Photosynthetica 2021, 59(SI):409-421 | DOI: 10.32615/ps.2021.023

The love-hate relationship between chlorophyll a and water in PSII affects fluorescence products

C.R. GUADAGNO1, D.P. BEVERLY1, 2, B.E. EWERS1, 3
1 University of Wyoming, Department of Botany, Laramie, Wyoming, U.S.A.
2 University of Wyoming, Water Resources/Environmental Science and Engineering, Laramie, Wyoming, U.S.A.
3 University of Wyoming, Program in Ecology, Laramie, Wyoming, U.S.A.

Chlorophyll a (Chl a) has an asymmetrical molecular organization, which dictates its orientation and the location of the pigment in the mature photosynthetic apparatus. Although Chl a fluorescence (ChlF) is widely accepted as a proxy for plant photosynthetic performance under countless stress conditions and across species, a mechanistic understanding of this causality is missing. Since water plays a much greater role than solvent for the photosynthetic machinery, elucidating its influence on Chl a may explain the reliable reflection of plant stress response in the ChlF signal. We examine the effect of hydration from well-watered to lethal drought on ChlF imagery results across morphologically diverse species to begin testing the impact of molecular scale hydration of Chl a on ChlF. Our results support a conceptual model where water is an integral part of the photosystems' structure and directly influences Chl a behavior leading to changes in the energy partitioning and ultimately in ChlF.

Additional key words: chlorophyll a fluorescence; drought; leaf water content; molecular water; mortality; photosystem II.

Received: December 21, 2020; Revised: March 13, 2021; Accepted: March 31, 2021; Prepublished online: May 25, 2021; Published: July 23, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
GUADAGNO, C.R., BEVERLY, D.P., & EWERS, B.E. (2021). The love-hate relationship between chlorophyll a and water in PSII affects fluorescence products. Photosynthetica59(SPECIAL ISSUE), 409-421. doi: 10.32615/ps.2021.023
Download citation

