Photosynthetica 2020, 58(4):1040-1052 | DOI: 10.32615/ps.2020.052

Drought tolerance of faba bean (Vicia faba L.) can be improved by specific LED light wavelengths

L. HUANG, Y. XIAO, J. RAN, L. WEI, Z. LI, Y. LI, X. ZHANG, L. LIAO, D. WANG, X. ZHAO, Q. XIAO, Y. GUO
College of Agronomy and Biotechnology, Southwest University, 400716 Chongqing, China

A light wavelength affects both plant photomorphogenesis and stress resistance. In this study, the phenotypic plasticity (growth parameters and cuticular waxes) and physiological adaptation (photosynthetic properties and antioxidant enzyme activities) of faba bean subjected to specific LED lights, red, yellow, blue, violet, and white, were analyzed under two water conditions (normal and drought). The plants grown under red and yellow lights possessed the smaller leaf size and the higher leaf relative water content. The blue light had a positive effect on improving stomatal conductance and net photosynthetic rate of faba bean leaves, and the plants grown under the blue light also had higher antioxidant enzyme activities. The blue light also changed the dominant wax component to alkanes and significantly decreased a total wax load under the drought stress, and thus minimized the cuticle transpiration (water loss). The decreased wax deposition and the increase of C31-C33 alkanes abundance in plants grown under the yellow light also resulted in a lower leaf water loss under the drought stress. The red light increased but the violet light did not change the cuticle water loss. These results suggest that plant drought tolerance could be improved by supplementing the blue and yellow lights.

Additional key words: cuticle resistance; morphological adaptation; physiological responses; wax chemical profile.

Received: April 18, 2020; Revised: June 7, 2020; Accepted: July 7, 2020; Prepublished online: August 4, 2020; Published: September 4, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
HUANG, L., XIAO, Y., RAN, J., WEI, L., LI, Z., LI, Y., ... GUO, Y. (2020). Drought tolerance of faba bean (Vicia faba L.) can be improved by specific LED light wavelengths. Photosynthetica58(4), 1040-1052. doi: 10.32615/ps.2020.052
Download citation

