Photosynthetica 2020, 58(5):1141-1149 | DOI: 10.32615/ps.2020.070

External potassium mediates the response and tolerance to salt stress in peanut at the flowering and needling stages

X.L. SHI, D.Y. ZHOU, P. GUO, H. ZHANG, J.L. DONG, J.Y. REN, C.J. JIANG, C. ZHONG, X.H. ZHAO, H.Q. YU
College of Agronomy, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China

Potassium (K) is an essential macronutrient that plays an important role in abiotic stress tolerance. A pot experiment was carried out to identify the potential role of potassium fertilizer in alleviating salt stress in peanut. The results showed that salt stress significantly decreased plant height, dry mass, photosynthetic pigments, the photosynthetic rate, and stomatal conductance, but increased the Na+/K+ ratio, total sugars, and the leaf salinity hazard coefficient in two peanut varieties. However, the application of potassium significantly alleviated the harmful effect of salt by improving the contents of photosynthetic pigments and enhancing K+/Na+ ratios and osmolytes in both varieties. In general, HY25 showed a superior osmoregulation ability compared to that of HY33 and was less dependent on K+ to maintain osmotic balance. Therefore, HY33 showed a better response to potassium application, and the treatment by 170 kg(K2O) ha-1 was found to be the most effective in alleviating the harmful effects of salt. In conclusion, potassium reduced the toxic effect of salt and significantly enhanced salt tolerance.

Additional key words: chlorophyll fluorescence; photosynthetic characteristics; salt tolerance; selective absorption and transport.

Received: August 7, 2020; Revised: September 16, 2020; Accepted: September 29, 2020; Prepublished online: October 8, 2020; Published: December 8, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
SHI, X.L., ZHOU, D.Y., GUO, P., ZHANG, H., DONG, J.L., REN, J.Y., ... YU, H.Q. (2020). External potassium mediates the response and tolerance to salt stress in peanut at the flowering and needling stages. Photosynthetica58(5), 1141-1149. doi: 10.32615/ps.2020.070
Download citation

