Photosynthetica 2020, 58(5):1098-1106 | DOI: 10.32615/ps.2020.063

Ginkgo biloba and Helianthus annuus show different strategies to adjust photosynthesis, leaf water relations, and cell wall composition under water deficit stress

M. ROIG-OLIVER, M. NADAL, J. BOTA, J. FLEXAS
Research Group on Plant Biology under Mediterranean Conditions, Department of Biology, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, 07122 Palma, Illes Balears, Spain

Cell wall thickness (Tcw) determines photosynthesis and leaf elasticity. However, only a few studies in angiosperms addressed cell wall composition implication in regulating photosynthesis and leaf water relations through mesophyll conductance (gm) and bulk modulus of elasticity (ε) adjustments, respectively. Thus, we compared the phylogenetically distant Ginkgo biloba L. and Helianthus annuus L. under control and water deprivation to study the relationship between changes in cell wall composition (cellulose, hemicelluloses, and pectins) with gm and ε. Although no changes were found for Tcw, both species differently modified cell wall composition, resulting in different physiological consequences. H. annuus increased cellulose, hemicelluloses, and pectins in a similar proportion, maintaining ε. Additionally, it reduced photosynthesis due to stomatal closure. G. biloba did not decrease photosynthesis and largely increased hemicelluloses, leaf mass area, and leaf density, enhancing ε. Nonetheless, no association between cell wall composition and gm was found in either of the two species.

Additional key words: angiosperm; gymnosperm; leaf structure.

Received: June 29, 2020; Revised: August 24, 2020; Accepted: August 27, 2020; Prepublished online: September 24, 2020; Published: December 8, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
ROIG-OLIVER, M., NADAL, M., & BOTA FLEXAS, J.J. (2020). Ginkgo biloba and Helianthus annuus show different strategies to adjust photosynthesis, leaf water relations, and cell wall composition under water deficit stress. Photosynthetica58(5), 1098-1106. doi: 10.32615/ps.2020.063
Download citation

