Photosynthetica 2021, 59(4):570-586 | DOI: 10.32615/ps.2021.049
Insights into nanoparticle-induced changes in plant photosynthesis
- 1 Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, 38156-8-8349 Arak, Iran
- 2 UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia
- 3 Departments of Agronomy, Islamic Azad University, Arak Branch, Arak, Iran
- 4 Department of Agriculture, Nutrition and Food Systems, University of New Hampshire, Durham NH 03824, USA
Photosynthesis can be affected by nanoparticles (NPs) both negatively (e.g., through decreasing the chlorophyll content and electron transport rate, damages to chloroplast components, etc.) or positively (e.g., via enhancing chlorophyll content, the activity of Rubisco enzyme, the performance of PSII, and CO2 harvesting, as well as broadening the chloroplast photoabsorption spectrum). Enhanced photosynthetic efficiency could be a possible impact of NPs on photosynthetic organisms of major economic and ecological significance (e.g., crops and algae), which warrants an in-depth understanding of NPs interactions with chloroplast and its structural components (e.g., thylakoid membranes), signaling molecules, and pathways involved in photosynthesis. In this review, we comprehensively explore the potential effects of NPs on photosynthesis in different photosynthetic organisms (terrestrial plants, aquatic plants, and algae), and highlight research limitations and possible practical implications.
Additional key words: chlorophyll; chloroplast; nanoparticles; photosynthesis.
Received: July 1, 2021; Revised: September 17, 2021; Accepted: October 12, 2021; Prepublished online: November 8, 2021; Published: December 17, 2021 Show citation
| ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Abbas Q., Liu G.J., Yousaf B. et al.: Effects of biochar on uptake, acquisition and translocation of silver nanoparticles in rice (Oryza sativa L.) in relation to growth, photosynthetic traits and nutrients displacement. - Environ. Pollut. 250: 728-736, 2019.
Go to original source... - Abbas Q., Liu G.J. Yousaf B. et al.: Biochar-assisted transformation of engineered-cerium oxide nanoparticles: Effect on wheat growth, photosynthetic traits and cerium accumulation. - Ecotox. Environ. Safe. 187: 109845, 2020.
Go to original source... - Ahmad B., Shabbir A., Jaleel H. et al.: Efficacy of titanium dioxide nanoparticles in modulating photosynthesis, peltate glandular trichomes and essential oil production and quality in Mentha piperita L. - Curr. Plant Biol. 13: 6-15, 2018.
Go to original source... - Ahmadi S.Z, Ghorbanpour M., Aghaee A., Hadian J.: Deciphering morpho-physiological and phytochemical attributes of Tanacetum parthenium L. plants exposed to C60 fullerene and salicylic acid. - Chemosphere 259: 127406, 2020.
Go to original source... - Ahmed B., Khan M.S., Musarrat J.: Toxicity assessment of metal oxide nano-pollutants on tomato (Solanum lycopersicon): A study on growth dynamics and plant cell death. - Environ. Pollut. 240: 802-816, 2018.
Go to original source... - Ali A., Mehmood A., Khan N.: Uptake, translocation, and consequences of nanomaterials on plant growth and stress adaptation. - J. Nanomater. 2021: 6677616, 2021.
Go to original source... - Alsaeedi A., El-Ramady H., Alshaal T. et al.: Silica nanoparticles boost growth and productivity of cucumber under water deficit and salinity stresses by balancing nutrients uptake. - Plant Physiol. Bioch. 139: 1-10, 2019.
Go to original source... - Amini S., Maali-Amiri R., Mohammadi R., Kazemi-Shahandashti S.-S.: cDNA-AFLP analysis of transcripts induced in chickpea plants by TiO2 nanoparticles during cold stress. - Plant Physiol. Bioch. 111: 39-49, 2017.
Go to original source... - Amooaghaie R., Tabatabaei F., Ahadi A.: Alterations in HO-1 expression, heme oxygenase activity and endogenous NO homeostasis modulate antioxidant responses of Brassica nigra against nano silver toxicity. - J. Plant Physiol. 228: 75-84, 2018.
Go to original source... - Askary M., Talebi S.M., Amini F., Bangan A.D.B.: Effect of NaCl and iron oxide nanoparticles on Mentha piperita essential oil composition. - Environ. Exp. Biol. 14: 27-32, 2017.
Go to original source... - Baiazidi-Aghdam M.T., Mohammadi H., Ghorbanpour M.: Effects of nanoparticulate anatase titanium dioxide on physiological and biochemical performance of Linum usitatissimum (Linaceae) under well watered and drought stress conditions. - Braz. J. Bot. 39: 139-146, 2016.
Go to original source... - Baker S., Satish S., Prasad N., Chouhan R.S.: Nano-agromaterials: Influence on plant growth and crop protection. - In: Thomas S., Grohens Y., Pottathara Y.B. (ed.): Industrial Applications of Nanomaterials. Pp. 341-363. Elsevier Academic Press, Amsterdam 2019.
Go to original source... - Barrios A.C., Rico C.M., Trujillo-Reyes J. et al.: Effects of uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants. - Sci. Total Environ. 563-564: 956-964, 2016.
Go to original source... - Cao Z., Stowers C., Rossi L. et al.: Physiological effects of cerium oxide nanoparticles on the photosynthesis and water use efficiency of soybean (Glycine max (L.) Merr.). - Environ. Sci.-Nano 4: 1086-1094, 2017.
Go to original source... - Chandra S., Pradhan S., Mitra S. et al.: High throughput electron transfer from carbon dots to chloroplast: a rationale of enhanced photosynthesis. - Nanoscale 6: 3647-3655, 2014.
Go to original source... - Chen J., Liu B., Yang Z. et al.: Phenotypic, transcriptional, physiological and metabolic responses to carbon nanodot exposure in Arabidopsis thaliana (L.). - Environ. Sci.-Nano 5: 2672-2685, 2018.
