Photosynthetica 2020, 58(5):1178-1187 | DOI: 10.32615/ps.2020.072

Disturbance mechanism of coal mining subsidence to typical plants in a semiarid area using O-J-I-P chlorophyll a fluorescence analysis

Y. LIU1, S.G. LEI2, X.Y. CHEN1, M. CHEN1, X.Y. ZHANG1, L.L. LONG1
1 The State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mine, School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
2 Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou, 221116, China

The response of individual plants to coal mining subsidence disturbance reflects the micro-ecological mechanism implied in the macro-response, which is the basis of studying the rule of vegetation disturbance of large-scale coal mining. In this study, O-J-I-P chlorophyll a fluorescence analysis was used to diagnose the disturbance mechanism of typical individual plants by coal mining subsidence in a semiarid area. The results showed that the groundwater level and soil water content decreased due to the disturbance of coal mining subsidence and the plant growth was affected by drought stress. The rapid chlorophyll fluorescence induction curve of leaves was deformed, the stomatal limitation increased, and the photosynthetic electron transfer was inhibited. Stomatal conductance, photosynthetic rate, and transpiration rate decreased significantly. The spatial heterogeneity of soil water content after mining subsidence is the main reason for the differing degree of plant drought stress in different subsidence areas.

Additional key words: chlorophyll a fluorescence; drought stress; mine environment; photosynthetic activity; soil disturbance.

Received: July 25, 2020; Revised: September 10, 2020; Accepted: October 5, 2020; Prepublished online: October 23, 2020; Published: December 8, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
LIU, Y., LEI, S.G., CHEN, X.Y., CHEN, M., ZHANG, X.Y., & LONG, L.L. (2020). Disturbance mechanism of coal mining subsidence to typical plants in a semiarid area using O-J-I-P chlorophyll a fluorescence analysis. Photosynthetica58(5), 1178-1187. doi: 10.32615/ps.2020.072
Download citation

