Photosynthetica 2021, 59(SI):438-457 | DOI: 10.32615/ps.2021.034
Towards the quantitative and physically-based interpretation of solar-induced vegetation fluorescence retrieved from global imaging
- 1 Laboratory for Earth Observation (LEO), Image Processing Laboratory (IPL), Parc Científic, Universitat de València, 46980 Paterna, València, Spain
- 2 Finnish Meteorological Institute, Erik Palménin aukio 1, 00560 Helsinki, Finland
Due to emerging high spectral resolution, remote sensing techniques and ongoing developments to retrieve the spectrally resolved vegetation fluorescence spectrum from several scales, the light reactions of photosynthesis are receiving a boost of attention for the monitoring of the Earth's carbon balance. Sensor-retrieved vegetation fluorescence (from leaf, tower, airborne or satellite scale) originating from the excited antenna chlorophyll a molecule has become a new quantitative biophysical vegetation parameter retrievable from space using global imaging techniques. However, to retrieve the actual quantum efficiencies, and hence a true photosynthetic status of the observed vegetation, all signal distortions must be accounted for, and a high-precision true vegetation reflectance must be resolved. ESA's upcoming Fluorescence Explorer aims to deliver such novel products thanks to technological and instrumental advances, and by sophisticated approaches that will enable a deeper understanding of the mechanics of energy transfer underlying the photosynthetic process in plant canopies and ecosystems.
Additional key words: FLEX-Sentinel-3 tandem mission; fluorescence quantum efficiency; photosynthesis monitoring; quantitative remote sensing.
Received: December 20, 2020; Revised: June 14, 2021; Accepted: June 23, 2021; Prepublished online: July 20, 2021; Published: July 23, 2021 Show citation
| ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Aasen H., Van Wittenberghe S., Sabater N.S. et al.: Sun-induced chlorophyll fluorescence II: Review of passive measurement setups, protocols, and their application at the leaf to canopy level. - Remote Sens.-Basel 11: 927, 2019.
Go to original source... - Agati G., Fusi F., Mazzinghi P., di Paola M.L.: A simple approach to the evaluation of the reabsorption of chlorophyll fluorescence spectra in intact leaves. - J. Photoch. Photobio. B 17: 163-171, 1993.
Go to original source... - Akoumianaki-Ioannidou A., Georgakopoulos J.H., Fasseas C., Argyroudi-Akoyunoglou J.H.: Photoacclimation in Spathiphyllum. - J. Photoch. Photobio. B 73: 149-158, 2004.
Go to original source... - Albert L.P., Cushman K.C., Allen D.W. et al.: Stray light characterization in a high-resolution imaging spectrometer designed for solar-induced fluorescence. - In: Velez-Reyes M., Messinger D.W. (ed.): Proc. SPIE 10986. Algorithms, Technologies, and Applications for Multispectral and Hyperspectral Imagery XXV, 2019.
Go to original source... - Alonso L., Gomez-Chova L., Vila-Francés J. et al.: Improved Fraunhofer line discrimination method for vegetation fluorescence quantification. - IEEE Geosci. Remote Sens. Lett. 5: 620-624, 2008.
Go to original source... - Alonso L., Moreno J.: A novel portable device to measure leaf reflectance, transmittance, and fluorescence emission under natural conditions. - In: Proceedings of the 4th International Workshop on Remote Sensing of Vegetation Fluorescence, Valencia, Spain. Pp. 1-17. 2010.
- Alonso L., Vicent J., Sabater N. et al.: Impact of instrument characterization in the retrieval of SIF: HyPlant case study. -In: Remote Sensing of Fluorescence, Photosynthesis and Vegetation Status. ESA-ESRIN, Frascati 2017.
- Amorós-López J., Gomez-Chova L., Vila-Frances J. et al.: Study of the diurnal cycle of stressed vegetation for the improvement of fluorescence remote sensing. - In: Proc. SPIE 6359, Remote Sensing for Agriculture, Ecosystems, and Hydrology VIII. SPIE, 2006.