Go to original source... - Chen L., Wang C., Yang S. et al.: Chemical reduction of graphene enhances in vivo translocation and photosynthetic inhibition in pea plants. - Environ. Sci.-Nano 6: 1077-1088, 2019.
Go to original source... - Chen L., Zhou L., Liu Y. et al.: Toxicological effects of nanometer titanium dioxide (nano-TiO2) on Chlamydomonas reinhardtii. -Ecotox. Environ. Safe. 84: 155-162, 2012.
Go to original source... - Choi S.A., Jeong Y., Lee J. et al.: Biocompatible liquid-type carbon nanodots (C-paints) as light delivery materials for cell growth and astaxanthin induction of Haematococcus pluvialis. - Mater. Sci. Eng. C 109: 110500, 2020.
Go to original source... - Conway J.R., Beaulieu A.L., Beaulieu N.L. et al.: Environmental stresses increase photosynthetic disruption by metal oxide nanomaterials in a soil-grown plant. - ACS Nano 9: 11737-11749, 2015.
Go to original source... - Corral-Diaz B., Peralta-Videa J.R, Alvarez-Parrilla E. et al.: Cerium oxide nanoparticles alter the antioxidant capacity but do not impact tuber ionome in Raphanus sativus (L). - Plant Physiol Bioch. 84: 277-285, 2014.
Go to original source... - Cox A., Venkatachalam P., Sahi S., Sharma N.: Silver and titanium dioxide nanoparticle toxicity in plants: a review of current research. - Plant Physiol. Bioch. 107: 147-163, 2016.
Go to original source... - Cyriac J., Melethil K., Thomas B. et al.: Synthesis of biogenic ZnO nanoparticles and its impact on seed germination and root growth of Oryza sativa L. and Vigna unguiculata L. - Mater. Today: Proc. 25: 224-229, 2020.
Go to original source... - da Rocha A., Menguy N., Yéprémian C. et al.: Ecotoxicological studies of ZnO and CdS nanoparticles on Chlorella vulgaris photosynthetic microorganism in Seine river water. -Nanomaterials 10: 227, 2020.
Go to original source... - Dai Y., Chen F., Yue L. et al.: Uptake, transport, and transformation of CeO2 nanoparticles by strawberry and their impact on the rhizosphere bacterial community. - ACS Sustain. Chem. Eng. 8: 4792-4800, 2020.
Go to original source... - Das S., Debnath N., Pradhan S., Goswami A.: Enhancement of photon absorption in the light-harvesting complex of isolated chloroplast in the presence of plasmonic gold nanosol - a nanobionic approach towards photosynthesis and plant primary growth augmentation. - Gold Bull. 50: 247-257, 2017.
Go to original source... - Dauda S., Chia M.A., Bako S.P.: Toxicity of titanium dioxide nanoparticles to Chlorella vulgaris Beyerinck (Beijerinck) 1890 (Trebouxiophyceae, Chlorophyta) under changing nitrogen conditions. - Aquat. Toxicol. 187: 108-114, 2017.
Go to original source... - Djanaguiraman M., Nair R.,. Giraldo J.P., Prasad P.V.V.: Cerium oxide nanoparticles decrease drought-induced oxidative damage in sorghum leading to higher photosynthesis and grain yield. - ACS Omega 3: 14406-14416, 2018.
Go to original source... - El Naschie M.S.: Nanotechnology for the developing world. - Chaos Solitons Fractals 30: 769-773, 2006.
Go to original source... - Elsheery N.I., Sunoj V.S.J., Wen Y. et al.: Foliar application of nanoparticles mitigates the chilling effect on photosynthesis and photoprotection in sugarcane. - Plant Physiol. Bioch. 149: 50-60, 2020.
Go to original source... - Eroglu E., Eggers P.K., Winslade M. et al.: Enhanced accumulation of microalgal pigments using metal nanoparticle solutions as light filtering devices. - Green Chem. 15: 3155-3159, 2013.
Go to original source... - Etxeberria E., Gonzalez P., Baroja-Fernandez E., Romero J.P.: Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells: evidence for the distribution of solutes to different intracellular compartments. - Plant Signal. Behav. 1: 196-200, 2006.
Go to original source... - Fahimirad S., Ajalloueian F., Ghorbanpour M.: Synthesis and therapeutic potential of silver nanomaterials derived from plant extracts. - Ecotox. Environ. Safe. 168: 260-278, 2019.
Go to original source... - Faizan M., Faraz A., Mir A.R., Hayat S.: Role of zinc oxide nanoparticles in countering negative effects generated by cadmium in Lycopersicon esculentum. - J. Plant Growth Regul. 40: 101-115, 2021.
Go to original source... - Falco W.F., Scherer M.D., Oliveira S.L. et al.: Phytotoxicity of silver nanoparticles on Vicia faba: Evaluation of particle size effects on photosynthetic performance and leaf gas exchange. - Sci. Total Environ. 701: 134816, 2020.
Go to original source... - Fan X., Xu J., Lavoie M. et al.: Multiwall carbon nanotubes modulate paraquat toxicity in Arabidopsis thaliana. - Environ. Pollut. 233: 633-641, 2018.
Go to original source... - Faraji J., Sepehri A.: Exogenous nitric oxide improves the protective effects of TiO2 nanoparticles on growth, antioxidant system, and photosynthetic performance of wheat seedlings under drought stress. - J. Soil Sci. Plant Nutr. 20: 703-714, 2020.
Go to original source... - Gade A., Ingle A., Whiteley C., Rai M.: Mycogenic metal nanoparticles: progress and applications. - Biotechnol. Lett. 32: 593-600, 2010.
Go to original source... - Gao F.Q., Hong F.S., Liu C. et al.: Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach: inducing complex of Rubisco-Rubisco activase. - Biol. Trace Elem. Res. 111: 239-253, 2006.
Go to original source... - Gao F.Q., Liu C., Qu C.X. et al.: Was improvement of spinach growth by nano-TiO2 treatment related to the changes of Rubisco activase? - Biometals 21: 211-217, 2008.