Supplementary files

Download fileHuang_2551_supplement.docx

File size: 1.16 MB

References

  1. Aebi H.: Catalase in vitro. - Method. Enzymol. 105: 121-126, 1984. Go to original source...
  2. Ahmadi T., Shabani L., Sabzalian M.R.: Improvement in drought tolerance of lemon balm, Melissa officinalis L. under the pre-treatment of LED lighting. - Plant Physiol. Bioch. 139: 548-557, 2019. Go to original source...
  3. Bi H., Kovalchuk N., Langridge P. et al.: The impact of drought on wheat leaf cuticle properties. - BMC Plant Biol. 17: 85, 2017. Go to original source...
  4. Bourget C.M.: An introduction to light-emitting diodes. - HortScience 43: 1944-1946, 2008. Go to original source...
  5. Bradford M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. - Anal. Biochem. 72: 248-254, 1976. Go to original source...
  6. Bringe K., Schumacher C.F., Schmitz-Eiberger M. et al.: Ontogenetic variation in chemical and physical characteristics of adaxial apple leaf surfaces. - Phytochemistry 67: 161-170, 2006. Go to original source...
  7. Buschhaus C., Jetter R.: Composition and physiological function of the wax layers coating Arabidopsis leaves: β-amyrin negatively affects the intracuticular water barrier. - Plant Physiol. 160: 1120-1129, 2012. Go to original source...
  8. Caverzan A., Bonifacio A., Carvalho F.E.L. et al.: The knockdown of chloroplastic ascorbate peroxidases reveals its regulatory role in the photosynthesis and protection under photo-oxidative stress in rice. - Plant Sci. 214: 74-87, 2014. Go to original source...
  9. Chance B., Maehly A.C.: Assay of catalases and peroxidases. - Method. Enzymol. 136: 764-775, 1955. Go to original source...
  10. Choi H.G., Moon B.Y., Kang N.J.: Effects of LED light on the production of strawberry during cultivation in a plastic greenhouse and in a growth chamber. - Sci. Hortic.-Amsterdam 189: 22-31, 2015. Go to original source...
  11. Danna C.H., Bartoli C.G., Sacco F. et al.: Thylakoid-bound ascorbate peroxidase mutant exhibits impaired electron transport and photosynthetic activity. - Plant Physiol. 132: 2116-2125, 2003. Go to original source...
  12. de Wit M., Galvão V.C., Fankhauser C.: Light-mediated hormonal regulation of plant growth and development. - Annu. Rev. Plant Biol. 67: 513-537, 2016. Go to original source...
  13. Dhindsa R.S., Plumb-Dhindsa P., Thorpe T.A.: Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. - J. Exp. Bot. 32: 93-101, 1981. Go to original source...
  14. Farooq M., Wahid A., Kobayashi N. et al.: Plant drought stress: effects, mechanisms and management. - Agron. Sustain. Dev. 29: 185-212, 2009. Go to original source...
  15. Giannopolitis C.N., Ries S.K.: Superoxide dismutases: I. Occurrence in higher plants. - Plant Physiol. 59: 309-314, 1977. Go to original source...
  16. Giese B.N:. Effects of light and temperature on the composition of epicuticular wax of barley leaves. - Phytochemistry 14: 921-929, 1975. Go to original source...
  17. Go Y.S., Kim H., Kim H.J., Suh M.C.: Arabidopsis cuticular wax biosynthesis is negatively regulated by the DEWAX gene encoding an AP2/ERF-type transcription factor. - Plant Cell 26: 1666-1680, 2014. Go to original source...
  18. Guo Y., Busta L., Jetter R.: Cuticular wax coverage and composition differ among organs of Taraxacum officinale. - Plant Physiol. Bioch. 115: 372-379, 2017. Go to original source...
  19. Guo Y., Jetter R.: Comparative analyses of cuticular waxes on various organs of potato (Solanum tuberosum L.). - J. Agr. Food Chem. 65: 3926-3933, 2017. Go to original source...
  20. Halliwell B., Foyer C.: Properties and physiological function of a glutathione reductase purified from spinach leaves by affinity chromatography. - Planta 139: 9-17, 1978. Go to original source...
  21. Hatterman-Valenti H., Pitty A., Owen M.: Environmental effects on velvetleaf (Abutilon theophrasti) epicuticular wax deposition and herbicide absorption. - Weed Sci. 59: 14-21, 2011. Go to original source...
  22. Hogewoning S.W., Trouwborst G., Maljaars H. et al.: Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. - J. Exp. Bot. 61: 3107-3117, 2010. Go to original source...
  23. Hooker T.S., Millar A.A., Kunst L.: Significance of the expression of the CER6 condensing enzyme for cuticular wax production in Arabidopsis. - Plant Physiol. 129: 1568-1580, 2002. Go to original source...
