Photosynthetica 2020, 58(5):1150-1159 | DOI: 10.32615/ps.2020.068
The effects of pumpkin rootstock on photosynthesis, fruit mass, and sucrose content of different ploidy watermelon (Citrullus lanatus)
- 1 Henan Institute of Science and Technology, 453003 Xinxiang, China
- 2 Sumy National Agrarian University, 40021 Sumy, Ukraine
Pumpkin rootstock affects watermelon scion growth, fruit yield, and quality, but the mechanisms of related key enzymes and photosynthesis remain unclear. In this study, net photosynthetic rate (PN), chlorophyll (Chl) fluorescence parameters, fruit mass and sugar accumulation, and related key enzyme activities were determined during the fruit development stage in diploid and triploid watermelon lines and corresponding pumpkin rootstock-grafted lines. The results showed that pumpkin rootstock increased PN and Chl fluorescence parameters of diploid and triploid watermelon, indicating that pumpkin rootstock could increase photosynthesis, the utilization efficiency of light energy of diploid and triploid watermelon lines. Pumpkin-grafted lines had higher alkaline α-galactosidase activity and lower activities of insoluble acid invertase, sucrose phosphate synthase, and sucrose synthase than corresponding own-root lines in diploid and triploid watermelon. It indicates that pumpkin rootstock could increase the unloading of photoassimilates and reduce the conversion of photoassimilates into sucrose in diploid and triploid watermelon fruits.
Additional key words: graft; photoassimilate; quality; triploid; yield.
Received: April 18, 2020; Revised: September 3, 2020; Accepted: September 22, 2020; Prepublished online: October 12, 2020; Published: December 8, 2020 Show citation
| ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Albacete A., Martínez-Andújar C., Martínez-Pérez A. et al.: Unravelling rootstock × scion interactions to improve food security. - J. Exp. Bot. 66: 2211-2226, 2015.
Go to original source... - Baker N.R.: Chlorophyll fluorescence: a probe of photosynthesis in vivo. - Annu. Rev. Plant Biol. 59: 89-113, 2008.
Go to original source... - Brown A.C., Summers W.L.: Carbohydrate accumulation and color development in watermelon. - J. Am. Soc. Hortic. Sci. 110: 683-686, 1985.
Go to original source... - Burger Y., Schaffer A.A.: The contribution of sucrose metabolism enzymes to sucrose accumulation in Cucumis melo. - J. Am. Soc. Hortic. Sci. 132: 704-712, 2007.
Go to original source... - Chang H., Huang H.E., Cheng C.F. et al.: Constitutive expression of a plant ferredoxin-like protein (pflp) enhances capacity of photosynthetic carbon assimilation in rice (Oryza sativa). - Transgenic Res. 26: 279-289, 2017.
Go to original source... - Colla G., Rouphael Y., Cardarelli M. et al.: The effectiveness of grafting to improve alkalinity tolerance in watermelon. - Environ. Exp. Bot. 68: 283-291, 2010.
Go to original source... - Compton M.E., Gray D.J., Gaba V.P.: Use of tissue culture and biotechnology for the genetic improvement of watermelon. - Plant Cell Tiss. Org. 77: 231-243, 2004.
Go to original source... - Dai N., Cohen S., Portnoy V. et al.: Metabolism of soluble sugars in developing melon fruit: a global transcriptional view of the metabolic transition to sucrose accumulation. - Plant Mol. Biol. 76: 1-18, 2011.
Go to original source... - Davis A.R., Perkins-Veazie P., Sakata Y. et al.: Cucurbit grafting. -Crit. Rev. Plant Sci. 27: 50-74, 2008.
Go to original source... - Elmstrom G.W., Davis P.L.: Sugars in developing and mature fruits of several watermelon cultivars. - J. Am. Soc. Hortic. Sci. 106: 330-333, 1981.
Go to original source... - Gao Z., Schaffer A.A.: A novel alkaline α-galactosidase from melon fruit with a substrate preference for raffinose. - Plant Physiol. 119: 979-988, 1999.
Go to original source... - Garster H.: The potential role of lycopene for human health. - J. Am. Coll. Nutr. 16: 109-126, 1997.