Go to original source... - Berk A., Anderson G.P., Acharya P.K. et al.: MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update. - In: Proc. SPIE 5806, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI. Pp. 662-667. SPIE, 2005.
Go to original source... - Bilger W., Björkman O.: Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. - Photosynth. Res. 25: 173-185, 1990.
Go to original source... - Biriukova K., Celesti M., Evdokimov A. et al.: Effects of varying solar-view geometry and canopy structure on solar-induced chlorophyll fluorescence and PRI. - Int. J. Appl. Earth Obs. Geoinf. 89: 102069, 2020.
Go to original source... - Björkman O., Demmig B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. - Planta 170: 489-504, 1987.
Go to original source... - Björn L.O., Papageorgiou G.C., Blankenship R.E., Govindjee: A viewpoint: Why chlorophyll a? - Photosynth. Res. 99: 85-98, 2009.
Go to original source... - Buschmann C.: Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves. - Photosynth. Res. 92: 261-271, 2007.
Go to original source... - Campbell P.K.E., Huemmrich K.F., Middleton E.M. et al.: Diurnal and seasonal variations in chlorophyll fluorescence associated with photosynthesis at leaf and canopy scales. - Remote Sens.-Basel 11: 488, 2019.
Go to original source... - Cendrero-Mateo M.P., Wieneke S., Damm A. et al.: Sun-induced chlorophyll fluorescence III: Benchmarking retrieval methods and sensor characteristics for proximal sensing. - Remote Sens.-Basel 11: 962, 2019.
Go to original source... - Chang C.Y., Guanter L., Frankenberg C. et al.: Systematic assessment of retrieval methods for canopy far-red solar-induced chlorophyll fluorescence using high-frequency automated field spectroscopy. - J. Geophys. Res.-Biogeo. 125: e2019JG005533, 2020.
Go to original source... - Chow W.S., Melis A., Anderson J.M.: Adjustments of photosystem stoichiometry in chloroplasts improve the quantum efficiency of photosynthesis. - P. Natl. Acad. Sci. USA 87: 7502-7506, 1990.
Go to original source... - Cogliati S., Celesti M., Cesana I. et al.: A spectral fitting algorithm to retrieve the fluorescence spectrum from canopy radiance. - Remote Sens.-Basel 11: 1840, 2019.
Go to original source... - Cogliati S., Verhoef W., Kraft S. et al.: Retrieval of sun-induced fluorescence using advanced spectral fitting methods. - Remote Sens. Environ. 169: 344-357, 2015.
Go to original source... - Coppo P., Taiti A., Pettinato L. et al.: Fluorescence imaging spectrometer (FLORIS) for ESA FLEX mission. - Remote Sens.-Basel 9: 649, 2017.
Go to original source... - Crisp D., Pollock H.R., Rosenberg R. et al.: The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products. - Atmos. Meas. Tech. 10: 59-81, 2017.
Go to original source... - Croce R., Dorra D., Holzwarth A.R., Jennings R.C.: Fluorescence decay and spectral evolution in intact Photosystem I of higher plants. - Biochemistry-US 39: 6341-6348, 2000.
Go to original source... - Damm A., Elber J., Erler A. et al.: Remote sensing of sun-induced fluorescence to improve modeling of diurnal courses of gross primary production (GPP). - Glob. Change Biol. 16: 171-186, 2010.
Go to original source... - Damm A., Erler A., Hillen W. et al.: Modeling the impact of spectral sensor configurations on the FLD retrieval accuracy of sun-induced chlorophyll fluorescence. - Remote Sens. Environ. 115: 1882-1892, 2011.
Go to original source... - Daumard F., Champagne S., Fournier A. et al.: A field platform for continuous measurement of canopy fluorescence. - IEEE Trans. Geosci. Remote Sens. 48: 3358-3368, 2010.
Go to original source... - Demmig-Adams B.: Carotenoids and photoprotection in plants: A role for the xanthophyll zeaxanthin. - BBA-Bioenergetics 1020: 1-24, 1990.
Go to original source... - Demmig-Adams B., Stewart J.J., López-Pozo M. et al.: Zeaxanthin, a molecule for photoprotection in many different environments. - Molecules 25: 5825, 2020.