References

  1. Bian Z., Lei S., Jin D. et al.: [Several basic scientific issues related to mined land remediation.] - J. China Coal Soc. 43: 190-197, 2018. [In Chinese] doi: 10.13225/j.cnki.jccs.2017.4004. Go to original source...
  2. Björkman O., Demmig B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. - Planta 170: 489-504, 1987. Go to original source...
  3. Blachowski J., Milczarek W.: Analysis of surface changes in the Wa³brzych hard coal mining grounds (SW Poland) between 1886 and 2009. - Geol. Q. 58: 353-368, 2014. Go to original source...
  4. Brestic M., Zivcak M., Kalaji H.M. et al.: Photosystem II thermostability in situ: Environmentally induced acclimation and genotype-specific reactions in Triticum aestivum L. - Plant Physiol. Bioch. 57: 93-105, 2012. Go to original source...
  5. Brito C., Dinis L.-T., Ferreira H. et al.: The role of nighttime water balance on Olea europaea plants subjected to contrasting water regimes. - J. Plant Physiol. 226: 56-63, 2018. Go to original source...
  6. Bussotti F.: Assessment of stress conditions in Quercus ilex L. leaves by O-J-I-P chlorophyll a fluorescence analysis. - Plant Biosyst. 138: 101-109, 2004. Go to original source...
  7. Carstensen A., Szameitat A.E., Frydenvang J., Husted S.: Chlorophyll a fluorescence analysis can detect phosphorus deficiency under field conditions and is an effective tool to prevent grain yield reductions in spring barley (Hordeum vulgare L.). - Plant Soil 434: 79-91, 2019. Go to original source...
  8. Chen X., Wong J.T., Leung A.O. et al.: Comparison of plant and bacterial communities between a subtropical landfill topsoil 15 years after restoration and a natural area. - Waste Manag. 63: 49-57, 2017. Go to original source...
  9. Chiochetta C.G., Toumi H., Böhm R.F.S. et al.: Use of phytoproductivity data in the choice of native plant species to restore a degraded coal mining site amended with a stabilized industrial organic sludge. - Environ. Sci. Pollut. R. 24: 24624-24633, 2017. Go to original source...
  10. Clifford M.J., Ali S.H., Matsubae K.: Mining, land restoration and sustainable development in isolated islands: An industrial ecology perspective on extractive transitions on Nauru. - Ambio 48: 397-408, 2019. Go to original source...
  11. D±browski P., Baczewska A.H., Pawlu¶kiewicz B. et al.: Prompt chlorophyll a fluorescence as a rapid tool for diagnostic changes in PSII structure inhibited by salt stress in Perennial ryegrass. - J. Photoch. Photobio. B 157: 22-31, 2016. Go to original source...
  12. D±browski P., Pawlu¶kiewicz B., Baczewska-D±browska A.H. et al.: Chlorophyll a fluorescence of perennial ryegrass (Lolium perenne L.) varieties under long term exposure to shade. - Zemdirbyste 102: 305-312, 2015. Go to original source...
  13. Darmody R.G., Bauer R., Barkley D. et al.: Agricultural impacts of longwall mine subsidence: the experience in Illinois, USA and Queensland, Australia. - Int. J. Coal Sci. Technol. 1: 207-212, 2014. Go to original source...
  14. Eckert S., Hüsler F., Liniger H., Hodel E.: Trend analysis of MODIS NDVI time series for detecting land degradation and regeneration in Mongolia - J. Arid Environ. 113: 16-28, 2015. Go to original source...
  15. Feng Y., Wang J., Bai Z., Reading L.: Effects of surface coal mining and land reclamation on soil properties: A review. - Earth-Sci. Rev. 191: 12-25, 2019. Go to original source...
  16. Gray D.W., Cardon Z.G., Lewis L.A.: Simultaneous collection of rapid chlorophyll fluorescence induction kinetics, fluores-cence quenching parameters, and environmental data using an automated PAM-2000/CR10X data logging system. - Photosynth. Res. 87: 295-301, 2006. Go to original source...
  17. He G.: [Mining Subsidence Science.] Pp. 57-74. China University of Mining and Technology Press, Xuzhou 1991. [In Chinese]
  18. Hu Z., Xiao W., Zhao Y.: [Re-discussion on coal mine eco-environment concurrent mining and reclamation.] - J. China Coal Soc. 45: 351-359, 2020. [In Chinese] doi: 10.13225/j.cnki.jccs.YG19.1694. Go to original source...
  19. Jia Z.: [Temporal and spatial characteristics and driving forces of vegetation coverage in typical mining areas in Shanxi Province.] Pp. 10-78. Shanxi Agricultural University, Jinzhong 2018. [In Chinese]