  24. Hussain M., Malik M.A., Farooq M. et al.: Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower. - J. Agron. Crop Sci. 194: 193-199, 2008. Go to original source...
  25. Jardim-Messeder D., Caverzan A., Rauber R. et al.: Thylakoidal APX modulates hydrogen peroxide content and stomatal closure in rice (Oryza sativa L.). - Environ. Exp. Bot. 150: 46-56, 2018. Go to original source...
  26. Jetter R., Kunst L., Samuels A.L.: Composition of plant cuticular waxes. - In: Riederer M., Müller C. (ed.): Biology of the Plant Cuticle. Pp. 145-181. Blackwell Publishing, Oxford 2008. Go to original source...
  27. Jing X., Wang H., Gong B. et al.: Secondary and sucrose metabolism regulated by different light quality combination involved in melon tolerance to powdery mildew. - Plant Physiol. Bioch. 124: 77-87, 2018. Go to original source...
  28. Kerstiens G.: Cuticular water permeability and its physiological significance. - J. Exp. Bot. 47: 1813-1832, 1996. Go to original source...
  29. Kim K., Kook H.S., Jang Y.J. et al.: The effect of blue-light-emitting diodes on antioxidant properties and resistance to Botrytis cinerea in tomato. - J. Plant Pathol. Microb. 4: 203, 2013.
  30. Kumar A., Panda D., Biswal M. et al.: Low light stress influences resistant starch content and glycemic index of rice (O. sativa L.). - Starch 71: 1800216, 2019. Go to original source...
  31. Kurepin L.V., Walton L.J., Reid D.M.: Interaction of red to far red light ratio and ethylene in regulating stem elongation of Helianthus annuus. - Plant Growth Regul. 51: 53-61, 2007. Go to original source...
  32. Landi M., Zivcak M., Sytar O. et al.: Plasticity of photosynthetic processes and the accumulation of secondary metabolites in plants in response to monochromatic light environments: A review. - BBA-Bioenergetics 1861: 148131, 2020. Go to original source...
  33. Lee S.B., Kim H., Kim R.J., Suh M.C.: Overexpression of Arabidopsis MYB96 confers drought resistance in Camelina sativa via cuticular wax accumulation. - Plant Cell Rep. 33: 1535-1546, 2014. Go to original source...
  34. Lei Y., Yin C., Li C.: Differences in some morphological, physiological, and biochemical responses to drought stress in two contrasting populations of Populus przewalskii. - Physiol. Plantarum 127: 182-191, 2006. Go to original source...
  35. Le Provost G., Domergue F., Lalanne C. et al.: Soil water stress affects both cuticular wax content and cuticle-related gene expression in young saplings of maritime pine (Pinus pinaster Ait). - BMC Plant Biol. 13: 95, 2013. Go to original source...
  36. Li H., Guo Y., Cui Q. et al.: Alkanes (C29 and C31)-mediated intracuticular wax accumulation contributes to melatonin- and ABA-induced drought tolerance in watermelon. - J. Plant Growth Regul., 2020. doi.org/10.1007/s00344-020-10099-z Go to original source...
  37. Li L., Du Y., He C. et al.: Maize glossy6 is involved in cuticular wax deposition and drought tolerance. - J. Exp. Bot. 70: 3089-3099, 2019. Go to original source...
  38. Li R.J., Li L.M., Liu X.L. et al.: Diurnal regulation of plant epidermal wax synthesis through antagonistic roles of the transcription factors SPL9 and DEWAX. - Plant Cell 31: 2711-2733, 2019. Go to original source...
  39. Li Z., Li J., Du C. et al.: [Simultaneous measurement of five antioxidant enzyme activities using a single extraction system.] - J. Yunnan Normal Univ. 22: 44-48, 2002. [In Chinese] doi:10.3969/j.issn.1007-9793.2002.06.011 Go to original source...
  40. Liu H., Fu Y., Hu D. et al.: Effect of green, yellow and purple radiation on biomass, photosynthesis, morphology and soluble sugar content of leafy lettuce via spectral wavebands "knock out". - Sci. Hortic.-Amsterdam 236: 10-17, 2018. Go to original source...
  41. Liu X., Feakins S.J., Dong X. et al.: Experimental study of leaf wax n-alkane response in winter wheat cultivars to drought conditions. - Org. Geochem. 113: 210-223, 2017. Go to original source...
  42. Ma J., Pang B., Wang X. et al.: [The identification and appraisal use of broad bean seed quality in Jiangsu province.] - J. Nanjing Agric. Technol. College 18: 13-16, 2002. [In Chinese] doi:10.3969/j.issn.1672-755X.2002.02.003 Go to original source...