References

  1. Abrams M.D.: Adaptations and responses to drought in Quercus species of North America. - Tree Physiol. 7: 227-238, 1990. Go to original source...
  2. Álvarez-Arenas T.E.G., Sancho-Knapik D., Peguero-Pina J.J. et al.: Non-contact ultrasonic resonant spectroscopy resolves the elastic properties of layered plant tissues. - Appl. Phys. Lett. 113: 253704, 2018. Go to original source...
  3. Baldwin L., Domon J.M., Klimek J.F. et al.: Structural alteration of cell wall pectins accompanies pea development in response to cold. - Phytochemistry 104: 37-47, 2014. Go to original source...
  4. Bartels D., Classen B.: Structural investigations on arabino-galactan-proteins from a lycophyte and different monilophytes (ferns) in the evolutionary context. - Carbohydr. Polym. 172: 342-351, 2017. Go to original source...
  5. Bellasio C., Beerling D.J., Griffiths H.: An Excel tool for deriving key photosynthetic parameters from combined gas exchange and chlorophyll fluorescence: theory and practice. - Plant Cell Environ. 39: 1180-1197, 2016. Go to original source...
  6. Bernacchi C.J., Portis A.R., Nakano H. et al.: Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. - Plant Physiol. 130: 1992-1998, 2002. Go to original source...
  7. Blumenkrantz N., Asboe-Hansen G.: New method for quantitative determination of uronic acids. - Anal. Biochem. 54: 484-489, 1973. Go to original source...
  8. Bowman W.D., Roberts S.W.: Seasonal changes in tissue elasticity in chaparral shrubs. - Physiol. Plantarum 65: 233-236, 1985. Go to original source...
  9. Carpita N.C., Gibeaut D.M.: Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. - Plant J. 3: 1-30, 1993. Go to original source...
  10. Carriquí M., Cabrera H.M., Conesa M.À. et al.: Diffusional limitations explain the lower photosynthetic capacity of ferns as compared with angiosperms in a common garden study. - Plant Cell Environ. 38: 448-460, 2015. Go to original source...
  11. Carriquí M., Nadal M., Clemente-Moreno M.J. et al.: Cell wall composition strongly influences mesophyll conductance in gymnosperms. - Plant J. 103: 1372-1385, 2020. Go to original source...
  12. Carriquí M., Roig-Oliver M., Brodribb T.J. et al.: Anatomical constraints to nonstomatal diffusion conductance and photosynthesis in lycophytes and bryophytes. - New Phytol. 222: 1256-1270, 2019. Go to original source...
  13. Carvalho C.P., Hayashi A.H., Braga M.R., Nievola C.C.: Biochemical and anatomical responses related to the in vitro survival of the tropical bromeliad Nidularium minutum to low temperatures. - Plant Physiol. Bioch. 71: 144-154, 2013. Go to original source...
  14. Chartzoulakis K., Patakas A., Kofidis G. et al.: Water stress affects leaf anatomy, gas exchange, water relations and growth of two avocado cultivars. - Sci. Hortic.-Amsterdam 95: 39-50, 2002. Go to original source...
  15. Chaves M.M., Flexas J., Pinheiro C.: Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. - Ann. Bot.-London 103: 551-560, 2008. Go to original source...
  16. Chaves M.M., Pereira J.S., Maroco J. et al.: How plants cope with water stress in the field. Photosynthesis and Growth. - Ann. Bot.-London 89: 907-916, 2002. Go to original source...
  17. Clemente-Moreno M.J., Gago J., Díaz-Vivancos P. et al.: The apoplastic antioxidant system and altered cell wall dynamics influence mesophyll conductance and the rate of photosynthesis. - Plant J. 99: 1031-1046, 2019. Go to original source...
  18. Cosgrove D.J.: Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargement. -Plant Cell 9: 1031-1041, 1997. Go to original source...
  19. Cosgrove D.J.: Growth of the plant cell wall. - Nat. Rev. Mol. Cell Biol. 6: 850-861, 2005. Go to original source...
  20. Dubois M., Gilles K.A., Hamilton J.K. et al.: Colorimetric method for determination of sugars and related substances. - Anal. Chem. 28: 350-356, 1956. Go to original source...
  21. Ellsworth P.V., Ellsworth P.Z., Koteyeva N.K., Cousins A.B.: Cell wall properties in Oryza sativa influence mesophyll CO2 conductance. - New Phytol. 219: 66-76, 2018. Go to original source...
  22. Evans J.R., Kaldenhoff R., Genty B., Terashima I.: Resistance along the CO2 diffusion pathway inside leaves. - J. Exp. Bot. 60: 2235-2248, 2009. Go to original source...
  23. Flexas J., Barbour M.M., Brendel O. et al.: Mesophyll conductance to CO2: an unappreciated central player in photosynthesis. - Plant Sci. 193-194: 70-84, 2012. Go to original source...
  24. Flexas J., Bota J., Loreto F. et al.: Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. - Plant Biol. 6: 269-279, 2004. Go to original source...
  25. Flexas J., Díaz-Espejo A., Berry J.A. et al.: Analysis of leakage in IRGA's leaf chambers of open gas exchange systems: quantification and its effects in photosynthesis parameteriza-tion. - J. Exp. Bot. 58: 1533-1543, 2007. Go to original source...
  26. Flexas J., Niinemets Ü., Gallé A. et al.: Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency. - Photosynth. Res. 117: 45-59, 2013. Go to original source...
