Photosynthetica 2021, 59(1):171-184 | DOI: 10.32615/ps.2021.007
Physiological changes of three woody plants exposed to progressive salt stress
- 1 Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011 Urumqi, China
- 2 State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011 Urumqi, China
- 3 Cele National Station of Observation and Research for Desert-Grassland Ecosystems, 848300 Cele, China
The saline character of water imposes restrictions on plant growth and survival in the Taklamakan Desert, China. Experiments were conducted on woody plant species, Tamarix ramosissima, Populus euphratica, and Haloxylon ammodendron grown under different levels of salinity to elucidate their adaptation to a saline environment. H. ammodendron accumulated large amounts of Na+ and Cl- in leaves. P. euphratica restricted redundant Na+ and Cl- transport to the shoots treated with lower NaCl concentrations. Na+ in leaves of T. ramosissima accumulated significantly only under higher NaCl concentrations (≥ 200 mM NaCl). The analyzed plants' exposure to high saline concentrations induced oxidative stress as evidenced by the increase of H2O2 and malondialdehyde and changes in photosynthetic pigments, gas-exchange characteristics, and antioxidant enzyme activities. T. ramosissima and H. ammodendron exhibited a greater ability to adapt to saline-induced oxidative stress due to more efficient antioxidant enzyme system to prevent oxidative damage.
Additional key words: antioxidative defense; osmotic adjustment; photosynthesis; water relations.
Received: November 5, 2020; Revised: January 11, 2021; Accepted: January 20, 2021; Prepublished online: February 26, 2021; Published: March 18, 2021 Show citation
Supplementary files
| Download file | Lu_2654_supplement.docx File size: 251.62 kB |
References
- Acosta-Motos J.R., Álvarez S., Barba-Espín G. et al.: Salts and nutrients present in regenerated waters induce changes in water relations, antioxidative metabolism, ion accumulation and restricted ion uptake in Myrtus communis L. plants. - Plant Physiol. Bioch. 85: 41-50, 2014.
Go to original source... - Aebi H.: Catalase in vitro. - Method. Enzymol. 105: 121-126, 1984.
Go to original source... - Ahanger M.A., Mir R.A., Alyemeni M.N., Ahmad P.: Combined effects of brassinosteroid and kinetin mitigates salinity stress in tomato through the modulation of antioxidant and osmolyte metabolism. - Plant Physiol. Bioch. 147: 31-42, 2020.
Go to original source... - Allakhverdiev S.I., Kreslavski V.D., Klimov V.V. et al.: Heat stress: an overview of molecular responses in photosynthesis. -Photosynth. Res. 98: 541-550, 2008.
Go to original source... - Arndt S.K., Arampatsis C., Foetzki A. et al.: Contrasting patterns of leaf solute accumulation and salt adaptation in four phreatophytic desert plants in a hyperarid desert with saline groundwater. - J. Arid Environ. 59: 259-270, 2004.
Go to original source... - Asrar H., Hussain T., Qasim M. et al.: Salt induced modulations in antioxidative defense system of Desmostachya bipinnata. - Plant Physiol. Bioch. 147: 113-124, 2020.
Go to original source... - Bates L.S., Waldren R.P., Teare I.D.: Rapid determination of free proline for water stress studies. - Plant Soil 39: 205-207, 1973.
Go to original source... - Beauchamp C., Fridovich I.: Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. - Anal. Biochem. 44: 276-287, 1971.
Go to original source... - Blokhina O., Virolainen E., Fagerstedt K.V.: Antioxidants, oxidative damage and oxygen deprivation stress: a review. - Ann. Bot.-London 91: 179-194, 2003.
Go to original source... - Blumwald E., Aharon G.S., Apse M.P.: Sodium transport in plant cells. - BBA-Biomembranes 1465: 140-151, 2000.