Go to original source... - Gao H., Qin Y., Guo R. et al.: Enhanced plant growth promoting role of mPEG-PLGA-based nanoparticles as an activator protein PeaT1 carrier in wheat (Triticum aestivum L.). - J. Chem. Technol. Biotechnol. 93: 3143-3151, 2018.
Go to original source... - Ghafariyan M.H., Malakouti M.J., Dadpour M.R. et al.: Effects of magnetite nanoparticles on soybean chlorophyll. - Environ. Sci. Technol. 47: 10645-10652, 2013.
Go to original source... - Ghazaei F., Shariati M.: Effects of titanium nanoparticles on the photosynthesis, respiration, and physiological parameters in Dunaliella salina and Dunaliella tertiolecta. - Protoplasma 257: 75-88, 2020.
Go to original source... - Ghorbanpour M., Fahimirad S.: Plant nanobionics: a novel approach to overcome the environmental challenges. - In: Ghorbanpour M., Varma A. (ed.): Medicinal Plants and Environmental Challenges. Pp. 247-257. Springer, Cham 2017.
Go to original source... - Ghorbanpour M., Hadian J.: Multi-walled carbon nanotubes stimulate callus induction, secondary metabolites biosynthesis and antioxidant capacity in medicinal plant Satureja khuzestanica grown in vitro. - Carbon 94: 749-759, 2015.
Go to original source... - Ghorbanpour M., Hatami M.: Spray treatment with silver nanoparticles plus thidiazuron increases anti-oxidant enzyme activities and reduces petal and leaf abscission in four cultivars of geranium (Pelargonium zonale) during storage in the dark. - J. Hortic. Sci. Biotech. 89: 712-718, 2014.
Go to original source... - Ghorbanpour M., Khaltabadi Farahani A.H., Hadian J.: Potential toxicity of nano-graphene oxide on callus cell of Plantago major L. under polyethylene glycol-induced dehydration. - Ecotox. Environ. Safe. 148: 910-922, 2018.
Go to original source... - Ghorbanpour M., Mohammadi H., Kariman K.: Nanosilicon-based recovery of barley (Hordeum vulgare) plants subjected to drought stress. - Environ. Sci.-Nano 7: 443-461, 2020.
Go to original source... - Giraldo J.P., Landry M.P., Faltermeier S.M. et al.: Plant nanobionics approach to augment photosynthesis and biochemical sensing. - Nat. Mater. 13: 400-408, 2014.
Go to original source... - Gogotsi Y. (ed.): Nanomaterials Handbook. 1st Edition. Pp. 800. CRC Press, Boca Raton 2006.
- Gohari G., Mohammadi A., Akbari A. et al.: Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. - Sci. Rep.-UK 10: 912, 2020.
Go to original source... - Gong Y., Zhao J.: Small carbon quantum dots, large photosynthesis enhancement. - J. Agr. Food Chem. 66: 9159-9161, 2018.
Go to original source... - Ha N.T.M., Do C.M., Hoang T.T. et al.: The effect of cobalt and silver nanoparticles on overcoming leaf abscission and enhanced growth of rose (Rosa hybrida L. 'Baby Love') plantlets cultured in vitro. - Plant Cell Tiss. Org. Cult. 141: 393-405, 2020.
Go to original source... - Hajian M.H., Ghorbanpour M., Abtahi F., Hadian J.: Differential effects of biogenic and chemically synthesized silver-nanoparticles application on physiological traits, antioxidative status and californidine content in California poppy (Eschscholzia californica Cham). - Environ. Pollut. 292: 118300, 2022.
Go to original source... - Hasanpour H., Maali-Amir R., Zeinali H.: Effect of TiO2 nanoparticles on metabolic limitations to photosynthesis under cold in chickpea. - Russ. J. Plant Physiol. 62: 779-787, 2015.
Go to original source... - Hatami M., Ghorbanpour M.: Effect of nanosilver on physiological performance of Pelargonium plants exposed to dark storage. - J. Hortic. Res. 21: 15-20, 2013.
Go to original source... - Hatami M., Ghorbanpour M.: Defense enzymes activity and biochemical variations of Pelargonium zonale in response to nanosilver particles and dark storage. - Turk. J. Biol. 38: 130-139, 2014.
Go to original source... - Hatami M., Ghorbanpour M., Salehiarjomand H.: Nano-anatase TiO2 modulates the germination behavior and seedling vigority of the five commercially important medicinal and aromatic plants. - J. Biol. Environ. Sci. 8: 53-59, 2014.
- Hatami M., Hadian J., Ghorbanpour M.: Mechanisms underlying toxicity and stimulatory role of single-walled carbon nanotubes in Hyoscyamus niger during drought stress simulated by polyethylene glycol. - J. Hazard. Mater. 324: 306-320, 2017.
Go to original source... - Hatami M., Hosseini S.M., Ghorbanpour M., Kariman K.: Physiological and antioxidative responses to GO/PANI nanocomposite in intact and demucilaged seeds and young seedlings of Salvia mirzayanii. - Chemosphere 233: 920-935, 2019b.
Go to original source... - Hatami M., Kariman K., Ghorbanpour M.: Engineered nanomaterial-mediated changes in the metabolism of terrestrial plants. - Sci. Total Environ. 571: 275-291, 2016.
Go to original source... - Hatami M., Naghdi Badi H., Ghorbanpour M.: Nano-elicitation of secondary pharmaceutical metabolites in plant cells: a review. - J. Med. Plants 18: 6-36, 2019a.
Go to original source... - Hong F.S., Yang P., Gao F.Q. et al.: Effect of nano-anatase TiO2 on spectral characterization of photosystem particles from spinach. - Chem. Res. Chin. Univ. 21: 196-200, 2005.
- Hu C., Liu L., Li X. et al.: Effect of graphene oxide on copper stress in Lemna minor L.: evaluating growth, biochemical responses, and nutrient uptake. - J. Hazard. Mater. 341: 168-176, 2018.