Supplementary files

Download fileGuadagno_2677_supplement.docx

File size: 1.77 MB

References

  1. Agostiano A., Cosma P., Trotta M. et al.: Chlorophyll a behavior in aqueous solvents: Formation of nanoscale self-assembled complexes. - J. Phys. Chem. B 106: 12820-12829, 2002. Go to original source...
  2. Anderson J.T., Willis J.H., Mitchell-Olds T.: Evolutionary genetics of plant adaptation. - Trends Genet. 27: 258-266, 2011. Go to original source...
  3. Ashraf M., Mehmood S.: Response of four Brassica species to drought stress. - Environ. Exp. Bot. 30: 93-100, 1990. Go to original source...
  4. Baker N.R.: Chlorophyll fluorescence: A probe of photosynthesis in vivo. - Annu. Rev. Plant Biol. 59: 89-113, 2008. Go to original source...
  5. Baker N.R., Rosenqvist E.: Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. - J. Exp. Bot. 55: 1607-1621, 2004. Go to original source...
  6. Barber J., Morris E., Büchel C.: Revealing the structure of the photosystem II chlorophyll binding proteins, CP43 and CP47. - BBA-Bioenergetics 1459: 239-247, 2000. Go to original source...
  7. Battersby A.R.: Tetrapyrroles: the pigments of life. - Nat. Prod. Rep. 17: 507-526, 2000. Go to original source...
  8. Begoviĉ L., Galiĉ V., Abièiĉ I. et al.: Implications of intra-seasonal climate variations on chlorophyll a fluorescence and biomass in winter barley breeding program. - Photosynthetica 58: 995-1008, 2020. Go to original source...
  9. Beverly D.P., Guadagno C.R., Ewers B.E.: Biophysically informed imaging acquisition of plant water status. - Front. For. Glob. Change 3: 589493, 2020. Go to original source...
  10. Brooks M.D., Niyogi K.K.: Use of a pulse-amplitude modulated (PAM) chlorophyll fluorometer to study the efficiency of photosynthesis in Arabidopsis plants. - In: Jarvis R. (ed.): Chloroplast Research in Arabidopsis. Methods in Molecular Biology. Vol. 775. Pp. 299-310. Humana Press, Totowa 2011. Go to original source...
  11. Butler W.L.: Energy distribution in the photochemical apparatus of photosynthesis. - Ann. Rev. Plant Physio. 29: 345-378, 1978. Go to original source...
  12. Campbell G.S., Smith D.M., Teare B.L.: Application of a dew point method to obtain the soil water characteristic. - In: Schanz T. (ed.): Experimental Unsaturated Soil Mechanics. Springer Proceedings in Physics. Vol. 112. Pp. 71-77. Springer, Berlin-Heidelberg 2007. Go to original source...
  13. Campbell R.J., Mobley K.N., Marini R.P., Pfeiffer D.G.: Growing conditions alter the relationship between SPAD501 values and apple leaf chlorophyll. - HortScience 25: 330-331, 1990. Go to original source...
  14. Chitwood D.H., Sinha N.R.: Evolutionary and environmental forces sculpting leaf development. - Curr. Biol. 26: R297-R306, 2016. Go to original source...
  15. Conkle M.T., Critchfield W.B.: Genetic variation and hybridization of ponderosa pine. - In: Baumgartner D.M., Lotan J.E. (ed.): Ponderosa Pine: The Species and its Management. Pp. 27-44. Washington State University Cooperative Extension, Washington 1988.
  16. Demmig-Adams B., Koh S.-C., Cohu C.M. et al.: Non photochemical quenching in contrasting plant species and environments. - In: Demmig-Adams B., Garab G., Adams III W.W., Govindjee (ed.): Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Advances in Photosynthesis and Respiration. Vol. 40. Springer, Dordrecht 2014a. Go to original source...
  17. Demmig-Adams B., Stewart J.J., Burch T.A., Adams III W.W.: Insights from placing photosynthetic light harvesting into context. - J. Phys. Chem. Lett. 5: 2880-2889, 2014b. Go to original source...
  18. Fernández-Calleja M., Monteagudo A., Casas A.M. et al.: Rapid on-site phenotyping via field fluorimeter detects differences in photosynthetic performance in a hybrid-parent barley germplasm set. - Sensors-Basel 20: 1486, 2020. Go to original source...
  19. Genty B., Briantais J.-M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. - BBA-Gen. Subjects 990: 87-92, 1989. Go to original source...
  20. Giles K., Beardsell M.F., Cohen D.: Cellular and ultrastructural changes in mesophyll and bundle sheath cells of maize in response to water stress. - Plant Physiol. 54: 208-212, 1974. Go to original source...
  21. Girr P., Kilper J., Pohland A.-C., Paulsen H.: The pigment binding behavior of water-soluble chlorophyll protein (WSCP). - Photoch. Photobio. Sci. 19: 695-712, 2020. Go to original source...
  22. Gorbe E., Calatayud A.: Applications of chlorophyll fluorescence imaging technique in horticultural research: A review. - Sci. Hortic.-Amsterdam 138: 24-35, 2012. Go to original source...
  23. Govindjee G.: Chlorophyll a fluorescence: a bit of basics and history. - In: Papageorgiou G.C., Govindjee G. (ed.): Chlorophyll a Fluorescence. Advances in Photosynthesis and Respiration. Vol. 19. Pp. 1-42. Springer, Dordrecht 2004. Go to original source...
  24. Gu L., Han J., Wood J.D. et al.: Sun-induced Chl fluorescence and its importance for biophysical modeling of photosynthesis based on light reactions. - New Phytol. 223: 1179-1191, 2019. Go to original source...