Go to original source... - Borrelli G.M., Fragasso M., Nigro F. et al.: Analysis of metabolic and mineral changes in responses to salt stress in durum wheat (Triticum turgidum ssp. durum) genotypes, which differ in salinity tolerance. - Plant Physiol. Bioch. 133: 57-70, 2018.
Go to original source... - Bradford M.M.: A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. - Anal. Biochem. 72: 248-254, 1976.
Go to original source... - Campbell N., Thomson W.W., Platt K.: The apoplastic pathway of transport to salt glands. - J. Exp. Bot. 25: 61-69, 1974.
Go to original source... - Carter J.L., Colmer T.D., Veneklaas E.J.: Variable tolerance of wetland tree species to combined salinity and waterlogging is related to regulation of ion uptake and production of organic solutes. - New Phytol. 169: 123-134, 2006.
Go to original source... - Chance B., Maehly A.C.: Assay of catalases and peroxidases. - In: Colowick S.P., Kaplan N.O. (ed.): Methods in Enzymology. Pp. 764-775. Academic Press, New York 1955.
Go to original source... - Chaves M.M., Flexas J., Pinheiro C.: Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. - Ann. Bot.-London 103: 551-560, 2009.
Go to original source... - Chen J., Zhang H., Zhang X., Tang M.: Arbuscular mycorrhizal symbiosis mitigates oxidative injury in black locust under salt stress through modulating antioxidant defense of the plant. - Environ. Exp. Bot. 175: 104034, 2020.
Go to original source... - Chen S., Li J., Wang S. et al.: Salt, nutrient uptake and transport, and ABA of Populus euphratica: a hybrid in response to increasing soil NaCl. - Trees 15: 186-194, 2001.
Go to original source... - Chen S., Li J., Wang S. et al.: Effects of NaCl on shoot growth, transpiration, ion compartmentation and transport in regenerated plants of Populus euphratica and Populus tomentosa. - Can. J. For. Res. 33: 967-975, 2003.
Go to original source... - Cui Y.N., Li X.T., Yuan J.Z. et al.: Chloride is beneficial for growth of the xerophyte Pugionium cornutum by enhancing osmotic adjustment capacity under salt and drought stresses. -J. Exp. Bot. 71: 4215-4231, 2020.
Go to original source... - Cui Y.Q., Ma J.Y., Sun W.: Application of stable isotope techniques to the study of soil salinization. - J. Arid Land 3: 285-291, 2011. doi: 10.3724/SP.J.1227.2011.00285.
Go to original source... - Demmig-Adams B., Gilmore A.M., Adams III W.W.: In vivo functions of carotenoids in higher plants. - FASEB J. 10: 403-412, 1996.
Go to original source... - Duan H., Ma Y., Liu R. et al.: Effect of combined waterlogging and salinity stresses on euhalophyte Suaeda glauca. - Plant Physiol. Bioch. 127: 231-237, 2018.
Go to original source... - Durnford D.G., Price J.A., McKim S.M., Sarchfield M.L.: Light-harvesting complex gene expression is controlled by both transcriptional and posttranscriptional mechanisms during photoacclimation in Chlamydomonas reinhardtii. - Physiol. Plantarum 118: 193-205, 2003.
Go to original source... - El-Esawi M.A., Alaraidh I.A., Alsahli A.A. et al.: Bacillus firmus (SW5) augments salt tolerance in soybean (Glycine max L.) by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression. - Plant Physiol. Bioch. 132: 375-384, 2018.
Go to original source... - El-Hendawy S.E., Hassan W.M., Al-Suhaibani N.A. et al.: Comparative performance of multivariable agro-physiological parameters for detecting salt tolerance of wheat cultivars under simulated saline field growing conditions. - Front. Plant Sci. 8: 435, 2017.
Go to original source... - Everard J.D., Gucci R., Kann S.C. et al.: Gas exchange and carbon partitioning in the leaves of celery (Apium graveolens L.) at various levels of root zone salinity. - Plant Physiol. 106: 281-292, 1994.