Go to original source... - Hu J., Wu X., Wu F. et al.: Potential application of titanium dioxide nanoparticles to improve the nutritional quality of coriander (Coriandrum sativum L.). - J. Hazard. Mater. 389: 121837, 2020.
Go to original source... - Huang J., Cheng J., Yi J.: Impact of silver nanoparticles on marine diatom Skeletonema costatum. - J. Appl. Toxicol. 36: 1343-1354, 2016.
Go to original source... - Hurtado-Gallego J., Pulido-Reyes G., González-Pleiter M. et al.: Toxicity of superparamagnetic iron oxide nanoparticles to the microalga Chlamydomonas reinhardtii. - Chemosphere 238: 124562, 2020.
Go to original source... - Hussain S., Iqbal N., Brestic M. et al.: Changes in morphology, chlorophyll fluorescence performance and Rubisco activity of soybean in response to foliar application of ionic titanium under normal light and shade environment. - Sci. Total Environ. 658: 626-637, 2019.
Go to original source... - Hussain S., Shafiq I., Chattha M.S. et al.: Effect of Ti treatments on growth, photosynthesis, phosphorus uptake and yield of soybean (Glycine max L.) in maize-soybean relay strip intercropping. - Environ. Exp. Bot. 187: 104476, 2021.
Go to original source... - Iftikhar A., Ali S., Yasmeen T. et al.: Effect of gibberellic acid on growth, photosynthesis and antioxidant defense system of wheat under zinc oxide nanoparticle stress. - Environ. Pollut. 254: 113109, 2019.
Go to original source... - Jeyasubramanian K., Thoppey U.U.G., Hikku G.S. et al.: Enhancement in growth rate and productivity of spinach grown in hydroponics with iron oxide nanoparticles. - RSC Adv. 6: 15451-15459, 2016.
Go to original source... - Jia W., Zhai S., Ma C. et al.: The role of different fractions of humic acid in the physiological response of amaranth treated with magnetic carbon nanotubes. - Ecotox. Environ. Safe. 169: 848-855, 2019.
Go to original source... - Johal M.S., Johnson L.E.: Understanding Nanomaterials. Pp. 528. CRC Press, Boca Raton 2018.
- Joshi A., Sharma L., Kaur S. et al.: Plant nanobionic effect of multi-walled carbon nanotubes on growth, anatomy, yield and grain composition of rice. - BioNanoScience 10: 430-445, 2020.
Go to original source... - Kataria S., Jain M., Rastogi A. et al.: Role of nanoparticles on photosynthesis: avenues and applications. - In: Tripathi D.K., Ahmad P., Sharma S., Dubey N.K. (ed.): Nanomaterials in Plants, Algae and Microorganisms. Pp. 103-127. Academic Press, London 2019.
Go to original source... - Khodakovskaya M.V., de Silva K., Nedosekin D.A. et al.: Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. - P. Natl. Acad. Sci. USA 108: 1028-1033, 2011.
Go to original source... - Ksiħżyk M., Asztemborska M., Stêborowski R., Bystrzejewska-Piotrowska G.: Toxic effect of silver and platinum nanoparticles toward the freshwater microalga Pseudokirchneriella subcapitata. - B. Environ. Contam. Tox. 94: 554-558, 2015.
Go to original source... - Kumar A., Gahoi P., Verma N.: Simultaneous scavenging of Cr(VI) from soil and facilitation of nutrient uptake in plant using a mixture of carbon microfibers and nanofibers. - Chemosphere 239: 124760, 2020.
Go to original source... - Li J., Hu J., Xiao L. et al.: Interaction mechanisms between α-Fe2O3, γ-Fe2O3 and Fe3O4 nanoparticles and Citrus maxima seedlings. - Sci. Total Environ. 625: 677-685, 2018.
Go to original source... - Li X., Schirmer K., Bernard L. et al.: Silver nanoparticle toxicity and association with the alga Euglena gracilis. - Environ. Sci.-Nano 2: 594-602, 2015.
Go to original source... - Li Y., Li W., Zhang H. et al.: Amplified light harvesting for enhancing Italian lettuce photosynthesis using water soluble silicon quantum dots as artificial antennas. - Nanoscale 12: 155-166, 2020.
Go to original source... - Liang L., Tang H., Deng Z. et al.: Ag nanoparticles inhibit the growth of the bryophyte, Physcomitrella patens. - Ecotox. Environ. Safe. 164: 739-748, 2018.
Go to original source... - Liu Y., Yue L., Wang C. et al.: Photosynthetic response mechanisms in typical C3 and C4 plants upon La2O3 nanoparticle exposure. - Environ. Sci.-Nano 7: 81-92, 2020.
Go to original source... - Liu Y., Yue L., Wang Z., Xing B.: Processes and mechanisms of photosynthesis augmented by engineered nanomaterials. - Environ. Chem. 16: 430-445, 2019.
Go to original source... - Lizzi D., Mattiello A., Marchiol L.: Impacts of cerium oxide nanoparticles (nCeO2) on crop plants: a concentric overview. -In: Tripathi D.K., Ahmad P., Sharma S., Dubey N.K. (ed.): Nanomaterials in Plants, Algae and Microorganisms. Pp. 311-324. Academic Press, London 2019.
Go to original source... - Mahto R., Chatterjee N., Priya T., Singh R.K.: Nanotechnology and its role in agronomic crops. - In: Hasanuzzaman M. (ed.): Agronomic Crops. Pp. 605-636. Springer, Singapore 2019.
Go to original source... - Majumdar S., Peralta-Videa J.R., Trujillo-Reyes J. et al.: Soil organic matter influences cerium translocation and physiological processes in kidney bean plants exposed to cerium oxide nanoparticles. - Sci. Total Environ. 569-570: 201-211, 2016.
