to osmotic and ionic stress in wheat leaves (Triticum aestivum). - J. Bioenerg. Biomembr. 44: 411-419, 2012. Go to original source...
  50. Stirbet A.: Excitonic connectivity between photosystem II units: What is it, and how to measure it? - Photosynth. Res. 116: 189-214, 2013. Go to original source...
  51. Stirbet A., Govindjee: On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: Basis and applications of the OJIP fluorescence transient. - J. Photoch. Photobio. B 104: 236-257, 2011. Go to original source...
  52. Stirbet A., Govindjee: Chlorophyll a fluorescence induction: A personal perspective of the thermal phase, the J-I-P rise. - Photosynth. Res. 113: 15-61, 2012. Go to original source...
  53. Stirbet A., Lazár D., Guo Y., Govindjee: Photosynthesis: Basics, history, and modelling. - Ann. Bot.-London: mcz171, https://doi.org/10.1093/aob/mcz171, 2019. (In print) Go to original source...
  54. Stirbet A., Lazár D., Kromdijk J., Govindjee: Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? - Photosynthetica 56: 86-104, 2018. Go to original source...
  55. Stirbet A., Riznichenko G.Yu., Rubin A.B., Govindjee: Modeling chlorophyll a fluorescence transient: relation to photosynthesis. - Biochemistry-Moscow+ 79: 291-323, 2014. Go to original source...
  56. Strasser B.J.: Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients. - Photosynth. Res. 52: 147-155, 1997. Go to original source...
  57. Strasser B.J, Strasser R.J.: Measuring fast fluorescence transients to address environmental questions: The JIP test. - In: Mathis P. (ed.): Photosynthesis: From Light to Biosphere. Vol. 5. Pp. 977-980. Kluwer Academic Publishers, Dordrecht 1995. Go to original source...
  58. Strasser R.J.: The grouping model of plant photosynthesis. - In: Akoyunoglou G., Argyroudi-Akoyunoglou J.H. (ed.): Chloroplast Development. Pp. 513-524. Elsevier, Amsterdam 1978.
  59. Strasser R.J., Govindjee: The F0 and the O-J-I-P fluorescence rise in higher plants and algae. - In: Argyroudi-Akoyunoglou J.H. (ed.): Regulation of Chloroplast Biogenesis. Pp. 423-426. Plenum Press, New York 1991. Go to original source...
  60. Strasser R.J., Stirbet A.: Heterogeneity of photosystem II probed by the numerically simulated chlorophyll a fluorescence rise (O-J-I-P). - Math. Comput. Simulat. 48: 3-9, 1998. Go to original source...
  61. Strasser R.J., Stirbet A.D.: Estimation of the energetic con-nectivity of PS II centres in plants using the fluorescence rise O-J-I-P. Fitting of experimental data to three different PS II models. - Math. Comput. Simulat. 56: 451-461, 2001. Go to original source...
  62. Strasser R.J., Srivastava A., Tsimilli-Michael M.: Screening the vitality and photosynthetic activity of plants by fluorescence transient. - In: Behl R.K., Punia M.S., Lather B.P.S. (ed.): Crop Improvement for Food Security. Pp. 72-115. SSARM, Hisar 1999.
  63. Strasser R.J., Tsimilli-Michael M., Srivastava A.: The fluores- cence transient as a tool to characterize and screen photosyn-thetic samples. - In: Yunus M., Pathre U., Mohanty P. (ed.): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Pp. 443-480. Taylor & Francis, London 2000.
  64. Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis: Advances in Photosynthesis and Respiration, Vol. 19. Pp. 321-362. Springer, Dordrecht 2004. Go to original source...
  65. Tsimilli-Michael M., Strasser R.J.: In vivo assessment of plants' vitality: applications in detecting and evaluating the impact of mycorrhization on host plants. - In: Varma A. (ed.): Mycorrhiza: State of the Art. Genetics and Molecular Biology, Eco-Function, Biotechnology, Eco-Physiology, Structure and Systematics, 3rd Edition. Pp. 679-703. Springer, Dordrecht 2008. Go to original source...
  66. Velthuys B.R., Amesz J.: Charges accumulation at the reducing side of system 2 of photosynthesis. - BBA-Bioenergetics 333: 85-94, 1974. Go to original source...
  67. Widholm J.M.: Properties and uses of photoautotrophic plant cell cultures. - Int. Rev. Cytol. 132: 109-175, 1992. Go to original source...
  68. Yusuf M.A., Kumar D., Rajwanshi R. et al.: Overexpression of gamma-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: Physiological and chlorophyll fluorescence measurements. - BBA-Bioenergetics 1797: 1428-1438, 2010. Go to original source...