  27. Galmés J., Medrano H., Flexas J.: Acclimation of Rubisco specificity factor to drought in tobacco: discrepancies between in vitro and in vivo estimations. - J. Exp. Bot. 57: 3659-3667, 2006. Go to original source...
  28. Hafez Y., Attia K., Alamery S. et al.: Beneficial effects of biochar and chitosan on antioxidative capacity, osmolytes accumulation, and anatomical characters of water-stressed barley plants. - Agronomy 10: 630, 2020. Go to original source...
  29. Houston K., Tucker M.R., Chowdhury J. et al.: The plant cell wall: a complex and dynamic structure as revealed by the responses of genes under stress conditions. - Front. Plant Sci. 7: 984, 2016. Go to original source...
  30. Kloeppel B.D., Kubiske M.E., Abrams M.D.: Seasonal tissue water relations of four successional Pennsylvania barrens species in open and understory environments. - Int. J. Plant Sci. 155: 73-79, 1994. Go to original source...
  31. Le Gall H., Philippe F., Domon J.M. et al.: Cell wall metabolism in response to abiotic stress. - Plants-Basel 4: 112-166, 2015. Go to original source...
  32. Leucci M.R., Lenucci M.S., Piro G., Dalessandro G.: Water stress and cell wall polysaccharides in the apical root zone of wheat cultivars varying in drought tolerance. - J. Plant Physiol. 165: 1168-1180, 2008. Go to original source...
  33. Lo Gullo M.A., Salleo S.: Different strategies of drought resistance in three Mediterranean sclerophyllous trees growing in the same environmental conditions. - New Phytol. 108: 267-276, 1988. Go to original source...
  34. Moore J.P., Farrant J.M., Driouich A.: A role for pectin-associated arabinans in maintaining the flexibility of the plant cell wall during water deficit stress. - Plant Signal. Behav. 3: 102-104, 2008. Go to original source...
  35. Moore J.P., Nguema-Ona E.E., Vicré-Gibouin M. et al.: Arabinose-rich polymers as an evolutionary strategy to plasticize resurrection plant cell walls against desiccation. - Planta 237: 739-754, 2013. Go to original source...
  36. Nadal M., Flexas J.: Variation in photosynthetic characteristics with growth form in a water-limited scenario: Implications for assimilation rated and water use efficiency in crops. - Agr. Water Manage. 216: 457-472, 2019. Go to original source...
  37. Nadal M., Flexas J., Gulías J.: Possible link between photosyn-thesis and leaf modulus of elasticity among vascular plants: A new player in leaf traits relationships? - Ecol. Lett. 21: 1372-1379, 2018. Go to original source...
  38. Niinemets Ü.: Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. - Ecology 82: 453-469, 2001. Go to original source...
  39. Niinemets Ü.: Does the touch of cold make evergreen leaves tougher? - Tree Physiol. 36: 267-272, 2016. Go to original source...
  40. Niinemets Ü., Díaz-Espejo A., Flexas J. et al.: Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field. - J. Exp. Bot. 60: 2249-2270, 2009. Go to original source...
  41. Onoda Y., Wright I.J., Evans J.R. et al.: Physiological and structural tradeoffs underlying the leaf economics spectrum. -New Phytol. 214: 1447-1463, 2017. Go to original source...
  42. Peguero-Pina J.J., Sancho-Knapik D., Gil-Pelegrín E.: Ancient cell structural traits and photosynthesis in today's environ-ment. - J. Exp. Bot. 68: 1389-1392, 2017. Go to original source...
  43. Pérez-Harguindeguy N., Díaz S., Garnier E. et al.: New handbook for standardised measurement of plant functional traits worldwide. - Aust. J. Bot. 61: 167-234, 2013. Go to original source...
  44. Pérez-Martín A., Michelazzo C., Torres-Ruiz J.M. et al.: Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees: correlation with gene expression of carbonic anhydrase and aquaporins. - J. Exp. Bot. 65: 3143-3156, 2014. Go to original source...
  45. Poorter H., Niinemets Ü., Poorter L. et al.: Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. - New Phytol. 182: 565-588, 2009. Go to original source...
  46. Popper Z.A., Fry S.C.: Primary cell wall composition of pteridophytes and spermatophytes. - New Phytol. 164: 165-174, 2004. Go to original source...
  47. Popper Z.A., Michel G., Hervé C. et al: Evolution and diversity of plant cell walls: from algae to flowering plants. - Annu. Rev. Plant Biol. 62: 567-590, 2011. Go to original source...
  48. Roig-Oliver M., Nadal M., Clemente-Moreno M.J. et al.: Cell wall components regulate photosynthesis and leaf water relations of Vitis vinifera cv. Grenache acclimated to contrasting environmental conditions. - J. Plant Physiol. 244: 153084, 2020. Go to original source...
  49. Rui Y., Dinnery J.R.: A wall with integrity: surveillance and maintenance of the plant cell wall under stress. - New Phytol. 225: 1428-1439, 2019. Go to original source...
  50. Sack L., Cowan P.D., Jaikumar N., Holbrook N.M.: The 'hydro-logy' of leaves: coordination of structure and function in temperate woody species. - Plant Cell Environ. 26: 1343-1356, 2003. Go to original source...