Go to original source... - Marusenko Y., Shipp J., Hamilton G.A. et al.: Bioavailability of nanoparticulate hematite to Arabidopsis thaliana. - Environ. Pollut. 74: 150-156, 2013.
Go to original source... - Maswada H.F., Djanaguiraman M., Prasad P.V.V.: Seed treatment with nano-iron (III) oxide enhances germination, seeding growth and salinity tolerance of sorghum. - J. Agron. Crop Sci. 204: 577-587, 2018.
Go to original source... - Matouke M.M., Elewa D.T., Abdullahi K.: Binary effect of titanium dioxide nanoparticles (nTiO2) and phosphorus on microalgae (Chlorella ellipsoides Gerneck, 1907). - Aquat. Toxicol. 198: 40-48, 2018.
Go to original source... - Mezacasa A.V., Queiroz A.M., Graciano D.E. et al.: Effects of gold nanoparticles on photophysical behaviour of chlorophyll and pheophytin. - J. Photoch. Photobio. A 389: 112252, 2020.
Go to original source... - Middepogu A., Hou J., Gao X., Lin D.: Effect and mechanism of TiO2 nanoparticles on the photosynthesis of Chlorella pyrenoidosa. - Ecotox. Environ. Safe 161: 497-506, 2018.
Go to original source... - Mishra V., Mishra R.K., Dikshit A., Pandey A.C.: Interactions of nanoparticles with plants: an emerging prospective in the agriculture industry. - In: Ahmad P., Rasool S. (ed.): Emerging Technologies and Management of Crop Stress Tolerance. Pp. 159-180. Academic Press, Amsterdam 2014.
Go to original source... - Missaoui T., Smiri M., Chmingui H., Hafiane A.: Effects of nanosized titanium dioxide on the photosynthetic metabolism of fenugreek (Trigonella foenum-graecum L.). - C. R. Biol. 340: 499-511, 2017.
Go to original source... - Mohammadi H., Amani-Ghadim A.R., Matin A.A., Ghorbanpour M.: Fe0 nanoparticles improve physiological and antioxidative attributes of sunflower (Helianthus annuus) plants grown in soil spiked with hexavalent chromium. - 3 Biotech 10: 19, 2020.
Go to original source... - Mohammadi M., Hatami M., Feghezadeh K., Ghorbanpour M.: Mitigating effect of nano‑zerovalent iron, iron sulfate and EDTA against oxidative stress induced by chromium in Helianthus annuus L. - Acta Physiol. Plant. 40: 69, 2018.
Go to original source... - Morelli E., Gabellieri E., Bonomini A. et al.: TiO2 nanoparticles in seawater: Aggregation and interactions with the green alga Dunaliella tertiolecta. - Ecotox. Environ. Safe. 148: 184-193, 2018.
Go to original source... - Movafeghi A., Khataee A., Abedi M. et al.: Effects of TiO2 nanoparticles on the aquatic plant Spirodela polyrrhiza: evaluation of growth parameters, pigment contents and antioxidant enzyme activities. - J. Environ. Sci. 64: 130-138, 2018.
Go to original source... - Nair P.M.G., Chung I.M.: Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings. - Chemosphere 112: 105-113, 2014.
Go to original source... - Nam S.-H., Kwak J.I., An Y.-J.: Quantification of silver nanoparticle toxicity to algae in soil via photosynthetic and flow-cytometric analyses. - Sci. Rep.-UK 8: 292, 2018.
Go to original source... - Nogueira P.F.M., Nakabayashi D., Zucolotto V.: The effects of graphene oxide on green algae Raphidocelis subcapitata. - Aquat. Toxicol. 166: 29-35, 2015.
Go to original source... - Ogunkunle C.O., Adegboye E.F., Okoro H.K. et al.: Effect of nanosized anatase TiO2 on germination, stress defense enzymes, and fruit nutritional quality of Abelmoschus esculentus (L.) Moench (okra). - Arab. J. Geosci. 13: 120, 2020.
Go to original source... - Pagano L., Maestri E., Caldara M. et al.: Engineered nanomaterial activity at the organelle level: Impacts on the chloroplasts and mitochondria. - ACS Sustain. Chem. Eng. 6: 12562-12579, 2018.
Go to original source... - Park S., Ahn Y.J.: Multi-walled carbon nanotubes and silver nanoparticles differentially affect seed germination, chlorophyll content, and hydrogen peroxide accumulation in carrot (Daucus carota L.). - Biocatal. Agric. Biotechnol. 8: 257-262, 2016.
Go to original source... - Peharec İtefaniĉ P., Cvjetko P., Biba R. et al.: Physiological, ultrastructural and proteomic responses of tobacco seedlings exposed to silver nanoparticles and silver nitrate. - Chemosphere 209: 640-653, 2018.
Go to original source... - Perez-de-Luque A.: Interaction of nanomaterials with plants: What do we need for real applications in agriculture? - Front. Env. Sci. 5: 12, 2017.
Go to original source... - Pinto M., Soares C., Pinto A.S., Fidalgo F.: Phytotoxic effects of bulk and nano-sized Ni on Lycium barbarum L. grown in vitro - Oxidative damage and antioxidant response. - Chemosphere 218: 507-516, 2019.
Go to original source... - Pradhan S., Patra P., Mitra S. et al.: Copper nanoparticle (CuNP) nanochain arrays with a reduced toxicity response: a biophysical and biochemical outlook on Vigna radiata. - J. Agr. Food Chem. 63: 2606-2617, 2015.
Go to original source... - Pullagurala V.L.R., Adisa I.O., Rawat S. et al.: ZnO nanoparticles increase photosynthetic pigments and decrease lipid peroxidation in soil grown cilantro (Coriandrum sativum). - Plant Physiol. Bioch. 132: 120-127, 2018.
Go to original source... - Qi M., Liu Y., Li T.: Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. - Biol. Trace Elem. Res. 156: 323-328, 2013.
Go to original source... - Qian H., Peng X., Han X. et al.: Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. - J. Environ. Sci. 25: 1947-1956, 2013.