  25. Guadagno C.R., Ewers B.E.: Chlorophyll a fluorescence analyses to investigate the impacts of genotype, species and stress on photosynthetic efficiency and plant productivity. - In: Samal A., Choudhury S.D. (ed.): Intelligent Image Analysis for Plant Phenotyping. Pp. 26. CRC Press, Boca Raton 2020. Go to original source...
  26. Guadagno C.R., Ewers B.E., Speckman H.N. et al.: Dead or alive? Using membrane failure and chlorophyll a fluorescence to predict plant mortality from drought. - Plant Physiol. 175: 223-234, 2017. Go to original source...
  27. Guadagno C.R., Ewers B.E., Weinig C.: Circadian rhythms and redox state in plants: till stress do us part. - Front. Plant Sci. 9: 247, 2018. Go to original source...
  28. Guidi L., Tattini M., Landi M.: How does the chloroplast protect chlorophyll against excessive light? - In: Jacob-Lopes E., Queiroz Zepka L., Queiroz M.I. (ed.): Chlorophyll. InTech, 2017. Go to original source...
  29. Herritt M.T., Pauli D., Mockler T.C., Thompson A.L.: Chlorophyll fluorescence imaging captures photochemical efficiency of grain sorghum (Sorghum bicolor) in a field setting. - Plant Methods 16: 109, 2020. Go to original source...
  30. Kalaji H.M., Jajoo A., Oukarroum A. et al.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. - Acta Physiol. Plant. 38: 102, 2016. Go to original source...
  31. Kalaji H.M., Schansker G., Brestic M. et al.: Frequently asked questions about chlorophyll fluorescence, the sequel. - Photosynth. Res. 132: 13-66, 2017. Go to original source...
  32. Koide R.T., Robichaux R.H., Morse S.R., Smith C.M.: Plant water status, hydraulic resistance and capacitance. - In: Pearcy R.W., Ehleringer J.R., Mooney H.A., Rundel P.W. (ed.): Plant Physiological Ecology. Pp. 161-183. Springer, Dordrecht 1989. Go to original source...
  33. Kuhlgert S., Austic G., Zegarac R. et al.: MultispeQ Beta: A tool for large-scale plant phenotyping connected to the open PhotosynQ network. - Royal Soc. Open Sci. 3: 160592, 2016. Go to original source...
  34. Lichtenthaler H.K.: The stress concept in plants: an introduc-tion. - Ann. N.Y. Acad. Sci. 851: 187-198, 1998. Go to original source...
  35. Lichtenhaler H.K., Buschmann C., Rinderle U., Schmuck G.: Application of chlorophyll fluorescence in ecophysiology. - Radiat. Environ. Bioph. 25: 297-308, 1986. Go to original source...
  36. Lichtenthaler H.K., Langsdorf G., Lenk S., Buschmann C.: Chlorophyll fluorescence imaging of photosynthetic acti-vity with the flash-lamp fluorescence imaging system. - Photosynthetica 43: 355-369, 2005. Go to original source...
  37. Lichtenthaler H.K., Miehé J.A.: Fluorescence imaging as a diagnostic tool for plant stress. - Trends Plant Sci. 2: 316-320, 1997. Go to original source...
  38. Lide D.R. (ed.): CRC Handbook of Chemistry and Physics. 90th Edition. Pp. 2804. CRC Press, Boca Raton 2009.
  39. Lin K., Zhang N., Severing E.I. et al.: Beyond genomic variation - comparison and functional annotation of three Brassica rapa genomes: a turnip, a rapid cycling and a Chinese cabbage. - BMC Genomics 15: 250, 2014. Go to original source...
  40. Linke K., Ho F.M.: Water in Photosystem II: Structural, functional and mechanistic considerations. - BBA-Bioenergetics 1837: 14-32, 2014. Go to original source...
  41. Magney T.S., Barnes M.L., Yang X.: On the covariation of chlorophyll fluorescence and photosynthesis across scales. - Geophys. Res. Lett. 47: e2020GL091098, 2020. Go to original source...
  42. Marenco R.A., Antezana-Vera S.A., Nascimento H.C.S.: Relationship between specific leaf area, leaf thickness, leaf water content and SPAD-502 readings in six Amazonian tree species. - Photosynthetica 47: 184-190, 2009. Go to original source...
  43. Matsubara S., Chow W.S.: Populations of photoinactivated photosystem II reaction centers characterized by chlorophyll a fluorescence lifetime in vivo. - P. Natl. Acad. Sci. USA 101: 18234-18239, 2004. Go to original source...
  44. Maxwell K., Johnson G.N.: Chlorophyll fluorescence - a practical guide. - J. Exp. Bot. 345: 659-668, 2000. Go to original source...
  45. Mirkovic T., Ostroumov E.E., Anna J.M. et al.: Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. - Chem. Rev. 117: 249-293, 2017. Go to original source...
  46. Müller P., Li X.-P., Niyogi K.K.: Non-photochemical quenching. A response to excess light energy. - Plant Physiol. 125: 1558-1566, 2001. Go to original source...
  47. Murchie E.H., Lawson T.: Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. - J. Exp. Bot. 64: 3983-3998, 2013. Go to original source...
  48. Murphy R.J., Whelan B., Chlingaryan A., Sukkarieh S.: Quantifying leaf-scale variations in water absorption in lettuce from hyperspectral imagery: a laboratory study with implications for measuring leaf water content in the context of precision agriculture. - Precis. Agric. 20: 767-787, 2019. Go to original source...
  49. Palm D.M., Agostini A., Pohland A.-C.: Stability of water-soluble chlorophyll protein (WSCP) depends on phytyl conformation. -ACS Omega 4: 7971-7979, 2019. Go to original source...