Go to original source... - Gaudreault P.R., Webb J.A.: Alkaline α-galactosidase activity and galactose metabolism in the family Cucurbitaceae. - Plant Sci. 45: 71-75, 1986.
Go to original source... - Godt D.E., Roitsch T.: Regulation and tissue-specific distribution of mRNAs for three extracellular invertase isoenzymes of tomato suggests an important function in establishing and maintaining sink metabolism. - Plant Physiol. 115: 273-282, 1997.
Go to original source... - Guo S., Zhang J., Sun H. et al.: The draft genome of water-melon (Citrullus lanatus) and resequencing of 20 diverse accessions. - Nat. Genet. 45: 51-58, 2012.
Go to original source... - Hassell R.L., Memmott F., Liere D.G.: Grafting methods for watermelon production. - HortScience 43: 1677-1679, 2008.
Go to original source... - Huang C., Wang Y., Yang Y. et al.: A susceptible scion reduces rootstock tolerance to Ralstonia solanacearum in grafted eggplant. - Horticulturae 5: 78, 2019.
Go to original source... - Huang Y., Jiao Y.Y., Nawaz M.A. et al.: Improving magnesium uptake, photosynthesis and antioxidant enzyme activities of watermelon by grafting onto pumpkin rootstock under low magnesium. - Plant Soil 409: 229-246, 2016b.
Go to original source... - Huang Y., Zhao L.Q., Kong Q.S. et al.: Comprehensive mineral nutrition analysis of watermelon grafted onto two different rootstocks. - Hortic. Plant J. 2: 105-113, 2016a.
Go to original source... - Hubbard N.L., Huber S.C., Pharr D.M.: Sucrose phosphate synthase and acid invertase as determinants of sucrose concentration in developing muskmelon (Cucumis melo L.) fruits. - Plant Physiol. 91: 1527-1534, 1989.
Go to original source... - Huber S.C., Huber L.H.: Role and regulation of sucrose phosphate synthase in higher plants. - Annu. Rev. Plant Phys. 47: 431-444, 1996.
Go to original source... - Iwatsubo T., Nakagawa H., Ogura N. et al.: Acid invertase of melon fruit: immunochemical detection of acid invertases. - Plant Cell Physiol. 33: 1127-1133, 1992.
- Kalaji H.M., Bosa K., Govindjee et al.: Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. - Environ. Exp. Bot. 73: 64-72, 2011.
Go to original source... - Kano Y.: Changes of sugar kind and its content in the fruit of watermelon during its development and after harvest. - Environ. Control Biol. 29: 159-166, 1991.
Go to original source... - Karuppiah N., Vadlamudi B., Kaufman P.B.: Purification and characterization of soluble (cytosolic) and bound (cell wall) isoforms of invertases in barley (Hordeum vulgare) elongating stem tissue. - Plant Physiol. 91: 993-998, 1989.
Go to original source... - Kihara H.: Triploid watermelons. - Proc. Am. Soc. Hortic. Sci. 58: 217-230, 1951.
- Lewsey M.G., Hardcastle T.J., Melnyk C.W. et al.: Mobile small RNAs regulate genome-wide DNA methylation. - P. Natl. Acad. Sci. USA 113: E801-E810, 2016.
Go to original source... - Lin X., Zhang Y., Kuang H. et al.: Frequent loss of lineages and deficient duplications accounted for low copy number of disease resistance genes in Cucurbitaceae. - BMC Genomics 14: 335, 2013.
Go to original source... - Liu J., Guo S., He H. et al.: Dynamic characteristics of sugar accumulation and related enzyme activities in sweet and non-sweet watermelon fruits. - Acta Physiol. Plant. 35: 3213-3222, 2013.
Go to original source... - Lowell C.A., Tomlinson P.T., Koch K.E.: Sucrose-metabolizing enzymes in transport tissues and adjacent sink structures in developing citrus fruit. - Plant Physiol. 90: 1394-1402, 1989.