  43. Macey M.: The effect of light on wax synthesis in leaves of Brassica oleracea. - Phytochemistry 9: 757-761, 1970. Go to original source...
  44. Manivannan P., Jaleel C.A., Somasundaram R., Panneerselvam R.: Osmoregulation and antioxidant metabolism in drought-stressed Helianthus annuus under triadimefon drenching. - C. R. Biol. 331: 418-425, 2008. Go to original source...
  45. Medrano H., Escalona J.M., Bota J. et al.: Regulation of photosynthesis of C3 plants in response to progressive drought: Stomatal conductance as reference parameter. - Ann. Bot.-London 89: 895-905, 2002. Go to original source...
  46. Ménard C., Dorais M., Hovi T., Gosselin A.: Developmental and physiological responses of tomato and cucumber to additional blue light. - Acta Hortic. 711: 291-296, 2005. Go to original source...
  47. Miller G., Suzuki N., Ciftci-Yilmaz S., Mittler R.: Reactive oxygen species homeostasis and signalling during drought and salinity stresses. - Plant Cell Environ. 33: 453-467, 2010. Go to original source...
  48. Morrow R.C.: LED lighting in horticulture. - HortScience 43: 1947-1950, 2008. Go to original source...
  49. Olle M., Vir¹ile A.: The effects of light-emitting diode lighting on greenhouse plant growth and quality. - Agr. Food Sci. Finland 22: 223-234, 2013. Go to original source...
  50. Ouedraogo M., Hubac C.: Effect of far red light on drought resistance of cotton. - Plant Cell Physiol. 23: 1297-1303, 1982. Go to original source...
  51. Ozkur O., Ozdemir F., Bor M., Turkan I.: Physiochemical and antioxidant responses of the perennial xerophyte Capparis ovata Desf. to drought. - Environ. Exp. Bot. 66: 487-492, 2009. Go to original source...
  52. Panikashvili D., Savaldi-Goldstein S., Mandel T. et al.: The Arabidopsis DESPERADO/AtWBC11 transporter is required for cutin and wax secretion. - Plant Physiol. 145: 1345-1360, 2007. Go to original source...
  53. Parsons E.P., Popopvsky S., Lohrey G.T. et al.: Fruit cuticle lipid composition and fruit post-harvest water loss in an advanced backcross generation of pepper (Capsicum sp.). - Physiol. Plantarum 146: 15-25, 2012. Go to original source...
  54. Patwari P., Salewski V., Gutbrod K. et al.: Surface wax esters contribute to drought tolerance in Arabidopsis. - Plant J. 98: 727-744, 2019. Go to original source...
  55. Randhir R., Shetty K.: Light-mediated fava bean (Vicia faba) response to phytochemical and protein elicitors and consequences on nutraceutical enhancement and seed vigour. - Process Biochem. 38: 945-952, 2003. Go to original source...
  56. Raven J.A., Edwards D.: Physiological evolution of lower embryophytes: adaptations to the terrestrial environment. - In: Hemsley A.R., Poole I. (ed.): The Evolution of Plant Physiology. Pp. 17-41. Elsevier Academic Press, London 2004. Go to original source...
  57. Reid D., Tukey J.: Light intensity and temperature effects on epicuticular wax morphology and internal cuticle ultrastructure of carnations and Brussels sprouts leaf cuticles. -J. Am. Soc. Hortic. Sci. 107: 417-420, 1982. Go to original source...
  58. Riederer M., Schreiber L.: Protecting against water loss: analysis of the barrier properties of plant cuticles. - J. Exp. Bot. 52: 2023-2032, 2001. Go to original source...
  59. Ristic Z., Jenks M.A.: Leaf cuticle and water loss in maize lines differing in dehydration avoidance. - J. Plant Physiol. 159: 645-651, 2002. Go to original source...
  60. Roberts M.R., Paul N.D.: Seduced by the dark side: integrating molecular and ecological perspectives on the influence of light on plant defence against pests and pathogens. - New Phytol. 170: 677-699, 2006. Go to original source...
  61. Samuolienė G., Brazaitytė A., Duchovskis P. et al.: Cultivation of vegetable transplants using solid-state lamps for the short-wavelength supplementary lighting in greenhouses. - Acta Hortic. 952: 885-892, 2012b. Go to original source...
  62. Samuolienė G., Sirtautas R., Brazaitytė A. et al.: Supplementary red-LED lighting and the changes in phytochemical content of two baby leaf lettuce varieties during three seasons. - J. Food Agric. Environ. 10: 701-706, 2012a.
  63. Scandalios J.: Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. - Braz. J. Med. Biol. Res. 38: 995-1014, 2005. Go to original source...