  50. Papageorgiou G.C., Govindjee G. (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 818. Springer, Dordrecht 2004. Go to original source...
  51. Porcar-Castell A., Tyystjärvi E., Atherton J. et al.: Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. - J. Exp. Bot. 65: 4065-4095, 2014. Go to original source...
  52. Radermacher A.L., du Toit S.F., Farrant J.M.: Desiccation-driven senescence in the resurrection plant Xerophyta schlechteri (Baker) N.L. Menezes: Comparison of anatomical, ultrastructural, and metabolic responses between senescent and non-senescent tissues. - Front. Plant Sci. 10: 1396, 2019. Go to original source...
  53. Raven P.H., Evert R.F., Eichhorn S.E.: Photosynthesis, Light, and Life. - In: Raven P.H., Evert R.F., Eichhorn S.E. (ed.): Biology of Plants. 7th Edition. Pp. 119-127. W.H. Freeman & Company, New York 2004.
  54. Richardson A.D., Duigan S.P., Berlyn G.P.: An evaluation of noninvasive methods to estimate foliar chlorophyll content. - New Phytol. 153: 185-194, 2002. Go to original source...
  55. Ruban A.V.: Nonphotochemical chlorophyll fluorescence quenching: Mechanism and effectiveness in protecting plants from photodamage. - Plant Physiol. 170: 1903-1916, 2016. Go to original source...
  56. Saito K., Mitsuhashi K., Ishikita H.: Dependence of the chlorophyll wavelength on the orientation of a charged group: Why does the accessory chlorophyll have a low site energy in photosystem II? - J. Photoch. Photobio. A 402: 112799, 2020. Go to original source...
  57. Schansker G., Tóth S.Z., Strasser R.J.: Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. - BBA-Bioenergetics 1706: 250-261, 2005. Go to original source...
  58. Scoffoni C., Vuong C., Diep S. et al.: Leaf shrinkage with dehydration: coordination with hydraulic vulnerability and drought tolerance. - Plant Physiol. 164: 1772-1788, 2014. Go to original source...
  59. Shen J.R.: The structure of photosystem II and the mechanism of water oxidation in photosynthesis. - Annu. Rev. Plant Biol. 66: 23-48, 2015. Go to original source...
  60. Shipman L.L., Cotton T.M., Norris J.R., Katz J.J.: New proposal for structure of special-pair chlorophyll. - P. Natl. Acad. Sci. USA 73: 1791-1794, 1976. Go to original source...
  61. Sperry J.S., Love D.M.: What plant hydraulics can tell us about plant responses to climate-change droughts. - New Phytol. 207: 14-17, 2015. Go to original source...
  62. Sun H., Feng M., Xiao L. et al.: Assessment of plant water status in winter wheat (Triticum aestivum L.) based on canopy spectral indices. - PLoS ONE 14: e0216890, 2019. Go to original source...
  63. Tietz S., Hall C.C., Cruz J.A., Kramer D.M.: NPQ(T): A chlorophyll fluorescence parameter for rapid estimation and imaging of non-photochemical quenching of excitons in photosystem-II-associated antenna complexes. - Plant Cell Environ. 40: 1243-1255, 2017. Go to original source...
  64. Uddling J., Gelang-Alfredsson J., Piikki K., Pleijel H.: Evaluating the relationship between leaf chlorophyll concentration and SPAD502 chlorophyll meter readings. - Photosynth. Res. 91: 37-46, 2007. Go to original source...
  65. Urban L., Aarrouf J., Bidel L.P.R.: Assessing the effects of water deficit on photosynthesis using parameters derived from measurements of leaf gas exchange and of chlorophyll a fluorescence. - Front Plant Sci. 8: 2068, 2017. Go to original source...
  66. van Bezouwen L.S., Caffarri S., Kale R.S. et al.: Subunit and chlorophyll organization of the plant photosystem II supercomplex. - Nat. Plants 3: 17080, 2017. Go to original source...
  67. Vasil'ev S., Shen J.-R., Kamiya N., Bruce D.: The orientations of core antenna chlorophylls in photosystem II are optimized to maximize the quantum yield of photosynthesis. - FEBS Lett. 561: 111-116, 2004. Go to original source...
  68. Vogt L., Vinyard D.J., Khan S., Brudvig G.W.: Oxygen evolving complex of Photosystem II: an analysis of second-shell residues and hydrogen bonding networks. - Curr. Opin. Chem. Biol. 25: 152-158, 2015. Go to original source...
  69. Vredenberg W.J.: A three state model for energy trapping and chlorophyll fluorescence in Photosystem II incorporating radical pair recombination. - Biophys. J. 79: 26-38, 2000. Go to original source...
  70. Weatherley P.E.: Studies in water relations of cotton plants. I. The field measurement of water deficit in leaves. - New Phytol. 49: 81-87, 1950. Go to original source...
  71. Woo N.S., Badger M.R., Pogson B.J.: A rapid, non-invasive procedure for quantitative assessment of drought survival using chlorophyll fluorescence. - Plant Methods 4: 27, 2008. Go to original source...
  72. Wright I., Reich P., Westoby M. et al.: The worldwide leaf economics spectrum. - Nature 428: 821-827, 2004. Go to original source...
  73. Yao J., Sun D., Cen H. et al.: Phenotyping of Arabidopsis drought stress response using kinetic chlorophyll fluorescence and multicolor fluorescence imaging. - Front. Plant Sci. 9: 603, 2018. Go to original source...