References

  1. Abbasi G.H., Akhtar J., Ahmad R. et al.: Potassium application mitigates salt stress differentially at different growth stages in tolerant and sensitive maize hybrids. - Plant Growth Regul. 76: 111-125, 2015. Go to original source...
  2. Abbasi G.H., Akhtar J., Anwar-ul-Haq M. et al.: Exogenous potassium differentially mitigates salt stress in tolerant and sensitive maize hybrids. - Pak. J. Bot. 46: 135-146, 2014.
  3. Ahanger M.A., Aziz U., Alsahli A.A. et al.: Influence of exogenous salicylic acid and nitric oxide on growth, photosynthesis, and ascorbate-glutathione cycle in salt stressed Vigna angularis. - Biomolecules 10: 42, 2020. Go to original source...
  4. Ahmad B.: Interactive effects of silicon and potassium nitrate in improving salt tolerance of wheat. - J. Integr. Agr. 13: 1889-1899, 2014. Go to original source...
  5. Ahmad P., Abd_Allah E.F., Alyemeni M.N. et al.: Exogenous application of calcium to 24-epibrassinosteroid pre-treated tomato seedlings mitigates NaCl toxicity by modifying ascorbate-glutathione cycle and secondary metabolites. - Sci Rep.-UK 8: 13515, 2018. Go to original source...
  6. Ahmad P., Abdel Latef A.A., Hashem A. et al.: Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. - Front. Plant Sci. 7: 347, 2016. Go to original source...
  7. Ahmad P., Ahanger M.A., Alam P. et al.: Silicon (Si) supplementation alleviates NaCl toxicity in mung bean [Vigna radiata (L.) Wilczek] through the modifications of physio-biochemical attributes and key antioxidant enzymes. - J. Plant Growth Regul. 38: 70-82, 2019. Go to original source...
  8. Ahmad P., Hakeem K., Kumar A. et al.: Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.). - Afr. J. Biotechnol. 11: 2694-2703, 2012. Go to original source...
  9. Alam P., Albalawi T.H., Altalayan F.H. et al.: 24-epibrassinolide (EBR) confers tolerance against NaCl stress in soybean plants by up-regulating antioxidant system, ascorbate-glutathione cycle, and glyoxalase system. - Biomolecules 9: 640, 2019. Go to original source...
  10. Bai X., Yang L., Yang Y. et al.: Deciphering the protective role of nitric oxide against salt stress at the physiological and proteomic levels in maize. - J. Proteome Res. 10: 4349-4364, 2011. Go to original source...
  11. Bouzroud S., Gasparini K., Hu G. et al.: Down regulation and loss of Auxin Response Factor 4 function using CRISPR/Cas9 alters plant growth, stomatal function and improves tomato tolerance to salinity and osmotic stress. - Genes-Basel 11: 272, 2020. Go to original source...
  12. Cakmak I.: The role of potassium in alleviating detrimental effects of abiotic stresses in plants. - J. Plant Nutr. Soil Sc. 168: 521-530, 2005. Go to original source...
  13. Carden D.E., Walker D.J., Flowers T.J., Miller A.J.: Single-cell measurements of the contributions of cytosolic Na+ and K+ to salt tolerance. - Plant Physiol. 131: 676-683, 2003. Go to original source...
  14. Chakraborty K., Bhaduri D., Meena H.N., Kalariya K.: External potassium (K+) application improves salinity tolerance by promoting Na+-exclusion, K+-accumulation and osmotic adjustment in contrasting peanut cultivars. - Plant Physiol. Bioch. 103: 143-153, 2016. Go to original source...
  15. Cheng D., Wu G., Zheng Y.: Positive correlation between potassium uptake and salt tolerance in wheat. - Photosynthetica 53: 447-454, 2015. Go to original source...
  16. Çolpan E., Zengin M., Özbahçe A.: The effects of potassium on the yield and fruit quality components of stick tomato. - Hortic. Environ. Biote. 54: 20-28, 2013. Go to original source...
  17. Cui F., Sui N., Duan G. et al.: Identification of metabolites and transcripts involved in salt stress and recovery in peanut. - Front. Plant Sci. 9: 217, 2018. Go to original source...
  18. Dawood M.G., Abdelhamid M.T., Schmidhalter U.: Potassium fertiliser enhances the salt-tolerance of common bean (Phaseolus vulgaris L.). - J. Hortic. Sci. Biotech. 89: 185-192, 2014. Go to original source...
  19. Degl'Innocenti E., Hafsi C., Guidi L., Navari-Izzo F.: The effect of salinity on photosynthetic activity in potassium-deficient barley species. - J. Plant Physiol. 166: 1968-1981, 2009. Go to original source...
  20. Désiré T.V., Liliane M.T., Le Prince N.M. et al.: Mineral nutrient status, some quality and morphological characteristics changes in peanut (Arachis hypogaea L.) cultivars under salt stress. - Afr. J. Environ. Sci. Technol. 4: 471-479, 2010.
  21. Fadl M.S., El-Deen S.A.S.: Effect of N6-benzyl adenine on photosynthetic pigments and total soluble sugar of olive seedling grown under saline conditions. - Egypt. J. Hortic. 6: 169-183, 1980.
  22. Feng Z.T., Deng Y.Q., Fan H. et al.: Effects of NaCl stress on the growth and photosynthetic characteristics of Ulmus pumila L. seedlings in sand culture. - Photosynthetica 52: 313-320, 2014. Go to original source...
  23. Hasegawa P.M., Bressan R.A., Zhu J.K., Bohnert H.J.: Plant cellular and molecular responses to hight salinity. - Annu. Rev. Plant Phys. 51: 463-499, 2000. Go to original source...
  24. Jan A., Hadi F., Midrarullah et al.: Potassium and zinc increase tolerance to salt stress in wheat (Triticum aestivum L.). - Plant Physiol. Bioch. 116: 139-149, 2017. Go to original source...
  25. Kaur H., Sirhindi G., Bhardwaj R. et al.: 28-homobrassinolide regulates antioxidant enzyme activities and gene expression in response to salt- and temperature-induced oxidative stress in Brassica juncea. - Sci Rep.-UK 8: 8735, 2018. Go to original source...
  26. Ke Q., Ye J., Wang B. et al.: Melatonin mitigates salt stress in wheat seedlings by modulating polyamine metabolism. - Front. Plant Sci. 9: 914, 2018. Go to original source...
  27. Lichtenthaler H.K.: Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. - Method. Enzymol. 148: 350-382, 1987. Go to original source...
  28. Liu W.G., Liu J.X., Yao M.L., Ma Q.F.: Salt tolerance of a wild ecotype of vetiver grass (Vetiveria zizanioides L.) in southern China. - Bot. Stud. 57: 27, 2016. Go to original source...
