Photosynthetica 2021, 59(1):160-170 | DOI: 10.32615/ps.2021.010

Photosynthesis of grape leaves with 'OSC' trellis and cordon based on data model fitting

F.C. ZHANG1, †, H.X. ZHONG1, †, X.M. ZHOU1, S.A. HAN1, M. WANG1, J.Z. HAO2, X.Y. WU1, M.Q. PAN1
1 Institute of Horticultural Crops, Xinjiang Academy of Agricultural Science/Scientific Observing and Experimental Station of Fruits in Xinjiang, Ministry of Agriculture of China, 830091 Urumqi, Xinjiang, China
2 Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, 830091 Urumqi, Xinjiang, China

The photosynthetic parameters of 'Flame Seedless' and 'Red Globe' grape leaves in oblique single cordon (OSC) vine along the ditch and traditional single cordon (TSC) vine were determined using the CIRAS-2 photosynthetic system. The photosynthesis of leaves was studied using the Gaussian multi-peak model, Yezipiao's model, and the extended Freundlich's model fitting methods. The results showed that the correlation coefficients of the three data models fitting the field data were between 0.89 and 0.97. The three models can be used to analyze photosynthesis of grape leaves. In this paper, the physical significance of indicators obtained by extended Freundlich's model fitting was verified. The grape leaves of OSC showed higher daily accumulation of photosynthesis, maximum photosynthetic rate, saturated light intensity, light adaptation range, and light-use efficiency than that of TSC. Grape leaves under OSC can better adapt to the environment.

Additional key words: extended Freundlich's model; photosynthetic parameters; slope; viticulture; Vitis vinifera.

Received: August 23, 2020; Revised: January 19, 2021; Accepted: February 1, 2021; Prepublished online: February 25, 2021; Published: March 18, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
ZHANG, F.C., ZHONG, H.X., ZHOU, X.M., HAN, S.A., WANG, M., HAO, J.Z., WU, X.Y., & PAN, M.Q. (2021). Photosynthesis of grape leaves with 'OSC' trellis and cordon based on data model fitting. Photosynthetica59(1), 160-170. doi: 10.32615/ps.2021.010
Download citation