Go to original source... - Rahayu I., Darmawan W., Zaini L.H., Prihatini E.: Characteristics of fast-growing wood impregnated with nanoparticles. - J. Forestry Res. 31: 677-685, 2020.
Go to original source... - Rahimi S., Hatami M., Ghorbanpour M.: Silicon-nanoparticle mediated changes in seed germination and vigor index of marigold (Calendula officinalis L.) compared to silicate under PEG-induced drought stress. - Gesunde Pflanzen, 2021.
Go to original source... - Rajput V., Minkina T., Fedorenko A. et al.: Toxicity of copper oxide nanoparticles on spring barley (Hordeum sativum distichum). - Sci. Total Environ. 645: 1103-1113, 2018.
Go to original source... - Rani P.U., Yasur J., Loke K.S., Dutta D.: Effect of synthetic and biosynthesized silver nanoparticles on growth, physiology and oxidative stress of water hyacinth: Eichhornia crassipes (Mart) Solms. - Acta Physiol. Plant. 38: 58, 2016.
Go to original source... - Rastogi A., Tripathi D.K., Yadav S. et al.: Application of silicon nanoparticles in agriculture. - 3 Biotech 9: 90, 2019a.
Go to original source... - Rastogi A., Zivcak M., Tripathi D.K. et al.: Phytotoxic effect of silver nanoparticles in Triticum aestivum: Improper regulation of photosystem I activity as the reason for oxidative damage in the chloroplast. - Photosynthetica 57: 209-216, 2019b.
Go to original source... - Rawat S., Adisa I.O., Wang Y. et al.: Differential physiological and biochemical impacts of nano vs micron Cu at two phenological growth stages in bell pepper (Capsicum annuum) plant. - NanoImpact 14: 100161, 2019.
Go to original source... - Ren H.Y., Dai Y.Q., Kong F. et al.: Enhanced microalgal growth and lipid accumulation by addition of different nanoparticles under xenon lamp illumination. - Bioresource Technol. 297: 122409, 2020.
Go to original source... - Rico C.M., Majumdar S., Duarte-Gardea M. et al.: Interaction of nanoparticles with edible plants and their possible implications in the food chain. - J. Agr. Food Chem. 59: 3485-3498, 2011.
Go to original source... - Röhder L.A., Brandt T., Sigg L., Behra R.: Influence of agglomeration of cerium oxide nanoparticles and speciation of cerium(III) on short term effects to the green algae Chlamydomonas reinhardtii. - Aquat Toxicol. 152: 121-130, 2014.
Go to original source... - Rossi L., Zhang W., Lombardini L., Ma X.: The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L. - Environ. Pollut. 219: 28-36, 2016.
Go to original source... - Rossi L., Zhang W., Ma X.: Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers. - Environ. Pollut. 229: 132-138, 2017.
Go to original source... - Salama D.M., Osman S.A., Abd El-Aziz M. et al.: Effect of zinc oxide nanoparticles on the growth, genomic DNA, production and the quality of common dry bean (Phaseolus vulgaris). - Biocatal. Agric. Biotechnol. 18: 101083, 2019.
Go to original source... - Salama H.M.H.: Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). - Int. J. Biotechnol. Res. 3: 190-197, 2012.
- Samadi N., Yahyaabadi S., Rezayatmand Z.: Effect of TiO2 and TiO2 nanoparticle on germination, root and shoot length and photosynthetic pigments of Mentha piperita. - Int. J. Plant Soil Sci. 3: 408-418, 2014.
Go to original source... - Samadi S., Saharkhiz M.J., Azizi M. et al.: Multi-walled carbon nanotubes stimulate growth, redox reactions and biosynthesis of antioxidant metabolites in Thymus daenensis Celak. in vitro. - Chemosphere 249: 126069, 2020.
Go to original source... - Samadi S., Saharkhiz M.J., Azizi M. et al.: Single-wall carbon nano tubes (SWCNTs) penetrate Thymus daenensis Celak. plant cells and increase secondary metabolite accumulation in vitro. - Ind. Crop. Prod. 165: 113424, 2021.
Go to original source... - Sami F., Siddiqui H., Hayat S.: Impact of silver nanoparticles on plant physiology: A critical review. - In: Hayat S., Pichtel J., Faizan M., Fariduddin Q. (ed.): Sustainable Agriculture Reviews 41. Pp. 111-127. Springer, Cham 2020.
Go to original source... - Santos S.M.A., Dinis A.M., Rodrigues D.M.F. et al.: Studies on the toxicity of an aqueous suspension of C60 nanoparticles using a bacterium (gen. Bacillus) and an aquatic plant (Lemna gibba) as in vitro model systems. - Aquat. Toxicol. 142-143: 347-354, 2013.
Go to original source... - Schwab F., Bucheli T.D., Camenzuli L. et al.: Diuron sorbed to carbon nanotubes exhibits enhanced toxicity to Chlorella vulgaris. - Environ. Sci. Technol. 47: 7012-7019, 2013.
Go to original source... - Schwab F., Zhai G., Kern M. et al.: Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants - Critical review. - Nanotoxicology 10: 257-278, 2015.
Go to original source... - Sendra M., Moreno-Garrido I., Blasco J., Araújo C.V.M.: Effect of erythromycin and modulating effect of CeO2 NPs on the toxicity exerted by the antibiotic on the microalgae Chlamydomonas reinhardtii and Phaeodactylum tricornutum. - Environ. Pollut. 242: 357-366, 2018.
Go to original source... - Serag M.F., Kaji N., Gaillard C. et al.: Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. - ACS Nano 5: 493-499, 2011.
Go to original source... - Sharifi-Rad J., Quispe C., Butnariu M. et al.: Chitosan nanoparticles as a promising tool in nanomedicine with particular emphasis on oncological treatment. - Cancer Cell Int. 21: 318, 2021.
Go to original source... - Sharma P., Bhatt D., Zaidi M.G.H. et al.: Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. - Appl. Biochem. Biotech. 167: 2225-2233, 2012.