  29. Ma Q., Yue L.J., Zhang J.L. et al.: Sodium chloride improves photosynthesis and water status in the succulent xerophyte Zygophyllum xanthoxylum. - Tree Physiol. 32: 4-13, 2012. Go to original source...
  30. Maathuis F.J.M., Ahmad I., Patishtan J.: Regulation of Na+ fluxes in plants. - Front. Plant Sci. 5: 467, 2014. Go to original source...
  31. McCready R., Guggolz J., Silviera V., Owens H.S.: Determination of starch and amylose in vegetables. - Anal. Chem. 22: 1156-1158, 1950. Go to original source...
  32. Munns R., Husain S., Rivelli A.R. et al.: Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. - Plant Soil 247: 93-105, 2002. Go to original source...
  33. Munns R., Tester M.: Mechanisms of salinity tolerance. - Annu. Rev. Plant Biol. 59: 651-681, 2008. Go to original source...
  34. Najafabadi M.Y., Ehsanzadeh P.: Photosynthetic and antioxidative upregulation in drought-stressed sesame (Sesamum indicum L.) subjected to foliar-applied salicylic acid. - Photosynthetica 55: 611-622, 2017. Go to original source...
  35. Negrão S., Schmöckel S.M., Tester M.: Evaluating physiological responses of plants to salinity stress. - Ann. Bot.-London 119: 1-11, 2016. Go to original source...
  36. Parida A.K., Jha B.: Inductive responses of some organic metabolites for osmotic homeostasis in peanut (Arachis hypogaea L.) seedlings during salt stress. - Acta Physiol. Plant. 35: 2821-2832, 2013. Go to original source...
  37. Qin L.Q., Li L., Bi C. et al.: Damaging mechanisms of chilling- and salt stress to Arachis hypogaea L. leaves. - Photosynthetica 49: 37-42, 2011. Go to original source...
  38. Qiu Z., Guo J., Zhu A. et al.: Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. - Ecotox. Environ. Safe. 104: 202-208, 2014. Go to original source...
  39. Rasool S., Ahmad A., Siddiqi T.O., Ahmad P.: Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. - Acta Physiol. Plant. 35: 1039-1050, 2013. Go to original source...
  40. Salwa A.R., Hammad K., Tantawy M.: Studies on salinity tolerance of two peanut cultivars in relation to growth, leaf water content. Some chemical aspects and yield. - J. Appl. Sci. Res. 6: 1517-1526, 2010.
  41. Sarwar M., Saleem M.F., Ullah N. et al.: Role of mineral nutrition in alleviation of heat stress in cotton plants grown in glasshouse and field conditions. - Sci Rep.-UK 9: 13022, 2019. Go to original source...
  42. Sarwat M., Hashem A., Ahanger M.A. et al.: Mitigation of NaCl stress by arbuscular mycorrhizal fungi through the modulation of osmolytes, antioxidants and secondary metabolites in mustard (Brassica juncea L.) plants. - Front. Plant Sci. 7: 869, 2016. Go to original source...
  43. Schubert S., Neubert A., Schierholt A. et al.: Development of salt-resistant maize hybrids: The combination of physiological strategies using conventional breeding methods. - Plant Sci. 177: 196-202, 2009. Go to original source...
  44. Shabala S., Cuin T.A.: Potassium transport and plant salt tolerance. - Physiol. Plantarum 133: 651-669, 2008. Go to original source...
  45. Shafeiee M., Ehsanzadeh P.: Physiological and biochemical mechanisms of salinity tolerance in several fennel genotypes: Existence of clearly-expressed genotypic variations. - Ind. Crop. Prod. 132: 311-318, 2019. Go to original source...
  46. Singh A., Prasad R.: Salt stress affects growth and cell wall bound enzymes in Arachis hypogaea L. seedlings. - Int. J. Integr. Biol. 7: 117-123, 2009.
  47. Smitharani J.A., Sowmyashree M.L., Vasantha K.M. et al.: 22Na influx is significantly lower in salt tolerant groundnut (Arachis hypogaea) varieties. - Physiol. Mol. Biol. Pla. 20: 49-55, 2014. Go to original source...
  48. Su N., Wu Q., Chen J. et al.: GABA operates upstream of H+-ATPase and improves salinity tolerance in Arabidopsis by enabling cytosolic K+ retention and Na+ exclusion. - J. Exp. Bot. 70: 6349-6361, 2019. Go to original source...
  49. Sui N., Wang Y., Liu S. et al.: Transcriptomic and physiological evidence for the relationship between unsaturated fatty acid and salt stress in peanut. - Front. Plant Sci. 9: 7, 2018. Go to original source...
  50. Vaghar M., Ehsanzadeh P.: Comparative photosynthetic attributes of emmer and modern wheats in response to water and nitrogen supply. - Photosynthetica 56: 1224-1234, 2018. Go to original source...
  51. Wang M., Zheng Q., Shen Q., Guo S.: The critical role of potassium in plant stress response. - Int. J. Mol. Sci. 14: 7370-7390, 2013. Go to original source...
  52. Wang S., Wan C., Wang Y. et al.: The characteristics of Na+, K+ and free proline distribution in several drought-resistant plants of the Alxa Desert, China. - J. Arid Environ. 56: 525-539, 2004. Go to original source...
  53. Wang S., Zheng W., Ren J., Zhang C.: Selectivity of various types of salt-resistant plants for K+ over Na+. - J. Arid Environ. 52: 457-472, 2002. Go to original source...
  54. Wasti S., Manaa A., Mimouni H. et al.: Exogenous application of calcium silicate improves salt tolerance in two contrasting tomato (Solanum lycopersicum) cultivars. - J. Plant Nutr. 40: 673-684, 2017. Go to original source...
  55. Wei D.D., Cheng D., Liu W.B. et al.: Adequate potassium application enhances salt tolerance of moderate-halophyte Sophora alopecuroides. - Plant Soil Environ. 61: 364-370, 2015. Go to original source...
  56. Zhang Z.M., Ci D.W., Ding H. et al.: [Indices selection and comprehensive evaluation of salinity tolerance for peanut varieties.] - Chin. J. Appl. Ecol. 24: 3487-3494, 2013. [In Chinese] doi: 10.13287/j.1001-9332.2013.0584. Go to original source...
  57. Zhu J.K.: Salt and drought stress signal transduction in plants. - Annu. Rev. Plant Biol. 53: 247-273, 2002. Go to original source...
  58. Zhuang W., Chen H., Yang M. et al.: The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. - Nat. Genet. 51: 865-876, 2019. Go to original source...