References

  1. Bassman J.H., Zwier J.C.: Gas exchange characteristics of Populus trichocarpa, Populus deltoides and Populus trichocarpa × P. deltoides clones. - Tree Physiol. 8: 145-159, 1991. Go to original source...
  2. Bernacchi C.J., Pimentel C., Long S.P.: In vivo temperature response functions of parameters required to model RuBP-limited photosynthesis. - Plant Cell Environ. 26: 1419-1430, 2003. Go to original source...
  3. Bordenave C.D., Rocco R., Maiale S.J. et al.: Chlorophyll a fluorescence analysis reveals divergent photosystem II responses to saline, alkaline and saline-alkaline stresses in the two Lotus japonicus model ecotypes MG20 and Gifu-129. -Acta Physiol. Plant. 41: 167, 2019. Go to original source...
  4. Broadley M.R., Escobar-Gutiérrez A.J., Burns A., Burns I.G.: Nitrogen-limited growth of lettuce is associated with lower stomatal conductance. - New Phytol. 152: 97-106, 2001. Go to original source...
  5. Dias-Filho M.B.: Photosynthetic light response of the C4 grasses Brachiaria brizantha and B. humidicola under shade. - Sci. Agric. 59: 65-68, 2002. Go to original source...
  6. Ethier G.J., Livingston N.J.: On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis model. - Plant Cell Environ. 27: 137-153, 2004. Go to original source...
  7. Galle A., Florez-Sarasa I., El Aououad H., Flexas J.: The Mediterranean evergreen Quercus ilex and the semi-deciduous Cistus albidus differ in their leaf gas exchange regulation and acclimation to repeated drought and re-watering cycles. - J. Exp. Bot. 62: 5207-5216, 2011. Go to original source...
  8. Han Y., Hao T.Y., Li Z.Y., Li Y.: Inversion of the fluorescence spectral information of vegetation chlorophyll based on the inverted Gaussian model. - J. Quant. Spectrosc. Ra. 242: 106761, 2020. Go to original source...
  9. Han Z.G., Lei L.M., Han B.P.: [Changes in rapid light curves of Phaeodactylum tricornutum and Prorocentrum dentatum during light-dark cycles.] - J. Trop. Oceanogr. 24: 13-21, 2005. [In Chinese] doi: 10.3969/j.issn.1009-5470.2005.06.003. Go to original source...
  10. Haritha G., Vishnukiran T., Yugandhar P. et al.: Introgressions from Oryza rufipogon increase photosynthetic efficiency of KMR3 rice lines. - Rice Sci. 24: 85-96, 2017. Go to original source...
  11. Harley P.C., Thomas R.B., Reynolds J.F., Strain B.R.: Modelling photosynthesis of cotton grown in elevated CO2. - Plant Cell Environ. 15: 271-282, 1992. Go to original source...
  12. Herrmann H.A., Schwartz J.-M., Johnson G.N.: From empirical to theoretical models of light response curves - linking photosynthetic and metabolic acclimation. - Photosynth. Res. 145: 5-14, 2020. Go to original source...
  13. Li T., Zhang J.F., Chen H.J. et al.: [The ripe grape leaf net photosynthetic rate change under the different water treatment.] - J. Arid Land Resour. Environ. 9: 179-184, 2010. [In Chinese] doi: 10.13448/j.cnki.jalre.2010.09.024. Go to original source...
  14. Li Z.Y., Dong J.H.: [Dynamics model for hydration of cement curing under isothermal condition based on Extended Freundlich.] - Sichuan Build. Sci. 39: 186-189, 2013. [In Chinese] doi: 10.3969/j.issn.1008-1933.2013.01.047. Go to original source...
  15. Majeed Y., Karkee M., Zhang Q. et al.: Determining grapevine cordon shape for automated green shoot thinning using semantic segmentation-based deep learning networks. - Comput. Electron. Agr. 171: 105308, 2020. Go to original source...
  16. Meacham-Hensold K., Montes C.M., Wu J. et al.: High-throughput field phenotyping using hyperspectral reflectance and partial least squares regression (PLSR) reveals genetic modifications to photosynthetic capacity. - Remote Sens. Environ. 231: 111176, 2019. Go to original source...
  17. Murchie E.H., Niyogi K.K.: Manipulation of photoprotection to improve plant photosynthesis. - Plant Physiol. 155: 86-92, 2011. Go to original source...
  18. Na C.: Size-controlled capacity and isocapacity concentration in freundlich adsorption. - ACS Omega 5, 13130-13135, 2020. Go to original source...
  19. Norton A.J., Rayner P.J., Koffi E.N. et al.: Estimating global gross primary productivity using chlorophyll fluorescence and a data assimilation system with the BETHY-SCOPE model. - Biogeosciences 15: 3069-3093, 2019. Go to original source...
  20. Pan M.Q., Zhang F.X., Zhong H.X. et al.: [Evaluation of high photosynthetic efficiency and facilitation in grape 'single cordon along the ditch obliquely' in Northern China.] - J. Fruit Sci. 9: 1134-1143, 2017. [In Chinese] doi:10.13925/j.cnki.gsxb.20160156. Go to original source...
  21. Prado C.D.A., De Moraes J.: Photosynthetic capacity and specific leaf mass in twenty woody species of cerrado vegetation under field conditions. - Photosynthetica 33: 103-112, 1997. Go to original source...
  22. Rascher U., Liebig M., Lüttge U.: Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. - Plant Cell Environ. 23: 1397-1405, 2000. Go to original source...
  23. Reynolds M., Foulkes J., Furbank R. et al.: Achieving yield gains in wheat. - Plant Cell Environ. 35: 1799-1823, 2012. Go to original source...
  24. San Martín F., Kracht W., Vargas T.: Attachment of Acidithio-bacillus ferrooxidans to pyrite in fresh and saline water and fitting to Langmuir and Freundlich isotherms. - Biotechnol. Lett. 42: 957-964, 2020. Go to original source...
  25. Tan J., Ding J.L., Zhang J.Y.: [Temporal and spatial variation in temperature in Northern Xinjiang during 1961-2014.] - Arid Zone Res. 7: 1-14, 2018. [In Chinese] doi: 10.13866/j.azr.2018.05.23. Go to original source...
  26. van der Tol C., Vilfan N., Dauwe D. et al.: The scattering and re-absorption of red and near-infrared chlorophyll fluorescence in the models Fluspect and SCOPE. - Remote Sens. Environ. 232: 111292, 2019. Go to original source...
  27. Ye Z.P., Gao J.: [Relationship photosynthetic rate of Salvia miltiorrhiza with irradiance at low photon flux densities.] -J. Jinggangshan Univ. 28: 47-50, 2007. [In Chinese] doi: 10.3969/j.issn.1674-8085.2007.04.017. Go to original source...
  28. Ye Z.P., Robakowski P., Suggett D.J.: A mechanistic model for the light response of photosynthetic electron transport rate based on light harvesting properties of photosynthetic pigment molecules. - Planta 237: 837-847, 2013a. Go to original source...
  29. Ye Z.P., Suggett D.J., Robakowski P., Kang H.J.: A mechanistic model for the photosynthesis-light response based on the photosynthetic electron transport of photosystem II in C3 and C4 species. - New Phytol. 199: 110-120, 2013b. Go to original source...
  30. Zhang F.C., Pan M.Q., Lu C.S. et al: [Diurnal variations and light responses of four grape varieties in Turpan.] - Xinjiang Agric. Sci. 6: 1001-1005, 2011. [In Chinese] doi: 10.6048/j.issn.1001-4330.2011.06.004. Go to original source...
  31. Zhang F.C., Pan M.Q., Wu X.Y. et al.: [Preliminary research on 'single cordon along the ditch obliquely' of grape in cold areas.] - Agr. Res. Arid Area. 5: 68-74, 2015. [In Chinese] doi: 10.7606/j.issn.1000-7601.2015.05.13. Go to original source...