Go to original source... - Fan L., Wang G.N., Hu W. et al.: Transcriptomic view of survival during early seedling growth of the extremeophyte Haloxylon ammodendron. - Plant Physiol. Bioch. 132: 475-489, 2018.
Go to original source... - FAO, ITPS: Status of the World's Soil Resources (SWSR). Main Report. Pp. 650. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome 2015.
- Farquhar G.D., Sharkey T.D.: Stomatal conductance and photosynthesis. - Ann. Rev. Plant Physio. 33: 317-345, 1982.
Go to original source... - Garcia J.D., Dalmolin Â.C., França M.G.C., Mangabeira P.A.O.: Different salt concentrations induce alterations both in photosynthetic parameters and salt gland activity in leaves of the mangrove Avicennia schaueriana. - Ecotox. Environ. Safe. 141: 70-74, 2017.
Go to original source... - Gechev T., Petrov V.: Reactive oxygen species and abiotic stress in plants. - Int. J. Mol. Sci. 21: 7433, 2020.
Go to original source... - Gibert E., Gentelle P., Liang K.Y.: Chemical and isotopic evolution of surficial waters in the Taklamakan desert (Southern Xinjiang, China). - In: Isotopes in Water Resources Management: Proceedings of a Symposium on Isotopes in Water Resources Management, 20-24 March 1995. Pp. 211-212. IAEA, Vienna 1996.
- Greenway H., Munns R.: Mechanisms of salt tolerance in nonhalophytes. - Ann. Rev. Plant Physio. 31: 149-190, 1980.
Go to original source... - Hagemeyer J., Waisel Y.: Excretion of ions (Cd2+, Li+, Na+ and Cl-) by Tamarix aphylla. - Physiol. Plantarum 73: 541-546, 1988.
Go to original source... - Hinojosa-Vidal E., Marco F., Martínez-Alberola F. et al.: Characterization of the responses to saline stress in the symbiotic green microalga Trebouxia sp. TR9. - Planta 248: 1473-1486, 2018.
Go to original source... - Huang C.J., Wei G., Jie Y.C. et al.: Effects of concentrations of sodium chloride on photosynthesis, antioxidative enzymes, growth and fiber yield of hybrid ramie. - Plant Physiol. Bioch. 76: 86-93, 2014.
Go to original source... - Ibrahim W., Qiu C.W., Zhang C. et al.: Comparative physiological analysis in the tolerance to salinity and drought individual and combination in two cotton genotypes with contrasting salt tolerance. - Physiol. Plantarum 165: 155-168, 2019.
Go to original source... - Ito H., Tanaka Y., Tsuji H., Tanaka A.: Conversion of chloro-phyll b to chlorophyll a by isolated cucumber etioplasts. - Arch. Biochem. Biophys. 306: 148-151, 1993.
Go to original source... - Jiang D.X., Chu X., Li M. et al.: Exogenous spermidine enhances salt-stressed rice photosynthetic performance by stabilizing structure and function of chloroplast and thylakoid membranes. - Photosynthetica 58: 61-71, 2020.
Go to original source... - Kadukova J., Manousaki E., Kalogerakis N.: Pb and Cd accumulation and phyto-excretion by salt cedar (Tamarix smyrnensis Bunge). - Int. J. Phytoremediat. 10: 31-46, 2008.
Go to original source... - Kaya C., Ashraf M., Sonmez O. et al.: Exogenous application of thiamin promotes growth and antioxidative defense system at initial phases of development in salt-stressed plants of two maize cultivars differing in salinity tolerance. - Acta Physiol. Plant. 37: 1741, 2015.
Go to original source... - Kosugi H., Kikugawa K.: Thiobarbituric acid reaction of aldehydes and oxidized lipids in glacial acetic acid. - Lipids 20: 915-920, 1985.
Go to original source... - Levitt J.: Responses of Plants to Environmental Stresses: Water, Radiation, Salt and Other Stresses. Pp. 607. Academic Press, New York 1980.