  20. Kalaji H.M., Račkovį L., Paganovį V. et al.: Can chlorophyll-a fluorescence parameters be used as bioindicators to distinguish between drought and salinity stress in Tilia cordata Mill? - Environ. Exp. Bot. 152: 149-157, 2018. Go to original source...
  21. Karan S.K., Samadder S.R.: A comparison of different land-use classification techniques for accurate monitoring of degraded coal-mining areas. - Environ. Earth Sci. 77: 713, 2018. Go to original source...
  22. Lechner A.M., Baumgartl T., Matthew P., Glenn V.: The impact of underground longwall mining on prime agricultural land: a review and research agenda. - Land Degrad. Dev. 27: 1650-1663, 2016. Go to original source...
  23. Lei S.: [Monitoring and analyzing the mining impacts on key environmental elements in desert area.] - J. China Coal Soc. 35: 1587-1588, 2010. [In Chinese] doi: 10.13225/j.cnki.jccs.2010.09.028. Go to original source...
  24. Lei S., Bian Z.: [Research progress on the environment impacts from underground coal mining in arid western area of China.] - Acta Ecol. Sin. 34: 2837-2843, 2014. [In Chinese] doi: 10.5846/stxb201307281968. Go to original source...
  25. Lei S., Ren L., Bian Z.: Time-space characterization of vegetation in a semiarid mining area using empirical orthogonal function decomposition of MODIS NDVI time series. - Environ. Earth Sci. 75: 516, 2016. Go to original source...
  26. Li X., Lei S., Cheng W. et al.: Spatio-temporal dynamics of vegetation in Jungar Banner of China during 2000-2017. - J. Arid Land 11: 837-854, 2019. Go to original source...
  27. Liu S., Li W.: Zoning and management of phreatic water resource conservation impacted by underground coal mining: A case study in arid and semiarid areas. - J. Clean. Prod. 224: 677-685, 2019. Go to original source...
  28. Liu S., Li W., Qiao W. et al.: Effect of natural conditions and mining activities on vegetation variations in arid and semiarid mining regions. - Ecol. Indic. 103: 331-345, 2019c. Go to original source...
  29. Liu Y., Lei S., Cheng L. et al.: [Effects of soil water content on stomatal conductance, transpiration, and photosynthetic rate of Caragana korshinskii under the influence of coal mining subsidence.] - Acta Ecol. Sin. 38: 3069-3077, 2018. [In Chinese] doi: 10.5846/stxb201703160442. Go to original source...
  30. Liu Y., Lei S., Cheng L. et al.: Leaf photosynthesis of three typical plant species affected by the subsidence cracks of coal mining: a case study in the semiarid region of Western China. - Photosynthetica 57: 75-85, 2019a. Go to original source...
  31. Liu Y., Lei S., Gong C.: Comparison of plant and microbial communities between an artificial restoration and a natural restoration topsoil in coal mining subsidence area. - Environ. Earth Sci. 78: 204, 2019b. Go to original source...
  32. Luo Y.: [Systematic approach to assess and mitigate longwall subsidence influences on surface structures.] - J. Coal Sci. Eng. 14: 407-414, 2008. [In Chinese] doi: 10.1007/s12404-008-0090-5. Go to original source...
  33. Lv W.Y.: The mitigation of surface subsidence in coal mines. - Energ. Environ. 27: 350-359, 2016. Go to original source...
  34. Ma K., Zhang Y., Ruan M. et al.: Land subsidence in a coal mining area reduced soil fertility and led to soil degradation in arid and semi-arid regions. - Int. J. Environ. Res. Public Health 16: 3929, 2019. Go to original source...
  35. Ma L., Zhao B., Xu H. et al.: [Research on water inrush mechanism of fault coupling bed separation with fully mechanized sublevel caving of ultra thick coal seam.] -J. China Coal Soc. 44: 567-575, 2019. [In Chinese] doi: 10.13225/j.cnki.jccs.2018.0593. Go to original source...
  36. Mehta P., Jajoo A., Mathur S., Bharti S.: Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem II in wheat leaves. - Plant Physiol. Bioch. 48: 16-20, 2010. Go to original source...
  37. Ro¹er J., Potočnik D., Vulię M.: Analysis of dynamic surface subsidence at the underground coal mining site in Velenje, Slovenia through modified sigmoidal function. - Minerals 8: 74, 2018. Go to original source...
  38. Singh S., Prasad S.M.: IAA alleviates Cd toxicity on growth, photosynthesis and oxidative damages in eggplant seedlings. -Plant Growth Regul. 77: 87-98, 2015. Go to original source...
  39. Strasser R.J., Srivastava A.: Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. - Photochem. Photobiol. 61: 32-42, 1995. Go to original source...