  51. Sack L., Pasquet-Kok J.: Leaf pressure-volume curve parameters. PrometheusWiki contributors, 2011. Available at: http://prometheuswiki.org/tiki-pagehistory.php?page=Leaf%20pressure-volume%20curve%20parameters≺eview=16.
  52. Sarkar P., Bosneaga E., Auer M.: Plant cell walls throughout evolution: towards a molecular understanding of their design principles. - J. Exp. Bot. 60: 3615-3635, 2009. Go to original source...
  53. Schiraldi A., Fessas D., Signorelli M.: Water activity in biological systems - A review. - Pol. J. Food Nutr. Sci. 62: 5-13, 2012. Go to original source...
  54. Sharkey T.D.: What gas exchange data can tell us about photosynthesis. - Plant Cell Environ. 39: 1161-1163, 2016. Go to original source...
  55. Solecka D., Zebrowski J., Kacperska A.: Are pectins involved in cold acclimation and de-acclimation of winter oil-seed rape plants? - Ann. Bot.-London 101: 521-530, 2008. Go to original source...
  56. Somerville C., Bauer S., Brinistool G. et al.: Toward a systems approach to understanding plant cell walls. - Science 306: 2206-2211, 2004. Go to original source...
  57. Sørensen I., Domozych D., Williats W.G.T.: How have plant cell walls evolved? - Plant Physiol. 153: 366-372, 2010. Go to original source...
  58. Suwa R., Hakata H., Hara H. et al.: High temperature effects on photosynthate partitioning and sugar metabolism during ear expansion in maize (Zea mays L.) genotypes. - Plant Physiol. Bioch. 48: 124-130, 2010. Go to original source...
  59. Sweet W.J., Morrison J.C., Labavitch J.M., Matthews M.A.: Altered synthesis and composition of cell wall of grape (Vitis vinifera L.) leaves during expansion and growth inhibiting water deficit. - Plant Cell Physiol. 31: 407-414, 1990.
  60. Tenhaken R.: Cell wall remodelling under abiotic stress. - Front. Plant Sci. 5: 771, 2015. Go to original source...
  61. Terashima I., Miyazawa S.I., Hanba Y.T.: Why are sun leaves thicker than shade leaves? Consideration based on analyses of CO2 diffusion in the leaf. - J. Plant Res. 114: 93-105, 2001. Go to original source...
  62. Thain J.F.: Curvature correlation factors in the measurements of cell surface areas in plant tissues. - J. Exp. Bot. 34: 87-94, 1983. Go to original source...
  63. Tomás M., Flexas J., Copolovici L. et al.: Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species: quantitative limitations and scaling up by models. - J. Exp. Bot. 64: 2269-2281, 2013. Go to original source...
  64. Tomás M., Medrano H., Brugnoli E. et al.: Variability of mesophyll conductance in grapevine cultivars under water stress conditions in relation to leaf anatomy and water use efficiency. - Aust. J. Grape Wine Res. 20: 272-280, 2014. Go to original source...
  65. Tosens T., Nishida K., Gago J. et al.: The photosynthetic capacity in 35 ferns and fern allies: mesophyll CO2 diffusion as a key trait. - New Phytol. 209: 1576-1590, 2016. Go to original source...
  66. Tyree M.T., Jarvis P.G.: Water in tissues and cells. - In: Lange O.L., Nobel P.S., Osmond C.B., Ziegler H. (ed.): Physiological Plant Ecology II. Encyclopedia of Plant Physiology (New Series). Pp. 35-77. Springer Verlag, Berlin-Heidelberg 1982. Go to original source...
  67. Veromann-Jürgenson L.L., Tosens T., Laanisto L., Niinemets Ü.: Extremely thick cell walls and low mesophyll conductance: welcome to the world of ancient living! - J. Exp. Bot. 68: 1639-1653, 2017. Go to original source...
  68. Vicré M., Lerouxel O., Farrant J. et al.: Composition and desiccation-induced alterations of the cell wall in the resurrection plant Craterostigma wilmsii. - Physiol. Plantarum 120: 229-239, 2004. Go to original source...
  69. Vicré M., Sherwin H.W., Driouich A. et al.: Cell wall characteristics and structure of hydrated and dry leaves of the resurrection plant Craterostigma wilmsii, a microscopical study. - J. Plant Physiol. 155: 719-726, 1999. Go to original source...
  70. von Caemmerer S., Farquhar G., Berry J. et al.: Biochemical model of C3 photosynthesis. - In: Laisk A., Nedbal L., Govindjee (ed.): Photosynthesis in Silico: Understanding Complexity from Molecules to Ecosystems. Pp. 209-230. Springer, Dordrecht 2009. Go to original source...
  71. Yin X., Struik P.C., Romero P. et al.: Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C3 photosynthesis model: a critical appraisal and a new integrated approach applied to leaves in a wheat (Triticum aestivum) canopy. - Plant Cell Environ. 32: 448-464, 2009. Go to original source...
  72. Yin X., Sun Z., Struik P.C., Gu J.: Evaluating a new method to estimate the rate of leaf respiration in the light by analysis of combined gas exchange and chlorophyll fluorescence measurements. - J. Exp. Bot. 62: 3489-3499, 2011. Go to original source...
  73. Zheng M., Meng Y., Yang C. et al.: Protein expression changes during cotton fibre elongation in response to drought stress and recovery. - Proteomics 14: 1776-1795, 2014. Go to original source...