Photosynthetica 2020, 58(3):762-768 | DOI: 10.32615/ps.2020.026

Paclobutrazol improves leaf carbon-use efficiency by increasing mesophyll conductance rate, while abscisic acid antagonizes this increased rate

L.J. XU, H.X. LIU, J. WU, C.Y. XU
Key Laboratory for Forest Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry Administration, Research Center for Urban Forestry, Beijing Forestry University, Tsinghua East Road 35, 100083 Beijing, China

Our experiment was conducted to understand the effects of foliar sprays of paclobutrazol (PBZ), its mixture with abscisic acid (ABA), or water (control) on leaf carbon-use efficiency (CUEl), photosynthesis, and respiration of Euonymus japonicus seedlings. Plants were pot-grown in a greenhouse. The study revealed that elevated stomatal conductance, mesophyll conductance, and maximum rate of Rubisco carboxylation (Vcmax) in plants treated with PBZ could strongly improve net photosynthetic rate (PN). ABA could antagonize the increase of mesophyll conductance and stomatal conductance by PBZ, thereby inhibiting the improvement of photosynthesis by PBZ. The combination of PBZ and ABA significantly reduced day respiration (Rd) and dark respiration (Rdk), resulting in the increased CUEl, PN/Rd, and PN/Rdk. The increased PN in the PBZ treatment led to slightly increased PN/Rd and CUEl. Thus, the CUEl could be improved by PBZ and its mixtures with ABA by regulating leaf photosynthesis and respiration.

Additional key words: gas exchange; leaf respiration; photosynthetic respiration ratio; plant growth inhibitors.

Received: September 13, 2019; Revised: December 24, 2019; Accepted: March 19, 2020; Prepublished online: May 6, 2020; Published: June 11, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
XU, L.J., LIU, H.X., WU, J., & XU, C.Y. (2020). Paclobutrazol improves leaf carbon-use efficiency by increasing mesophyll conductance rate, while abscisic acid antagonizes this increased rate. Photosynthetica58(3), 762-768. doi: 10.32615/ps.2020.026
Download citation