Go to original source... - Maroto J.V., Miguel A., Lopez-Galarza S. et al.: Parthenocarpic fruit set in triploid watermelon induced by CPPU and 2,4-D applications. - Plant Growth Regul. 45: 209-213, 2005.
Go to original source... - Marr C.W., Gast K.L.B.: Reactions by consumers in a farmers' market to prices for seedless watermelon and ratings of eating quality. - HortTechnology 1: 105-106, 1991.
Go to original source... - Miralles D.J., Slafer G.A.: Sink limitations to yield in wheat: how could it be reduced? - J. Agr. Sci.-Cambridge 145: 139-150, 2007.
Go to original source... - Miron D., Schaffer A.A.: Sucrose phosphate synthase, sucrose synthase, and invertase activities in developing fruit of Lycopersicon esculentum Mill. and the sucrose accumulating Lycopersicon hirsutum Humb. and Bonpl. - Plant Physiol. 95: 623-627, 1991.
Go to original source... - Naumann J.C., Young D.R., Anderson J.E.: Linking leaf chloro-phyll fluorescence properties to physiological responses for detection of salt and drought stress in coastal plant species. -Physiol. Plant 131: 422-433, 2007.
Go to original source... - Oukarroum A., Schansker G., Strasser R.J.: Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. - Physiol. Plantarum 137: 188-199, 2009.
Go to original source... - Oxborough K.: Imaging of chlorophyll a fluorescence: theoretical and practical aspects of an emerging technique for the monitoring of photosynthetic performance. - J. Exp. Bot. 55: 1195-1205, 2004.
Go to original source... - Petropoulos S.A., Khah E.M., Passam H.C.: Evaluation of rootstocks for watermelon grafting with reference to plant development, yield and fruit quality. - Int. J. Plant Prod. 6: 481-492, 2012.
- Pharr D.M., Sox H.N.: Changes in carbohydrate and enzyme levels during the sink to source transition of leaves of Cucumis sativus L., a stachyose translocator. - Plant Sci. Lett. 35: 187-193, 1984.
Go to original source... - Reynolds M., Foulkes J., Furbank R. et al.: Achieving yield gains in wheat. - Plant Cell Environ. 35: 1799-1823, 2012.
Go to original source... - Shireen F., Nawaz M.A., Xiong M. et al.: Pumpkin rootstock improves the growth and development of watermelon by enhancing uptake and transport of boron and regulating the gene expression. - Plant Physiol. Bioch. 154: 204-218, 2020.
Go to original source... - Shu S., Yuan L.Y., Guo S.R. et al.: Effects of exogenous spermine on chlorophyll fluorescence, antioxidant system and ultrastructure of chloroplasts in Cucumis sativus L. under salt stress. - Plant Physiol. Bioch. 63: 209-216, 2013.
Go to original source... - Sun J.S., Hu R.Y., Lv F.L. et al.: Comparative transcriptome analysis reveals stem secondary growth of grafted Rosa rugosa 'Rosea' scion and R. multiflora 'Innermis' rootstock. - Genes-Basel 11: 228, 2020.
Go to original source... - Tang G.Q., Luscher M., Sturm A.: Antisense repression of vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning. - Plant Cell 11: 177-189, 1999.
Go to original source... - Tuncel A., Okita T.W.: Improving starch yield in cereals by over expression of ADPglucose pyrophosphorylase: Expectations and unanticipated outcomes. - Plant Sci. 211: 52-60, 2013.
Go to original source... - Yang G.H., Yang L.T., Jiang H.X. et al.: Physiological impacts of magnesium-deficiency in citrus seedlings: photosynthesis, antioxidant system and carbohydrates. - Trees-Struct. Funct. 26: 1237-1250, 2012.
Go to original source... - Yativ M., Harary I., Wolf S.: Sucrose accumulation in watermelon fruits: genetic variation and biochemical analysis. - J. Plant Physiol. 167: 589-596, 2010.
Go to original source... - Zhang B., Tolstikov V., Turnbull C. et al.: Divergent metabolome and proteome suggest functional independence of dual phloem transport systems in cucurbits. - P. Natl. Acad. Sci. USA 107: 13532-13537, 2010.
Go to original source...