Go to original source... - Sharma S., Uttam K.N.: Rapid analyses of stress of copper oxide nanoparticles on wheat plants at an early stage by laser induced fluorescence and attenuated total reflectance Fourier transform infrared spectroscopy. - Vib. Spectrosc. 92: 135-150, 2017.
Go to original source... - Shaw A.K, Ghosh S., Kalaji H.M. et al.: Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L.). - Environ. Exp. Bot. 102: 37-47, 2014.
Go to original source... - Sheikhalipour M., Esmaielpour B., Behnamian M. et al.: Chitosan-selenium nanoparticle (Cs-Se NP) foliar spray alleviates salt stress in bitter melon. - Nanomaterials 11: 684, 2021.
Go to original source... - Siddiqui M.H., Al-Whaibi M.H., Faisal M., Al Sahli A.A.: Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. - Environ. Toxicol. Chem. 33: 2429-2437, 2014.
Go to original source... - Singh A., Singh N.B., Hussain I. et al.: Green synthesis of nano zinc oxide and evaluation of its impact on germination and metabolic activity of Solanum lycopersicum. - J. Biotechnol. 233: 84-94, 2016.
Go to original source... - Singh T., Shukla S., Kumar P. et al.: Application of nanotechnology in food science: Perception and overview. - Front. Microbiol. 8: 1501, 2017.
Go to original source... - Sousa C.A., Soares M.H.V.M., Soares E.V.: Toxic effects of nickel oxide (NiO) nanoparticles on the freshwater alga Pseudokirchneriella subcapitata. - Aquat. Toxicol. 204: 80-90, 2018.
Go to original source... - Spinoso-Castillo J.L., Chavez-Santoscoy R., Bogdanchikova N. et al.: Antimicrobial and hormetic effects of silver nanoparticles on in vitro regeneration of vanilla (Vanilla planifolia Jacks. ex Andrews) using a temporary immersion system. - Plant Cell Tiss. Org. Cult. 129: 195-207, 2017.
Go to original source... - Suriyaprabha R., Karunakaran G., Yuvakkumar R. et al.: Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil. - J. Nanopart. Res. 14: 1294, 2012.
Go to original source... - Swapna M.S., Raj V., Devi H.V.S., Sankararaman S.: Optical emission diagnosis of carbon nanoparticle-incorporated chlorophyll for sensing applications. - Photoch. Photobio. Sci. 18: 1382-1388, 2019.
Go to original source... - Swift T.A., Oliver T.A.A., Galan M.C., Whitney M.: Functional nanomaterials to augment photosynthesis: evidence and considerations for their responsible use in agricultural applications. - Interface Focus 9: 20180048, 2019.
Go to original source... - Tan W., Deng C., Wang Y. et al.: Interaction of nanomaterials in secondary metabolites accumulation, photosynthesis, and nitrogen fixation in plant systems. - Compr. Anal. Chem. 84: 55-74, 2019.
Go to original source... - Tang Y., Li S., Lu Y. et al.: The influence of humic acid on the toxicity of nano-ZnO and Zn2+ to the Anabaena sp. - Environ. Toxicol. 30: 895-903, 2015.
Go to original source... - Tao X., Yu Y., Fortner J.D. et al.: Effects of aqueous stable fullerene nanocrystal (nC60) on Scenedesmus obliquus: evaluation of the sub-lethal photosynthetic responses and inhibition mechanism. - Chemosphere 122: 162-167, 2015.
Go to original source... - Tayemeh M.B., Esmailbeigi M., Shirdel I. et al.: Perturbation of fatty acid composition, pigments, and growth indices of Chlorella vulgaris in response to silver ions and nanoparticles: A new holistic understanding of hidden ecotoxicological aspect of pollutants. - Chemosphere 238: 124576, 2020.
Go to original source... - Thapa M., Singh M., Ghosh C.K. et al.: Zinc sulphide nanoparticle (nZnS): A novel nano-modulator for plant growth. - Plant Physiol. Bioch. 142: 73-83, 2019.
Go to original source... - Tian H., Ghorbanpour M., Kariman K.: Manganese oxide nanoparticle-induced changes in growth, redox reactions and elicitation of antioxidant metabolites in deadly nightshade (Atropa belladonna L.). - Ind. Crop. Prod. 126: 403-414, 2018.
Go to original source... - Tighe-Neira R., Carmora E., Recio G. et al.: Metallic nanoparticles influence the structure and function of the photosynthetic apparatus in plants. - Plant Physiol. Bioch. 130: 408-417, 2018.
Go to original source... - Tkalec M., Cvjetko P., Biba R. et al.: Impact of silver nanoparticles on photosynthesis in tobacco plants. - Toxicol. Lett. 280: S184, 2017.
Go to original source... - Tombuloglu H., Slimani Y., Tombuloglu G. et al.: Uptake and translocation of magnetite (Fe3O4) nanoparticles and its impact on photosynthetic genes in barley (Hordeum vulgare L.). - Chemosphere 226: 110-122, 2019.
Go to original source... - Torrent L., Iglesias M., Marguí E. et al.: Uptake, translocation and ligand of silver in Lactuca sativa exposed to silver nanoparticles of different size, coatings and concentration. - J. Hazard. Mater. 384: 121201, 2020.
Go to original source... - Torres R., Diz V.E., Lagorio M.G.: Effects of gold nanoparticles on the photophysical and photosynthetic parameters of leaves and chloroplasts. - Photoch. Photobio. Sci. 17: 505-516, 2018.
Go to original source... - Tripathi A., Liu S., Singh P.K. et al.: Differential phytotoxic responses of silver nitrate (AgNO3) and silver nanoparticle (AgNps) in Cucumis sativus L. - Plant Gene 11: 255-264, 2017a.
Go to original source... - Tripathi D.K., Singh S., Singh S. et al.: Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. - Plant Physiol. Bioch. 110: 167-177, 2017b.