Go to original source... - Diedrich H., Preusker R., Lindstrot R., Fischer J.: Retrieval of daytime total columnar water vapor from MODIS measurements over land surfaces. - Atmos. Meas. Tech. 8: 823-836, 2015.
Go to original source... - Doornink J., de Vries J., Voors R. et al.: The Tropomi instrument: last steps towards final integration and testing. - In: Proc. SPIE 10563, International Conference on Space Optics, Tenerife 2014. ICSO, 2014.
- Drusch M., Moreno J., Del Bello U. et al.: The FLuorescence EXplorer Mission Concept - ESA's Earth Explorer 8. - IEEE Trans. Geosci. Remote Sens. 55: 1273-1284, 2017.
Go to original source... - Du S., Liu L., Liu X., Hu J.: Response of canopy solar-induced chlorophyll fluorescence to the absorbed photosynthetically active radiation absorbed by chlorophyll. - Remote Sens.-Basel 9: 911, 2017.
Go to original source... - Emde C., Buras-Schnell R., Kylling A. et al.: The libRadtran software package for radiative transfer calculations version 2.0.1. - Geosci. Model Dev. 9: 1647-1672, 2016.
Go to original source... - ESA (European Space Agency): FLEX Earth Explorer 8 Mission Requirements Document, Version 3.0, Issue Date 05/06/2018, ESA Earth and Mission Science Division, Ref: ESAEOP-SM/2221/MDru-md, 2018.
- Fischer J., Leinweber R., Preusker R.: Retrieval of total water vapour content from MERIS measurements. Algorithm theoretical basis document ATBD 2.4. Pp. 23. Free University of Berlin, Institute for Space Science, Berlin 2010.
- Fournier A., Daumard F., Champagne S. et al.: Effect of canopy structure on sun-induced chlorophyll fluorescence. - ISPRS J. Photogramm. Remote Sens. 68: 112-120, 2012.
Go to original source... - Franck F., Juneau P., Popovic R.: Resolution of the Photosystem I and Photosystem II contributions to chlorophyll fluorescence of intact leaves at room temperature. - BBA-Bioenergetics 1556: 239-246, 2002.
Go to original source... - Frank H.A., Young A.J., Britton G., Cogdell R.J.: The Photochemistry of Carotenoids. Advances in Photosynthesis and Respiration. Pp. 401. Springer, Dordrecht 1999.
Go to original source... - Frankenberg C., Berry J.: Solar induced chlorophyll fluorescence: origins, relation to photosynthesis and retrieval. - In: Liang S. (ed.): Comprehensive Remote Sensing. Pp. 143-162. Elsevier, 2018.
Go to original source... - Frankenberg C., Köhler P., Magney T.S. et al.: The Chlorophyll Fluorescence Imaging Spectrometer (CFIS), mapping far red fluorescence from aircraft. - Remote Sens. Environ. 217: 523-536, 2018.
Go to original source... - Frankenberg C., O'Dell C., Berry J. et al.: Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2. - Remote Sens. Environ. 147: 1-12, 2014.
Go to original source... - Gastellu-Etchegorry J.P., Grau E., Lauret N.: DART: A 3D Model for Remote Sensing Images and Radiative Budget of Earth Surfaces. - In: Alexandru C. (ed.): Modeling and Simulation in Engineering. Pp. 29-68. InTech, 2012.
Go to original source... - Gilmore A.M., Yamamoto, H.Y.: Linear models relating xanthophylls and lumen acidity to non-photochemical fluorescence quenching. Evidence that antheraxanthin explains zeaxanthin-independent quenching. - Photosynth. Res 35: 67-78, 1993.
Go to original source... - Gitelson A.A., Buschmann C., Lichtenthaler H.K.: Leaf chlorophyll fluorescence corrected for re-absorption by means of absorption and reflectance measurements. - J. Plant Physiol. 152: 283-296, 1998.