References

  1. Bernacchi C.J., Portis A.R., Nakano H. et al.: Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. - Plant Physiol. 130: 1992-1998, 2002. Go to original source...
  2. Boron W., Endeward V., Gros G. et al.: Intrinsic CO2 permeability of cell membranes and potential biological relevance of CO2 channels. - Chemphyschem 12: 1017-1019, 2011. Go to original source...
  3. Buschmann C.: Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves. - Photosynth. Res. 92: 261-271, 2007. Go to original source...
  4. Choi K.S., Park S.J.: The complete chloroplast genome sequence of Euonymus japonicus (Celastraceae). - Mitochondr. DNA 27: 3577-3578, 2016. Go to original source...
  5. Dwivedi S.K., Arora A., Kumar S.: Paclobutrazol-induced alleviation of water-deficit damage in relation to photosynthetic characteristics and expression of stress markers in contrasting wheat genotypes. - Photosynthetica 55: 351-359, 2017. Go to original source...
  6. Epron D., Godard D., Cornic G., Genty B.: Limitation of net CO2 assimilation rate by internal resistances to CO2 transfer in the leaves of two tree species (Fagus sylvatica L. and Castanea sativa Mill.). - Plant Cell Environ. 18: 43-51, 1995. Go to original source...
  7. Farquhar G.D., von Caemmerer S., Berry J.A.: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. - Planta 149: 78-90, 1980. Go to original source...
  8. Fernández J.A., Balenzategui L., Bañón S., Franco J.A.: Induction of drought tolerance by paclobutrazol and irrigation deficit in Phillyrea angustifolia during the nursery period. - Sci. Hortic.-Amsterdam 107: 277-283, 2006. Go to original source...
  9. Fletcher R.A., Gilley A., Sankhla N., Davis T.D.: Triazoles as plant growth regulators and stress protectants. - In: Janick J. (ed.): Horticultural Reviews. Vol. 24. Pp. 55-138. John Wiley & Sons, Inc., New York 2000. Go to original source...
  10. Flexas J., Barbour M.M., Brendel O. et al.: Mesophyll diffusion conductance to CO2: An unappreciated central player in photosynthesis. - Plant Sci. 193-194: 70-84, 2012. Go to original source...
  11. Flexas J., Ribas-Carbó M., Bota J. et al.: Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration. - New Phytol. 172: 73-82, 2006. Go to original source...
  12. Flexas J., Ribas-Carbó M., Diaz-Espejo A. et al.: Mesophyll conductance to CO2: current knowledge and future prospects. -Plant Cell Environ. 31: 602-621, 2008. Go to original source...
  13. Flexas J., Scoffoni C., Gago J., Sack L.: Leaf mesophyll conductance and leaf hydraulic conductance: an introduction to their measurement and coordination. - J. Exp. Bot. 64: 3965-3981, 2013. Go to original source...
  14. Galmés J., Ribas-Carbó M., Medrano H., Flexas J.: Response of leaf respiration to water stress in Mediterranean species with different growth forms. - J. Arid Environ. 68: 206-222, 2007. Go to original source...
  15. Gifford R.M.: Plant respiration in productivity models: concep-tualization, representation and issues for global terrestrial carbon-cycle research. - Funct. Plant Biol. 30: 171-186, 2003. Go to original source...
  16. Gong X.Y., Tcherkez G., Wenig J. et al.: Determination of leaf respiration in the light: comparison between an isotopic disequilibrium method and the Laisk method. - New Phytol. 218: 1371-1382, 2018. Go to original source...
  17. Gonzàlez-Meler M.A., Blanc-Betes E., Flower C.E. et al.: Plastic and adaptive responses of plant respiration to changes in atmospheric CO2 concentration. - Physiol. Plantarum 137: 473-484, 2009. Go to original source...
  18. Harley P.C., Loreto F., Di Marco G., Sharkey T.D.: Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. - Plant Physiol. 98: 1429-1436, 1992. Go to original source...
  19. Horrell B.A., Jameson P.E., Bannister P.: Responses of ivy (Hedera helix L.) to combinations of gibberellic acid, paclobutrazol and abscisic acid. - Plant Growth Regul. 9: 107-117, 1990. Go to original source...
  20. Hu Y.J., Shi L.X., Sun W., Guo J.X.: Effects of abscisic acid and brassinolide on photosynthetic characteristics of Leymus chinensis from Songnen Plain grassland in Northeast China. - Bot. Stud. 54: 42, 2013. Go to original source...
  21. Huang Y.H., Liang P., Shi A.L.: [Effects of plant growth retardants on Hibiscus rosa-sinensis L. and Carmona microphylla (Lam.) G. Don.] - J. Southern Agric. 42: 284-287, 2011. [In Chinese]
  22. Huang Y.H., Tang R.S., Ye X.Q. et al.: [Effects of ABA on the germination of white-grain wheat seeds and growth of its seedlings.] - J. Triticeae Crops 29: 503-507, 2009. [In Chinese]
  23. Islam M.R., Prodhan A.K.M.A., Islam M.O. et al.: Effect of plant growth regulator (GABA) on morphological characters and yield of black gram (Vigna mungo L.). - J. Agric. Res. 48: 73-80, 2010.
  24. Jaleel C.A., Manivannan P., Sankar B. et al.: Paclobutrazol enhances photosynthesis and ajmalicine production in Catha-ranthus roseus. - Process Biochem. 42: 1566-1570, 2007. Go to original source...
  25. Laisk A.K.: [Kinetics of photosynthesis and photorespiration of C3 plants.] Nauka, Moscow 1977. [In Russian]
  26. Niinemets Ü., Cescatti A., Rodeghiero M., Tosens T.: Leaf internal diffusion conductance limits photosynthesis more strongly in older leaves of Mediterranean evergreen broad-leaved species. - Plant Cell Environ. 28: 1552-1566, 2005. Go to original source...
