Photosynthetica 2022, 60(1):25-58 | DOI: 10.32615/ps.2021.055

Light quality, oxygenic photosynthesis and more

D. LAZAR1, †, A. STIRBET2, †, L.O. BJÖRN3, G. GOVINDJEE4
1 Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, ©lechtitelù 11, 783 71 Olomouc, Czech Republic
2 Anne Burras Lane, Newport News, 23606 Virginia, USA Department of Biology, Molecular Cell Biology, Lund University, Sölvegatan 35, SE-22462 Lund, Sweden3
4 Department of Plant Biology, Department of Biochemistry, and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Oxygenic photosynthesis takes place in thylakoid membranes (TM) of cyanobacteria, algae, and higher plants. It begins with light absorption by pigments in large (modular) assemblies of pigment-binding proteins, which then transfer excitation energy to the photosynthetic reaction centers of photosystem (PS) I and PSII. In green algae and plants, these light-harvesting protein complexes contain chlorophylls (Chls) and carotenoids (Cars). However, cyanobacteria, red algae, and glaucophytes contain, in addition, phycobiliproteins in phycobilisomes that are attached to the stromal surface of TM, and transfer excitation energy to the reaction centers via the Chl a molecules in the inner antennas of PSI and PSII. The color and the intensity of the light to which these photosynthetic organisms are exposed in their environment have a great influence on the composition and the structure of the light-harvesting complexes (the antenna) as well as the rest of the photosynthetic apparatus, thus affecting the photosynthetic process and even the entire organism. We present here a perspective on 'Light Quality and Oxygenic Photosynthesis', in memory of George Christos Papageorgiou (9 May 1933-21 November 2020; see notes a and b). Our review includes (1) the influence of the solar spectrum on the antenna composition, and the special significance of Chl a; (2) the effects of light quality on photosynthesis, measured using Chl a fluorescence; and (3) the importance of light quality, intensity, and its duration for the optimal growth of photosynthetic organisms.

Additional key words: Chl fluorescence induction; chromatic acclimation of cyanobacteria; photoreceptors; photosynthetic pigments; photosystems I and II; stomatal and chloroplast photoinduced movements.

Received: August 31, 2021; Revised: October 28, 2021; Accepted: November 15, 2021; Prepublished online: January 6, 2022; Published: March 18, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
LAZAR, D., STIRBET, A., BJÖRN, L.O., & GOVINDJEE, G. (2022). Light quality, oxygenic photosynthesis and more. Photosynthetica60(SPECIAL ISSUE 2022), 25-58. doi: 10.32615/ps.2021.055
Download citation