Go to original source... - Gitelson A.A., Gamon J.A.: The need for a common basis for defining light-use efficiency: Implications for productivity estimation. - Remote Sens. Environ. 156: 196-201, 2015.
Go to original source... - Glumb R., Davis G., Lietzke C.: The TANSO-FTS-2 instrument for the GOSAT-2 greenhouse gas monitoring mission. - In: IEEE Geoscience and Remote Sensing Symposium, Quebec City 2014. IEEE, 2014.
Go to original source... - Goulas Y., Fournier A., Daumard F. et al.: Gross primary production of a wheat canopy relates stronger to far red than to red solar-induced chlorophyll fluorescence. - Remote Sens.-Basel 9: 97, 2017.
Go to original source... - Guanter L., Frankenberg C., Dudhia A. et al.: Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements. - Remote Sens. Environ. 121: 236-251, 2012.
Go to original source... - Guanter L., Zhang Y., Jung M. et al.: Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. - P. Natl. Acad. Sci. USA 111: E1327-E1333, 2014.
Go to original source... - Haboudane D., Miller J.R., Pattey E. et al.: Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. - Remote Sens. Environ. 90: 337-352, 2004.
Go to original source... - He L., Chen J.M.C., Liu J. et al.: Angular normalization of GOME-2 sun-induced chlorophyll fluorescence observation as a better proxy of vegetation productivity. - Geophys. Res. Lett. 44: 5691-5699, 2017.
Go to original source... - Hernández-Clemente R., North P.R.J., Hornero A., Zarco-Tejada P.J.: Assessing the effects of forest health on sun-induced chlorophyll fluorescence using the FluorFLIGHT 3-D radiative transfer model to account for forest structure. -Remote Sens. Environ. 193: 165-179, 2017.
Go to original source... - Hill C., Gordon I.E., Kochanov R.V. et al.: HITRANonline: An online interface and the flexible representation of spectroscopic data in the HITRAN database. - J. Quant. Spectrosc. Ra. 177: 4-14, 2016.
Go to original source... - Jahns P., Holzwarth A.R.: The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. - BBA-Bioenergetics 1817: 182-193, 2012.
Go to original source... - Joiner J., Yoshida Y., Guanter L. et al.: New methods for retrieval of chlorophyll red fluorescence from hyper-spectral satellite instruments: simulations and application to GOME-2 and SCIAMACHY. - Atmos. Meas. Tech. 9: 3939-3967, 2016.
Go to original source... - Joiner J., Yoshida Y., Vasilkov A.P. et al.: First observations of global and seasonal terrestrial chlorophyll fluorescence from space. - Biogeosciences 8: 637-651, 2011.
Go to original source... - Kiang N.Y., Siefert J., Govindjee, Blankenship R.E.: Spectral signatures of photosynthesis. I. Review of Earth organisms. - Astrobiology 7: 222-251, 2007.
Go to original source... - Kopp G., Lean J.L.: A new, lower value of total solar irradiance: Evidence and climate significance. - Geophys. Res. Lett. 38: L01706, 2011.
Go to original source... - Krüger T.P.J., van Grondelle R.: The role of energy losses in photosynthetic light harvesting. - J. Phys. B: At. Mol. Opt. Phys. 50: 132001, 2017.
Go to original source... - Lambrev P.H., Miloslavina Y., Jahns P., Holzwarth A.R.: On the relationship between non-photochemical quenching and photoprotection of Photosystem II. - BBA-Bioenergetics 1817: 760-769, 2012.
Go to original source... - Lambrev P.H., Nilkens M., Miloslavina Y. et al.: Kinetic and spectral resolution of multiple nonphotochemical quenching components in Arabidopsis leaves. - Plant Physiol. 152: 1611-1624, 2010.
Go to original source... - Leuenberger M., Morris J.M., Chan A.M. et al.: Dissecting and modelling zeaxanthin- and lutein-dependent nonphotochemical quenching in Arabidopsis thaliana. - P. Natl. Acad. Sci. USA 114: E7009-E7017, 2017.
Go to original source... - Liang S., Wang J.: Fractional vegetation cover. - In: Liang S., Wang J. (ed.): Advanced Remote Sensing: Terrestrial Information Extraction and Applications. Pp. 477-510. Academic Press, London 2020.