- Li N.N., Wang X., Ma B.J. et al.: Expression of a Na+/H+ antiporter RtNHX1 from a recretohalophyte Reaumuria trigyna improved salt tolerance of transgenic Arabidopsis thaliana. - J. Plant Physiol. 218: 109-120, 2017.
Go to original source... - Li P., Zhu Y., Song X., Song F.: Negative effects of long-term moderate salinity and short-term drought stress on the photosynthetic performance of Hybrid Pennisetum. - Plant Physiol. Bioch. 155: 93-104, 2020.
Go to original source... - Li W.Q., Liu X.J., Zhao K.F., Liu H.L.: [Growth, development and ions distribution of three halophytes under salt stress.] - Chin. J. Eco.-Agr. 14: 49-52, 2006. [In Chinese]
- Lichtenthaler H.K.: Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. - Method. Enzymol. 148: 350-382, 1987.
Go to original source... - Lissner J., Schierup H.H., Comín F.A., Astorga V.: Effect of climate on the salt tolerance of two Phragmites australis populations. I. Growth, inorganic solutes, nitrogen relations and osmoregulation. - Aquat. Bot. 64: 317-333, 1999.
Go to original source... - López-Serrano L., Canet-Sanchis G., Selak G.V. et al.: Physiological characterization of a pepper hybrid rootstock designed to cope with salinity stress. - Plant Physiol. Bioch. 148: 207-219, 2020.
Go to original source... - Lu C., Jiang G., Wang B., Kuang T.: Photosystem II photochemistry and photosynthetic pigment composition in salt-adapted halophyte Artimisia anethifolia grown under outdoor conditions. - J. Plant Physiol. 160: 403-408, 2003.
Go to original source... - Lu Y., Lei J.Q., Zeng F.J. et al.: Effect of NaCl-induced changes in growth, photosynthetic parameters, water status and enzymatic antioxidant system of Calligonum caput-medusae Schrenk seedlings. - Photosynthetica 55: 96-106, 2017.
Go to original source... - Lu Y., Li X.R., He M.Z. et al.: Seedling growth and antioxidative enzymes activities in leaves under metal stress differ between two desert plants: a perennial (Peganum harmala) and an annual (Halogeton glomeratus) grass. - Acta Physiol. Plant. 32: 583-590, 2010.
Go to original source... - Ma Q., Bao A.K., Chai W.W. et al.: Transcriptomic analysis of succulent xerophyte Zygophyllum xanthoxylum in response to salt treatment and osmotic stress. - Plant Soil 402: 343-361, 2016.
Go to original source... - Ma Q., Yue L.J., Zhang J.L. et al.: Sodium chloride improves photosynthesis and water status in the succulent xerophyte Zygophyllum xanthoxylum. - Tree Physiol. 32: 4-13, 2012.
Go to original source... - Manousaki E., Kalogerakis N.: Halophytes - An emerging trend in phytoremediation. - Int. J. Phytoremediat. 13: 959-969, 2011.
Go to original source... - Marschner H.: Mineral Nutrition of Higher Plants. 2nd Edition. Pp. 889. Academic Press, London 1995.
- Min X.J., Zang Y.X., Sun W., Ma J.Y.: Contrasting water sources and water-use efficiency in coexisting desert plants in two saline-sodic soils in northwest China. - Plant Biol. 21: 1150-1158, 2019.
Go to original source... - Mittler R.: Oxidative stress, antioxidants and stress tolerance. - Trends Plant Sci. 7: 405-410, 2002.
Go to original source... - Moya J.L., Tadeo F.R., Gómez-Cadenas A. et al.: Transmissible salt tolerance traits identified through reciprocal grafts between sensitive Carrizo and tolerant Cleopatra citrus genotypes. - J. Plant Physiol. 159: 991-998, 2002.