  64. Scheibe R., Beck E.: Drought, desiccation, and oxidative stress. -In: Lüttge U., Beck E., Bartels D. (ed.): Plant Desiccation Tolerance. Pp. 209-231. Springer, Berlin-Heidelberg 2011. Go to original source...
  65. Schiedek D., Sundelin B., Readman J.W., Macdonald R.W.: Interactions between climate change and contaminants. - Mar. Pollut. Bull. 54: 1845-1856, 2007. Go to original source...
  66. Shepherd T., Robertson G., Griffiths D. et al.: Effects of environment on the composition of epicuticular wax from kale and swede. - Phytochemistry 40: 407-417, 1995. Go to original source...
  67. Shepherd T., Wynne Griffiths D.: The effects of stress on plant cuticular waxes. - New Phytol. 171: 469-499, 2006. Go to original source...
  68. Siddiqui M.H., Al-Khaishany M.Y., Al-Qutami M.A. et al.: Response of different genotypes of faba bean plant to drought stress. - Int. J. Mol. Sci. 16: 10214-10227, 2015. Go to original source...
  69. Sinclair T.R., Muchow R.C.: System analysis of plant traits to increase grain yield on limited water supplies. - Agron. J. 93: 263-270, 2001. Go to original source...
  70. Singh L.P., Gill S.S., Tuteja N.: Unraveling the role of fungal symbionts in plant abiotic stress tolerance. - Plant Signal. Behav. 6: 175-191, 2011. Go to original source...
  71. Singh S., Kumari R., Agrawal M., Agrawal S.B.: Differential response of radish plants to supplemental ultraviolet-B radiation under varying NPK levels: chlorophyll fluorescence, gas exchange and antioxidants. - Physiol. Plantarum 145: 474-484, 2012. Go to original source...
  72. Smart R.E., Bingham G.E.: Rapid estimates of relative water content. - Plant Physiol. 53: 258-260, 1974. Go to original source...
  73. Smith H.: Sensing the light environment: the functions of the phytochrome family. - In: Kendrick R.E., Knronenberg G.H.M. (ed.): Photomorphogenesis in Plants. Pp. 377-416. Springer, Dordrecht 1994. Go to original source...
  74. Smith H.: Phytochromes and light signal perception by plants - an emerging synthesis. - Nature 407: 585-591, 2000. Go to original source...
  75. Sytar O., Zivcak M., Neugart S. et al.: Precultivation of young seedlings under different color shades modifies the accumulation of phenolic compounds in Cichorium leaves in later growth phases. - Environ. Exp. Bot. 165: 30-38, 2019. Go to original source...
  76. Usami T., Mochizuki H., Kondo M. et al.: Cryptochromes and phytochromes synergistically regulate Arabidopsis root greening under blue light. - Plant Cell Physiol. 45: 1798-1808, 2004. Go to original source...
  77. Wang H., Gu M., Cui J. et al.: Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. - J Photoch. Photobio. B 96: 30-37, 2009. Go to original source...
  78. Wang H., Jiang Y.P., Yu H.J. et al.: Light quality affects incidence of powdery mildew, expression of defence-related genes and associated metabolism in cucumber plants. - Eur. J. Plant Pathol. 127: 125-135, 2010. Go to original source...
  79. Williamson C.E., Zepp R.G., Lucas R.M. et al.: Solar ultraviolet radiation in a changing climate. - Nat. Clim. Change 4: 434-441, 2014. Go to original source...
  80. Xia M.: [Effect of environmental factors on the formation and abscission of flowers and pods.] - J. Sichuan Agric. Univ. 019: 348-351, 2001. [In Chinese] doi:10.16036/j.issn.1000-2650.2001.04.009 Go to original source...
  81. Yamane K., Hayakawa K., Kawasaki M. et al.: Bundle sheath chloroplasts of rice are more sensitive to drought stress than mesophyll chloroplasts. - J. Plant Physiol. 160: 1319-1327, 2003. Go to original source...
  82. Yeats T.H., Rose J.K.C.: The formation and function of plant cuticles. - Plant Physiol. 163: 5-20, 2013. Go to original source...
  83. Yuan G.F., Jia C.G., Li Z. et al.: Effect of brassinosteroids on drought resistance and abscisic acid concentration in tomato under water stress. - Sci. Hortic.-Amsterdam 126: 103-108, 2010. Go to original source...
  84. Zhang T., Shi Y., Piao F., Sun Z.: Effects of different LED sources on the growth and nitrogen metabolism of lettuce. - Plant Cell Tiss. Org. 134: 231-240, 2018. Go to original source...
  85. Zhang Z., Wei W., Zhu H. et al.: W3 is a new wax locus that is essential for biosynthesis of β-diketone, development of glaucousness, and reduction of cuticle permeability in common wheat. - PLoS ONE 10: e0140524, 2015. Go to original source...