Go to original source... - Lichtenthaler H.K., Langsdorf G., Lenk S., Buschmann C.: Chlorophyll fluorescence imaging of photosynthetic activity with the flash-lamp fluorescence imaging system. - Photosynthetica 43: 355-369, 2005.
Go to original source... - Lichtenthaler H.K., Miehé J.A.: Fluorescence imaging as a diagnostic tool for plant stress. - Trends Plant Sci. 2: 316-320, 1997.
Go to original source... - Lichtenthaler H.K., Wenzel O., Buschmann C., Gitelson A.: Plant stress detection by reflectance and fluorescence. - Ann. N. Y. Acad. Sci. 851: 271-285, 1998.
Go to original source... - Liu X., Guanter L., Liu L. et al.: Downscaling of solar-induced chlorophyll fluorescence from canopy level to photosystem level using a random forest model. - Remote Sens. Environ. 231: 110772, 2019.
Go to original source... - Long D.A., Hodges J.T.: On spectroscopic models of the O2 A-band and their impact upon atmospheric retrievals. - J. Geophys. Res. Atmos. 117: D12309, 2012.
Go to original source... - Louis J., Cerovic Z.G., Moya I.: Quantitative study of fluorescence excitation and emission spectra of bean leaves. - J. Photoch. Photobio. B 85: 65-71, 2006.
Go to original source... - Louis J., Ounis A., Ducruet J.-M. et al.: Remote sensing of sunlight-induced chlorophyll fluorescence and reflectance of Scots pine in the boreal forest during spring recovery. - Remote Sens. Environ. 96: 37-48, 2005.
Go to original source... - MacBean N., Maignan F., Bacour C. et al.: Strong constraint on modelled global carbon uptake using solar-induced chlorophyll fluorescence data. - Sci. Rep.-UK 8: 1973, 2018.
Go to original source... - Magney T.S., Frankenberg C., Köhler P. et al.: Disentangling changes in the spectral shape of chlorophyll fluorescence: Implications for remote sensing of photosynthesis. - J. Geophys. Res.-Biogeo. 124: 1491-1507, 2019.
Go to original source... - Maier S.W., Günther K.P., Stellmes M.: Sun-induced fluorescence: A new tool for precision farming. - In: VanToai T., Major D., McDonald M. et al. (ed.): Digital Imaging and Spectral Techniques: Applications to Precision Agriculture and Crop Physiology. Vol. 66. Pp. 207-222. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison 2004.
Go to original source... - Meroni M., Busetto L., Colombo R. et al.: Performance of Spectral Fitting Methods for vegetation fluorescence quantification. - Remote Sens. Environ. 114: 363-374, 2010.
Go to original source... - Meroni M., Colombo R.: Leaf level detection of solar induced chlorophyll fluorescence by means of a subnanometer resolution spectroradiometer. - Remote Sens. Environ. 103: 438-448, 2006.
Go to original source... - Meroni M., Rossini M., Guanter L. et al.: Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications. - Remote Sens. Environ. 113: 2037-2051, 2009.
Go to original source... - Miloslavina Y., Wehner A., Lambrev P.H. et al.: Far-red fluorescence: A direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching. - FEBS Lett. 582: 3625-3631, 2008.
Go to original source... - Mohammed G.H., Colombo R., Middleton E.M. et al.: Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress. - Remote Sens. Environ. 231: 111177, 2019.
Go to original source... - Mohammed G.H., Colombo R., Moreno J. et al.: FLEX Bridge Study, Final Report ESA/ESTEC Contract No. 4000112341/14/ NL/FF/gp. Pp. 192. P & M Technologies, 2016.
- Moncholí A., Alonso L., Van Wittenberghe S. et al.: Canopy architectural influence on the interpretation of the biophysical parameters and sun-induced chlorophyll fluorescence variability: A small-scale laboratory experiment. - In: 7th International Workshop on Remote Sensing of Vegetation Fluorescence, Davos 2019.