Go to original source... - Tripathi D.K., Singh S., Singh V.P. et al.: Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. - Plant Physiol. Bioch. 110: 70-81, 2017c.
Go to original source... - Ulhassan Z., Ali S., Gill R.A. et al.: Comparative orchestrating response of four oilseed rape (Brassica napus) cultivars against the selenium stress as revealed by physiochemical, ultrastructural and molecular profiling. - Ecotox. Environ. Safe. 161: 634-647, 2018.
Go to original source... - Ulhassan Z., Gill R.A., Ali S. et al.: Dual behavior of selenium: Insights into physio-biochemical, anatomical and molecular analyses of four Brassica napus cultivars. - Chemosphere 225: 329-341, 2019a.
Go to original source... - Ulhassan Z., Huang Q., Gill R.A. et al.: Protective mechanisms of melatonin against selenium toxicity in Brassica napus: insights into physiological traits, thiol biosynthesis and antioxidant machinery. - BMC Plant Biol. 19: 507, 2019b.
Go to original source... - Veèeĝová K., Veèeĝa Z., Doèekal B. et al.: Changes of primary and secondary metabolites in barley plants exposed to CdO nanoparticles. - Environ. Pollut. 218: 207-218, 2016.
Go to original source... - Verma S.K., Das A.K., Gantait S. et al.: Applications of carbon nanomaterials in the plant system: a perspective view on the pros and cons. - Sci. Total Environ. 667: 485-499, 2019.
Go to original source... - Wang A., Jin Q., Xu X. et al.: High-throughput screening for engineered nanoparticles that enhance photosynthesis using mesophyll protoplasts. - J. Agr. Food Chem. 68: 3382-3389, 2020.
Go to original source... - Wang C., Zhang H., Ruan L. et al.: Bioaccumulation of 13C-fullerenol nanomaterials in wheat. - Environ. Sci.-Nano 3: 799-805, 2016.
Go to original source... - Wang H., Zhang M., Song Y. et al.: Carbon dots promote the growth and photosynthesis of mung bean sprouts. - Carbon 136: 94-102, 2018.
Go to original source... - Winkelmann K., Bernas L., Swiger B., Brown S.: Measurement of chlorophyll loss due to phytoremediation of Ag nanoparticles in the first-year laboratory. - J. Chem. Educ. 94: 751-757, 2017.
Go to original source... - Wong M.H., Misra R.P., Giraldo J.P. et al.: Lipid exchange envelope penetration (LEEP) of nanoparticles for plant engineering: a universal localization mechanism. - Nano Lett. 16: 1161-1172, 2016.
Go to original source... - Wu H., Lin Z.: Recent advances in nano-enabled agriculture for improving plant performance. - Crop J., 2021. (In press)
Go to original source... - Wu H., Shabala L., Shabala S., Giraldo J.P.: Hydroxyl radical scavenging by cerium oxide nanoparticles improves Arabidopsis salinity tolerance by enhancing leaf mesophyll potassium retention. - Environ. Sci.-Nano 5: 1567-1583, 2018.
Go to original source... - Wu H., Tito N., Giraldo J.P.: Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. - ACS Nano 11: 11283-11297, 2017.
Go to original source... - Xu X., Mao X., Zhuang J. et al.: PVA-coated fluorescent carbon dot nanocapsules as an optical amplifier for enhanced photosynthesis of lettuce. - ACS Sustain. Chem. Eng. 8: 3938-3949, 2020.
Go to original source... - Yang F., Liu C., Gao F. et al.: The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. - Biol. Trace Elem. Res. 119: 77-88, 2007.
Go to original source... - Yasmeen F., Raja N.I., Ilyas N., Komatsu S.: Quantitative proteomic analysis of shoot in stress tolerant wheat varieties on copper nanoparticle exposure. - Plant Mol. Biol. Rep. 36: 326-340, 2018.
Go to original source... - Younes N.A., Dawood M.F.A., Wardany A.A.: Biosafety assessment of graphene nanosheets on leaf ultrastructure, physiological and yield traits of Capsicum annuum L. and Solanum melongena L. - Chemosphere 228: 318-327, 2019.
Go to original source... - Zahedi S.M., Hosseini M.S., Meybodi N.D.H. et al.: Foliar application of selenium and nano-selenium affects pomegranate (Punica granatum cv. Malase Saveh) fruit yield and quality. - S. Afr. J. Bot. 124: 350-358, 2019.
Go to original source... - Zhai G., Walters K.S., Peate D.W. et al.: Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar. - Environ. Sci. Technol. Lett. 1: 146-151, 2014.
Go to original source... - Zhang L., Goswami N., Xie J. et al.: Unraveling the molecular mechanism of photosynthetic toxicity of highly fluorescent silver nanoclusters to Scenedesmus obliquus. - Sci. Rep.-UK 7: 16432, 2017.
Go to original source... - Zhao L., Lu L., Wang A. et al.: Nano-biotechnology in agriculture: Use of nanomaterials to promote plant growth and stress tolerance. - J. Agr. Food Chem. 68: 1935-1947, 2020.
Go to original source... - Zhao L., Peralta-Videa J.R., Peng B. et al.: Alginate modifies the physiological impact of CeO2 nanoparticles in corn seedlings cultivated in soil. - J. Environ. Sci. 26: 382-389, 2014.
Go to original source... - Zhao L., Sun Y., Hernandez-Viezcas J.A. et al.: Monitoring the environmental effects of CeO2 and ZnO nanoparticles through the life cycle of corn (Zea mays) plants and in situ μ-XRF mapping of nutrients in kernels. - Environ. Sci. Technol. 49: 2921-2928, 2015.
Go to original source... - Zhao L., Zhang H., White J.C. et al.: Metabolomics reveals that engineered nanomaterial exposure in soil alters both soil rhizosphere metabolite profiles and maize metabolic pathways. - Environ. Sci.-Nano 6: 1716-1727, 2019.
Go to original source...