Go to original source... - Munns R.: Comparative physiology of salt and water stress. - Plant Cell Environ. 25: 239-250, 2002.
Go to original source... - Munns R.: Genes and salt tolerance: bringing them together. - New Phytol. 167: 645-663, 2005.
Go to original source... - Munns R., Gilliham M.: Salinity tolerance of crops - what is the cost? - New Phytol. 208: 668-673, 2015.
Go to original source... - Munns R., James R.A., Läuchli A.: Approaches to increasing the salt tolerance of wheat and other cereals. - J. Exp. Bot. 57: 1025-1043, 2005.
Go to original source... - Nakano Y., Asada K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. - Plant Cell Physiol. 22: 867-880, 1981.
- Niyogi K.K.: Photoprotection revisited: genetic and molecular approaches. - Annu. Rev. Plant Phys. 50: 333-359, 1999.
Go to original source... - Ouerghi Z., Cornic G., Roudani M. et al.: Effect of NaCl on photosynthesis of two wheat species (Triticum durum and T. aestivum) differing in their sensitivity to salt stress. - J. Plant Physiol. 156: 335-340, 2000.
Go to original source... - Palma F., Lluch C., Iribarne C. et al.: Combined effect of salicylic acid and salinity on some antioxidant activities, oxidative stress and metabolite accumulation in Phaseolus vulgaris. - Plant Growth Regul. 58: 307-316, 2009.
Go to original source... - Pan C.C., Liu C.A., Zhao H.L., Wang Y.: Changes of soil physico-chemical properties and enzyme activities in relation to grassland salinization. - Eur. J. Soil Biol. 55: 13-19, 2013.
Go to original source... - Panda A., Rangani J., Parida A.K.: Cross talk between ROS homeostasis and antioxidative machinery contributes to salt tolerance of the xero-halophyte Haloxylon salicornicum. - Environ. Exp. Bot. 166: 103799, 2019.
Go to original source... - Pandey D.M., Choi I., Yeo U.-D.: Photosystem 2-activity and thylakoid membrane polypeptides of in vitro cultured chrysanthemum as affected by NaCl. - Biol. Plantarum 53: 329-333, 2009.
Go to original source... - Pandey D.M., Kang K.-H., Yeo U.-D.: Effects of excessive photon on the photosynthetic pigments and violaxanthin de-epoxidase activity in the xanthophyll cycle of spinach leaf. - Plant Sci. 168: 161-166, 2005.
Go to original source... - Parida A.K., Veerabathini S.K., Kumari A., Agarwal P.K.: Physiological, anatomical and metabolic implications of salt tolerance in the halophyte Salvadora persica under hydroponic culture condition. - Front. Plant Sci. 7: 351, 2016.
Go to original source... - Rajhi I., Ben Moussa S., Neji I. et al.: Photosynthetic and physiological responses of small seeded faba bean genotypes (Vicia faba L.) to salinity stress: identification of a contrasting pair towards salinity. - Photosynthetica 58: 174-185, 2020.
Go to original source... - Rattan A., Kapoor D., Kapoor N. et al.: Brassinosteroids regulate functional components of antioxidative defense system in salt stressed maize seedlings. - J. Plant Growth Regul. 39: 1465-1475, 2020.
Go to original source... - Reddy M.P., Vora A.B.: Changes in pigment composition, Hill reaction activity and saccharides metabolism in bajra (Pennisetum typhoides S & H) leaves under NaCl salinity. - Photosynthetica 20: 50-55, 1986.
- Sehar Z., Masood A., Khan N.A.: Nitric oxide reverses glucose-mediated photosynthetic repression in wheat (Triticum aestivum L.) under salt stress. - Environ. Exp. Bot. 161: 277-289, 2019.
Go to original source... - Sergiev I., Alexieva V., Karanov E.: Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. - Compt. Rend. Acad. Bulg. Sci. 51: 121-124, 1997.