- Morcillo-Pallarés P.: A systematic assessment of different fluorescence retrieval methods in the context of the FLEX mission. Master thesis. University of Valencia, Valencia 2020.
- Moreno J.F., Asner G.P., Bach H. et al.: Fluorescence explorer (FLEX): An optimised payload to map vegetation photosynthesis from space. - In: AIAA 57th International Astronautical Congress, Valencia 2006. Pp. 2065-2074. IAC, 2006.
- Moreno J.F., Goulas Y., Huth A. et al.: Very high spectral resolution imaging spectroscopy: The Fluorescence Explorer (FLEX) mission. - In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Pp. 264-267. IEEE, 2016.
Go to original source... - Munro R., Lang R., Klaes D. et al.: The GOME-2 instrument on the Metop series of satellite : instrument design, calibration, and level 1 data processing - an overview. - Atmos. Meas. Tech. 9: 1279-1301, 2016.
Go to original source... - Murchie E.H., Horton P.: Acclimation of photosynthesis to irradiance and spectral quality in British plant species: chlorophyll content, photosynthetic capacity and habitat preference. - Plant Cell Environ. 20: 438-448, 1997.
Go to original source... - Naumann A.K., Kiemle C.: The vertical structure and spatial variability of lower tropospheric water vapor and clouds in the trades. - Atmos. Chem. Phys. 20: 6129-6145, 2020.
Go to original source... - Nematov S., Casazza A.P., Remelli W. et al.: Spectral dependence of irreversible light-induced fluorescence quenching: Chlorophyll forms with maximal emission at 700-702 and 705-710 nm as spectroscopic markers of conformational changes in the core complex. - BBA-Bioenergetics 1858: 529-543, 2017.
Go to original source... - Niinemets Ü., Anten N.P.R.: Packing the photosynthetic machinery: From leaf to canopy. - In: Laisk A., Nedbal L., Govindjee (ed.): Photosynthesis in silico. Advances in Photosynthesis and Respiration. Vol. 29. Pp. 363-399. Springer, Dordrecht 2009.
Go to original source... - Pacheco-Labrador J., Hueni A., Mihai L. et al.: Sun-induced chlorophyll fluorescence I : Instrumental Considerations for proximal spectroradiometers. - Remote Sens.-Basel 11: 960, 2019.
Go to original source... - Paynter I., Cook B., Corp L. et al.: Characterization of FIREFLY, an imaging spectrometer designed for remote sensing of solar induced fluorescence. - Sensors-Basel 20: 4682, 2020.
Go to original source... - Pedrós R., Goulas Y., Jacquemoud S. et al.: FluorMODleaf: A new leaf fluorescence emission model based on the PROSPECT model. - Remote Sens. Environ. 114: 155-167, 2010.
Go to original source... - Pedrós R., Moya I., Goulas Y., Jacquemoud S.: Chlorophyll fluorescence emission spectrum inside a leaf. - Photoch. Photobio. Sci. 7: 498-502, 2008.
Go to original source... - Petty G.W.: A First Course in Atmospheric Radiation. 2nd Edition. Pp. 472. Sundog Publishing, Madison 2006.
- Philipp K., Frankenberg C., Magney T.S. et al.: Global retrievals of solar-induced chlorophyll fluorescence with TROPOMI: First results and intersensor comparison to OCO-2. - Geophys. Res. Lett. 45: 10456-10463, 2018.
Go to original source... - Pinto F., Müller-Linow M., Schickling A. et al.: Multiangular observation of canopy sun-induced chlorophyll fluorescence by combining imaging spectroscopy and stereoscopy. - Remote Sens.-Basel 9: 415, 2017.
Go to original source... - Plascyk J.A.: The MK II Fraunhofer Line Discriminator (FLD-II) for airborne and orbital remote sensing of solar-stimulated luminescence. - Opt. Eng. 14: 144339, 1975.
Go to original source... - Porcar-Castell A., Tyystjärvi E., Atherton J. et al.: Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: Mechanisms and challenges. - J. Exp. Bot. 65: 4065-4095, 2014.