  40. Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 321-362. Springer, Dordrecht 2004. Go to original source...
  41. Su X., Wang M., Shu S. et al.: [Effects of exogenous Spd on the fast chlorophyll fluorescence induction dynamics in tomato seedlings under high temperature stress.] - Acta Hortic. Sin. 40: 2409-2418, 2013. doi: 10.16420/j.issn.0513-353x.2013.12.011. [In Chinese] Go to original source...
  42. Sun S., Sun H., Zhang D. et al.: Response of soil microbes to vegetation restoration in coal mining subsidence areas at Huaibei coal mine, China. - Int. J. Environ. Res. Public Health 16: 1757, 2019. Go to original source...
  43. Vereecken H., Pachepsky Y., Simmer C. et al.: On the role of patterns in understanding the functioning of soil-vegetation-atmosphere systems. - J. Hydrol. 542: 63-86, 2016. Go to original source...
  44. Wang J., Kang H., Liu J. et al.: [Layout strategic research of green coal resources development in China.] - J. China Univ. Min. Technol. 47: 15-20, 2018a. [In Chinese] doi: 10.13247/j.cnki.jcumt.000793. Go to original source...
  45. Wang J., Wang P., Qin Q., Wang H.: The effects of land subsidence and rehabilitation on soil hydraulic properties in a mining area in the Loess Plateau of China. - Catena 159: 51-59, 2017. Go to original source...
  46. Wang L., Wei S., Zhang Q. et al.: [Isotopic characteristics of water within the soil-vegetation atmosphere system in the Yushenfu mining area.] - J. China Coal Soc. 35: 1347-1353, 2010. [In Chinese] doi: 10.13225/j.cnki.jccs.2010.08.001. Go to original source...
  47. Wang Q., Zhao M.: [Effects of coal resources exploitation on the water resource and vegetation in arid and semi-arid region.] -J. Water Res. Water Eng. 28: 77-81, 2017. [In Chinese] doi: 10.11705/j.issn.1672-643X.2017.03.15. Go to original source...
  48. Wang X., Du T., Huang J. et al.: Leaf hydraulic vulnerability triggers the decline in stomatal and mesophyll conductance during drought in rice. - J. Exp. Bot. 69: 4033-4045, 2018b. Go to original source...
  49. Wang X., Li Y., Wei Y. et al.: Effects of fertilization and reclamation time on soil bacterial communities in coal mining subsidence areas. - Sci. Total Environ. 739: 139882, 2020. Go to original source...
  50. Wang Z., Chen L., Ai J. et al.: [Effects of different drought stress on photosynthesis and activity of photosystem II in leaves of Amur grape (Vitis amurensis).] - Plant Physiol. J. 50: 1171-1176, 2014. [In Chinese] doi: 10.13592/j.cnki.ppj.2014.08.001. Go to original source...
  51. Yang D.J., Bian Z.F., Lei S.G.: Impact on soil physical qualities by the subsidence of coal mining: a case study in Western China. - Environ. Earth Sci. 75: 652, 2016. Go to original source...
  52. Yang X., Sun X., Huang J. et al.: [Analysis of driving factors and prevention measures for desertification in Muli coal mining area in Qinghai Province.] - Chin. J. Geol. Hazard Control 29: 78-84, 2018b. [In Chinese] doi: 10.16031/j.cnki.issn.1003-8035.2018.01.13. Go to original source...
  53. Yang Y., Erskine P.D., Zhang S. et al.: Effects of underground mining on vegetation and environmental patterns in a semi-arid watershed with implications for resilience management. -Environ. Earth Sci. 77: 605, 2018a. Go to original source...
  54. Yu M., Gao Q., Gao S.: An ecophysiological model for individual plant under global change. - Acta Bot. Sin. 39: 811-820, 1997.
  55. Yuan L., Zhang N., Kan J. et al.: [The concept, model and reserve forecast of green coal resources in China.] - J. China Univ. Min. Technol. 47: 1-8, 2018. [In Chinese] doi: 10.13247/j.cnki.jcumt.000792. Go to original source...
  56. Yuan X., Zou L., Lin A. et al.: [Analyzing dynamic vegetation change and response to climatic factors in Hubei Province, China.] - Acta Ecol. Sin. 36: 5315-5323, 2016. [In Chinese] doi: 10.5846/stxb201507101464. Go to original source...
  57. Zhang Z., Wang C., Tang Y. et al.: Analysis of ground subsidence at a coal-mining area in Huainan using time-series InSAR. - Int. J. Remote Sens. 36: 5790-5810, 2015. Go to original source...
  58. Zushi K., Matsuzoe N.: Using of chlorophyll a fluorescence OJIP transients for sensing salt stress in the leaves and fruits of tomato. - Sci. Hortic.-Amsterdam 219: 216-221, 2017. Go to original source...