- Shabala S., Mackay A.: Ion transport in halophytes. - Adv. Bot. Res. 57: 151-199, 2011.
Go to original source... - Shafeiee M., Ehsanzadeh P.: Physiological and biochemical mechanisms of salinity tolerance in several fennel genotypes: Existence of clearly-expressed genotypic variations. - Ind. Crop. Prod. 132: 311-318, 2019.
Go to original source... - Shahbaz M., Zia B.: Does exogenous application of glycinebetaine through rooting medium alter rice (Oryza sativa L.) mineral nutrient status under saline conditions? - J. Appl. Bot. Food Qual. 84: 54-60, 2011.
- Shi Y., Wang Z., Lui C., Yang Z.: [Glacial resources of the arid regions in Northwest China and their utilization.] - In: Zhao S. (ed.): [Utilization and Development of Natural Resources in Arid and Semi-Arid Lands.] Pp. 26-32. Science Press, Beijing 1989. [In Chinese]
- Sibole J.V., Cabot C., Poschenrieder C., Barceló J.: Efficient leaf ion partitioning, an overriding condition for abscisic acid-controlled stomatal and leaf growth responses to NaCl salini-zation in two legumes. - J. Exp. Bot. 54: 2111-2119, 2003.
Go to original source... - Singh M., Kumar J., Singh S. et al.: Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. - Rev. Environ. Sci. Biotechnol. 14: 407-426, 2015.
Go to original source... - Singh M., Kumar J., Singh V.P., Prasad S.M.: Plant tolerance mechanism against salt stress: the nutrient management approach. - Biochem. Pharmacol. 3: 165, 2014.
Go to original source... - Smart R.E., Bingham G.E.: Rapid estimates of relative water content. - Plant Physiol. 53: 258-260, 1974.
Go to original source... - Sofy M.R., Elhawat N., Alshaal T.: Glycine betaine counters salinity stress by maintaining high K+/Na+ ratio and antioxidant defense via limiting Na+ uptake in common bean (Phaseolus vulgaris L.). - Ecotox. Environ. Safe. 200: 110732, 2020.
Go to original source... - Ungar I.A.: Ecophysiology of Vascular Halophytes. Pp. 221. CRC Press, Boca Raton 1991.
- Veatch-Blohm M.E., Malinowski M., Keefer D.: Leaf water status, osmotic adjustment and carbon assimilation in colored calla lilies in response to saline irrigation. - Sci. Hortic.-Amsterdam 144: 65-73, 2012.
Go to original source... - Verslues P.E., Agarwal M., Katiyar-Agarwal S. et al.: Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stress that affect plant water status. - Plant J. 45: 523-539, 2006.
Go to original source... - Wang J.C., Meng Y.X., Li B.C. et al.: Physiological and proteomic analyses of salt stress response in the halophyte Halogeton glomeratus. - Plant Cell Environ. 38: 655-669, 2015.
Go to original source... - Wang R., Chen S., Zhou X. et al.: Ionic homeostasis and reactive oxygen species control in leaves and xylem sap of two poplars subjected to NaCl stress. - Tree Physiol. 28: 947-957, 2008.
Go to original source... - Weckx J.E.J., Clijsters H.M.M.: Oxidative damage and defense mechanisms in primary leaves of Phaseolus vulgaris as a result of root assimilation of toxic amounts of copper. - Physiol. Plantarum 96: 506-512, 1996.
Go to original source... - Zeng F.J., Bleby T.M., Landman P.A. et al.: Water and nutrient dynamics in surface roots and soils are not modified by short-term flooding of phreatophytic plants in a hyperarid desert. -Plant Soil 279: 129-139, 2006.
Go to original source... - Zhu Y.F., Wu Y.X., Hu Y. et al.: Tolerance of two apple rootstocks to short-term stress: focus on chlorophyll degradation, photosynthesis, hormone and leaf ultrastructures. - Acta Physiol. Plant. 41: 87, 2019.
Go to original source...