Go to original source... - Rascher U., Alonso L., Burkart A. et al.: Sun-induced fluorescence - a new probe of photosynthesis: First maps from the imaging spectrometer HyPlant. - Glob. Change Biol. 21: 4673-4684, 2015.
Go to original source... - Roelofs T.A., Lee C.-H., Holzwarth A.R.: Global target analysis of picosecond chlorophyll fluorescence kinetics from pea chloroplasts: A new approach to the characterization of the primary processes in photosystem II α- and β-units. - Biophys. J. 61: 1147-1163, 1992.
Go to original source... - Romero J.M., Cordon G.B., Lagorio M.G.: Modeling re-absorption of fluorescence from the leaf to the canopy level. -Remote Sens. Environ. 204: 138-146, 2018.
Go to original source... - Romero J.M., Cordon G.B., Lagorio M.G.: Re-absorption and scattering of chlorophyll fluorescence in canopies: A revised approach. - Remote Sens. Environ. 246: 111860, 2020.
Go to original source... - Rossini M., Meroni M., Celesti M. et al.: Analysis of red and far-red sun-induced chlorophyll fluorescence and their ratio in different canopies based on observed and modeled data. - Remote Sens.-Basel 8: 412, 2016.
Go to original source... - Sabater N., Kolmonen P., Van Wittenberghe S. et al.: Challenges in the atmospheric characterization for the retrieval of spectrally resolved fluorescence and PRI region dynamics from space. - Remote Sens. Environ. 254: 112226, 2021.
Go to original source... - Sabater N., Vicent J., Alonso L. et al.: Compensation of oxygen transmittance effects for proximal sensing retrieval of canopy-leaving sun-induced chlorophyll fluorescence. - Remote Sens.-Basel 10: 1551, 2018.
Go to original source... - Shikanai T.: Cyclic electron transport around photosystem I: genetic approaches. - Annu. Rev. Plant Biol. 58: 199-217, 2007.
Go to original source... - Siegmann B., Alonso L., Celesti M. et al.: The high-performance airborne imaging spectrometer HyPlant - From raw images to top-of-canopy reflectance and fluorescence products: Introduction of an automatized processing chain. - Remote Sens.-Basel 11: 2760, 2019.
Go to original source... - Stoll M.-P., Buschmann C., Court A. et al.: The FLEX-Fluorescence Explorer mission project: motivations and present status of preparatory activities. - In: IEEE International Geoscience and Remote Sensing Symposium Proceedings. Pp. 585-587. IEEE, 2003.
Go to original source... - Stoll M.-P., Laurila T., Cunin B. et al.: FLEX: fluorescence explorer - a space mission for screening vegetated areas in the Fraunhofer lines. - In: SPIE Proceedings 3868, Remote Sensing for Earth Science, Ocean, and Sea Ice Applications, 1999.
Go to original source... - Sun Y., Frankenberg C., Jung M. et al.: Overview of solar-induced chlorophyll fluorescence (SIF) from the Orbiting Carbon Observatory-2: Retrieval, cross-mission comparison, and global monitoring for GPP. - Remote Sens. Environ. 209: 808-823, 2018.
Go to original source... - Sun Y., Frankenberg C., Wood J.D. et al.: OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. - Science 358: 189, 2017.
Go to original source... - Tagliabue G., Panigada C., Celesti M. et al.: Sun-induced fluorescence heterogeneity as a measure of functional diversity. - Remote Sens. Environ. 247: 111934, 2020.
Go to original source... - Tenjo C., Rivera-Caicedo J.P., Sabater N. et al.: Design of a Generic 3-D Scene Generator for Passive Optical Missions and Its Implementation for the ESA's FLEX/Sentinel-3 Tandem Mission. - IEEE Trans. Geosci. Remote Sens. 56: 1290-1307, 2018.
Go to original source... - van der Tol C., Verhoef W., Timmermans J. et al.: An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance. - Biogeosciences 6: 3109-3129, 2009.