  27. Ort D.R., Merchant S.S., Alric J. et al.: Redesigning photo-synthesis to sustainably meet global food and bioenergy demand. - P. Natl. Acad. Sci. USA 112: 8529-8536, 2015. Go to original source...
  28. Pandey M., Srivastava G.C.: Effect of BA and ABA treatment on CN-sensitive and CN-resistant respiration during leaf ontogeny in sunflower. - Indian J. Plant Physi. 2: 297-299, 1997.
  29. Papafotiou P., Chronopoulos J.: Comparative effects of four plant growth retardants on growth of Epidendrum radicans. - J. Hortic. Sci. Biotech. 79: 303-307, 2015. Go to original source...
  30. Poorter L., Bongers F.: Leaf traits are good predictors of plant performance across 53 rain forest species. - Ecology 87: 1733-1743, 2006. Go to original source...
  31. Popova L.P., Tsonev T.D., Vaklinova S.G.: A possible role for abscisic acid in regulation of photosynthetic and photorespiratory carbon metabolism in barley leaves. - Plant Physiol. 83: 820-824, 1987. Go to original source...
  32. ©afránková I., Hejnák V., Stuchlíková K., Česká J.: The effect of abscisic acid on rate of photosynthesis and transpiration in six barley genotypes under water stress. - Cereal Res. Commun. 35: 1013-1016, 2007. Go to original source...
  33. Sago R.E.: Acclimation of photosynthesis to increasing atmospheric CO2: The gas exchange perspective. - Photosynth. Res. 39: 351-368, 1994. Go to original source...
  34. Sharkey T.D.: Photosynthesis in intact leaves of C3 plants: physics, physiology and rate limitations. - Bot. Rev. 51: 53-105, 1985. Go to original source...
  35. Sharma D.K., Dubey A.K., Srivastav M. et al.: Effect of putrescine and paclobutrazol on growth, physiochemical parameters, and nutrient acquisition of salt-sensitive citrus rootstock Karna khatta (Citrus karna Raf.) under NaCl stress. - J. Plant Growth Regul. 30: 301-311, 2011. Go to original source...
  36. Sperlich D., Chang C.T., Peñuelas J. et al.: Foliar photochemical processes and carbon metabolism under favourable and adverse winter conditions in a Mediterranean mixed forest, Catalonia (Spain). - Biogeosciences 11: 5657-5674, 2014. Go to original source...
  37. Tari I.: Abaxial and adaxial stomatal density, stomatal conduc-tances and water status of bean primary leaves as affected by paclobutrazol. - Biol. Plantarum 47: 215-220, 2003. Go to original source...
  38. Terashima I., Hanba Y.T., Tholen D., Niinemets Ü.: Leaf functional anatomy in relation to photosynthesis. - Plant Physiol. 155: 108-116, 2011. Go to original source...
  39. Terashima I., Ono K.: Effects of HgCl2 on CO2 dependence of leaf photosynthesis: Evidence indicating involvement of aquaporins in CO2 diffusion across the plasma membrane. - Plant Cell Physiol. 43: 70-78, 2002. Go to original source...
  40. Tholen D., Zhu X.G.: The mechanistic basis of internal conductance: A theoretical analysis of mesophyll cell photo-synthesis and CO2 diffusion. - Plant Physiol. 156: 90-105, 2011. Go to original source...
  41. Valentini R., Epron D., De Angelis P. et al.: In situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Turkey oak (Quercus cerris L.) leaves: diurnal cycles under different levels of water supply. - Plant Cell Environ. 18: 631-640, 1995. Go to original source...
  42. Van den Boogaard R.: Variation among wheat cultivars in efficiency of water use and growth parameters. PhD thesis. Utrecht University, The Netherlands 1994.
  43. Waqas M., Yaning C., Iqbal H. et al.: Paclobutrazol improves salt tolerance in quinoa: Beyond the stomatal and biochemical interventions. - J. Agron. Crop Sci. 203: 315-322, 2017. Go to original source...
  44. Xia X., Tang Y., Wei M., Zhao D.: Effect of paclobutrazol application on plant photosynthetic performance and leaf greenness of herbaceous peony. - Horticulturae 4: 5, 2018. Go to original source...
  45. Yin X., Harbinson J., Struik P.C.: Mathematical review of literature to assess alternative electron transports and interphotosystem excitation partitioning of steady-state C3 photosynthesis under limiting light. - Plant Cell Environ. 29: 1771-1782, 2006. Go to original source...
  46. Yin X., Struik P.C., Romero P. et al.: Using combined measure-ments of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C3 photosynthesis model: a critical appraisal and a new integrated approach applied to leaves in a wheat (Triticum aestivum) canopy. - Plant Cell Environ. 32: 448-464, 2009. Go to original source...
  47. Zelitch I.: Selection and characterization of tobacco plants with novel oxygen-resistant photosynthesis. - Plant Physiol. 90: 1457-1464, 1989. Go to original source...
  48. Zeng G.W., Zhu C., Huang T. et al.: [Effects of paclobutrazol on photosynthetic structure and rate of soybean.] - J. Zhejiang Univ. 3: 7-11, 1992. [In Chinese]
  49. Zhong C., Gao Z., Li W. et al.: [Study on characteristic of chlorophyll a fluorescence kinetics of overwintering Euonymus japonicus in Beijing]. - J. Agric. Univ. Hebei 31: 9-14, 2008. [In Chinese]
  50. Zhou B.Y., Guo Z.F., Lin L.: Effects of abscisic acid application on photosynthesis and photochemistry of Stylosanthes guianensis under chilling stress. - Plant Growth Regul. 48: 195-199, 2006.