Go to original source... - van der Tol C., Vilfan N., Dauwe D. et al.: The scattering and re-absorption of red and near-infrared chlorophyll fluorescence in the models Fluspect and SCOPE. - Remote Sens. Environ. 232: 111292, 2019.
Go to original source... - Van Wittenberghe S., Alonso L., Malenovský Z., Moreno J.: In vivo photoprotection mechanisms observed from leaf spectral absorbance changes showing VIS-NIR slow‑induced conformational pigment bed changes. - Photosynth. Res. 142: 283-305, 2019.
Go to original source... - Van Wittenberghe S., Alonso L., Verrelst J. et al.: Upward and downward solar-induced chlorophyll fluorescence yield indices of four tree species as indicators of traffic pollution in Valencia. - Environ. Pollut. 173: 29-37, 2013.
Go to original source... - Van Wittenberghe S., Alonso L., Verrelst J. et al.: Bidirectional sun-induced chlorophyll fluorescence emission is influenced by leaf structure and light scattering properties - A bottom-up approach. - Remote Sens. Environ. 158: 169-179, 2015.
Go to original source... - Van Wittenberghe S., Laparra V., García-Plazaola J.I. et al.: Combined dynamics of the 500-600 nm leaf absorption and chlorophyll fluorescence changes in vivo: Evidence for the multifunctional energy quenching role of xanthophylls. - BBA-Bioenergetics 1862: 148351, 2021.
Go to original source... - Vargas J.Q., Bendig J., MacArthur A. et al.: Unmanned aerial systems (UAS)-based methods for solar induced chlorophyll fluorescence (SIF) retrieval with non-imaging spectrometers: State of the art. - Remote Sens.-Basel 12: 1624, 2020.
Go to original source... - Vasilkov A., Joiner J., Spurr R.: Note on rotational-Raman scattering in the O2-A-and B-bands. - Atmos. Meas. Tech. 6: 981-990, 2013.
Go to original source... - Verma M., Schimel D., Evans B. et al.: Effect of environmental conditions on the relationship between solar-induced fluorescence and gross primary productivity at an OzFlux grassland site. - J. Geophys. Res.-Biogeo. 122: 716-733, 2017.
Go to original source... - Verrelst J., Rivera J.P., van der Tol C. et al.: Global sensitivity analysis of the SCOPE model: What drives simulated canopy-leaving sun-induced fluorescence? - Remote Sens. Environ. 166: 8-21, 2015.
Go to original source... - Vicent J., Sabater N., Tenjo C. et al.: FLEX end-to-end mission performance simulator. - IEEE Trans. Geosci. Remote Sens. 54: 4215-4223, 2016.
Go to original source... - Vicent J., Sabater N., Verrelst J. et al.: Assessment of approximations in aerosol optical properties and vertical distribution into FLEX atmospherically-corrected surface reflectance and retrieved sun-induced fluorescence. - Remote Sens.-Basel 9: 675, 2017.
Go to original source... - Wieneke S., Ahrends H., Damm A. et al.: Airborne based spectroscopy of red and far-red sun-induced chlorophyll fluorescence: Implications for improved estimates of gross primary productivity. - Remote Sens. Environ. 184: 654-667, 2016.
Go to original source... - Yang P., van der Tol C.: Linking canopy scattering of far-red sun-induced chlorophyll fluorescence with reflectance. - Remote Sens. Environ. 209: 456-467, 2018.
Go to original source... - Yang P., van der Tol C., Campbell P.K.E., Middleton E.M.: Fluorescence Correction Vegetation Index (FCVI): A physically based reflectance index to separate physiological and non-physiological information in far-red sun-induced chlorophyll fluorescence. - Remote Sens. Environ. 240: 111676, 2020.
Go to original source... - Zarco-Tejada P.J., González-Dugo V., Berni J.A.J.: Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. - Remote Sens. Environ. 117: 322-337, 2012.
Go to original source... - Zhang Q., Cheng Y.-B., Lyapustin A.I. et al.: Estimation of crop gross primary production (GPP): fAPARchl versus MOD15A2 FPAR. - Remote Sens. Environ. 153: 1-6, 2014.
Go to original source...