References

  1. Aasamaa K., Aphalo P.J.: The acclimation of Tilia cordata stomatal opening in response to light, and stomatal anatomy to vegetational shade and its components. ‒ Tree Physiol. 37: 209-219, 2016. Go to original source...
  2. Acuña A.M., Lemaire C., van Grondelle R. et al.: Energy transfer and trapping in Synechococcus WH 7803. ‒ Photosynth. Res. 135: 115-124, 2018b. Go to original source...
  3. Acuña A.M., van Alphen P., van Grondelle R., van Stokkum I.H.M.: The phycobilisome terminal emitter transfers its energy with a rate of (20 ps)-1 to photosystem II. ‒ Photosynthetica 56: 265-274, 2018a. Go to original source...
  4. Agati G., Fusi F., Mazzinghi P., di Paola M.L.: A simple approach to the evaluation of the reabsorption of chlorophyll fluorescence spectra in intact leaves. - J. Photoch. Photobio. B 17: 163-171, 1993. Go to original source...
  5. Alami M., Lazar D., Green B.R.: The harmful alga Aureococcus anophagefferens utilizes 19'-butanoyloxyfucoxanthin as well as xanthophyll cycle carotenoids in acclimating to higher light intensities. - BBA-Bioenergetics 1817: 1557-1564, 2012. Go to original source...
  6. Alboresi A., Gerotto C., Cazzaniga S. et al.: A red-shifted antenna protein associated with photosystem II in Physcomitrella patens. ‒ J. Biol. Chem. 286: 28978-28987, 2011. Go to original source...
  7. Allakhverdiev S.I., Tomo T., Stamatakis K., Govindjee G.: International conference on 'Photosysnthesis Research for sustainibility-2015 in honor of George C. Papageorgiou', September 21-26, 2015, Crete, Greece. - Photosynth. Res. 130: 1-10, 2016. Go to original source...
  8. Anderson J.M., Andersson B.: The dynamic photosynthetic membrane and regulation of solar-energy conversion. ‒ Trends Biochem. Sci. 13: 351-355, 1988. Go to original source...
  9. Anderson J.M., Aro E.-M.: Grana stacking and protection of Photosystem II in thylakoid membranes of higher plant leaves under sustained high irradiance: A hypothesis. ‒ Photosynth. Res. 41: 315-326, 1994. Go to original source...
  10. Andrés Z., Pérez-Hormaeche J., Leidi E.O. et al.: Control of vacuolar dynamics and regulation of stomatal aperture by tonoplast potassium uptake. ‒ P. Natl. Acad. Sci. USA 111: E1806-E1814, 2014. Go to original source...
  11. Arp T.B., Barlas Y., Aji V., Gabor N.M.: Natural regulation of energy flow in a green quantum photocell. - Nano Lett. 16: 7461-7466, 2016. Go to original source...
  12. Arp T.B., Kistner-Morris J., Aji V. et al.: Quieting a noisy antenna reproduces photosynthetic light-harvesting spectra. - Science 368: 1490-1495, 2020. Go to original source...
  13. Assmann S.M., Simoncini L., Schroeder J.I.: Blue light activates electrogenic ion pumping in guard cell protoplasts of Vicia faba L. ‒ Nature 318: 285-287, 1985. Go to original source...
  14. B±ba W., Kompa³a-B±ba A., Zabochnicka-¦wi±tek M. et al.: Discovering trends in photosynthesis using modern analytical tools: More than 100 reasons to use chlorophyll fluorescence. ‒Photosynthetica 57: 668-679, 2019. Go to original source...
  15. Bae G., Choi G.: Decoding of light signals by plant phytochromes and their interacting proteins. ‒ Annu. Rev. Plant Biol. 59: 281-311, 2008. Go to original source...
  16. Baker N.R.: Chlorophyll fluorescence: a probe of photosynthesis in vivo. - Annu. Rev. Plant Biol. 59: 89-113, 2008. Go to original source...
  17. Ballottari M., Dall'Osto L., Morosinotto T., Bassi R.: Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation. ‒ J. Biol. Chem. 282: 8947-8958, 2007. Go to original source...
  18. Bantis F., Smirnakou S., Ouzounis T. et al.: Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs). ‒ Sci. Hortic.-Amsterdam 235: 437-451, 2018. Go to original source...
  19. Baránková B., Lazár D., Nau¹ J.: Analysis of the effect of chloroplast arrangement on optical properties of green tobacco leaves. ‒ Remote Sens. Environ. 174: 181-196, 2016. Go to original source...
  20. Belyaeva N.E., Schmitt F.-J., Paschenko V.Z. et al.: Model based analysis of transient fluorescence yield induced by actinic laser flashes in spinach leaves and cells of green alga Chlorella pyrenoidosa Chick. ‒ Plant Physiol. Bioch. 77: 49-59, 2014. Go to original source...
  21. Belyaeva O.B.: Studies of chlorophyll biosynthesis in Russia. - Photosynth. Res. 76: 405-411, 2003. Go to original source...
  22. Ben-Shem A., Frolow F., Nelson N.: Crystal structure of plant photosystem I. ‒ Nature 426: 630-635, 2003. Go to original source...
  23. Bernacchi C.J., Kimball B.A., Quarles D.R. et al.: Decreases in stomatal conductance of soybean under open-air elevation of [CO2] are closely coupled with decreases in ecosystem evapotranspiration. ‒ Plant Physiol. 143: 134-144, 2007. Go to original source...
  24. Bertolino L.T., Caine R.S., Gray J.E.: Impact of stomatal density and morphology on water use efficiency in a changing world. -Front. Plant Sci. 10: 225, 2019. Go to original source...
  25. Bhaya D.: In the limelight: Photoreceptors in cyanobacteria. - mBio 7: e00741-16, 2016. Go to original source...
  26. Bielczynski L.W., Schansker G., Croce R.: Consequences of the reduction of the Photosystem II antenna size on the light acclimation capacity of Arabidopsis thaliana. ‒ Plant Cell Environ. 43: 866-879, 2020. Go to original source...
  27. Bína D., Gardian Z., Herbstová M. et al.: Novel type of red-shifted chlorophyll a antenna complex from Chromera velia. II. Biochemistry and spectroscopy. ‒ BBA-Bioenergetics 1837: 802-810, 2014. Go to original source...
  28. Björkman O., Demmig B.: Photon yield of O2 evolution of chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins. - Planta 170: 489-504, 1987. Go to original source...
  29. Björn L.O.: Why are plants green? Relationships between pigment absorption and photosynthetic efficiency. ‒ Photosynthetica 10: 121-129, 1976.
  30. Björn L.O., Ghiradella H.: Spectral tuning in biology I: Pigments. ‒ In: Björn L.O. (ed.): Photobiology. Pp. 97-117. Springer, New York 2015. Go to original source...
  31. Björn L.O., Govindjee G.: The evolution of photosynthesis and chloroplasts. - Curr. Sci. India 96: 1466-1474, 2009.
  32. Björn L.O., Papageorgiou G.C., Blankenship R.E., Govindjee G.: A viewpoint: Why chlorophyll a? ‒ Photosynth. Res. 99: 85-98, 2009. Go to original source...
  33. Blain-Hartung M., Rockwell N.C., Moreno M.V. et al.: Cyanobacteriochrome-based photoswitchable adenylyl cyclases (cPACs) for broad spectrum light regulation of cAMP levels in cells. ‒ J. Biol. Chem. 293: 8473-8483, 2018. Go to original source...
  34. Blankenship R.E.: Molecular Mechanisms of Photosynthesis. 3rd Edition. Pp. 320. Wiley-Blackwell, Oxford 2021.
  35. Boichenko V.A., Klimov V.V., Miyashita H., Miyachi S.: Functional characteristics of chlorophyll d-predominating photosynthetic apparatus in intact cells of Acaryochloris marina. ‒ Photosynth. Res. 65: 269-277, 2000. Go to original source...
  36. Brecht M., Hussels M., Schlodder E., Karapetyan N.V.: Red antenna states of photosystem I trimers from Arthrospira platensis revealed by single-molecule spectroscopy. ‒ BBA-Bioenergetics 1817: 445-452, 2012. Go to original source...
  37. Briantais J.-M., Vernotte C., Picaud M., Krause G.H.: A quantitative study of the slow decline of chlorophyll a fluorescence in isolated chloroplasts. ‒ BBA-Bioenergetics 548: 128-138, 1979. Go to original source...
  38. Briggs W.R.: Phototropism: some history, some puzzles, and a look ahead. ‒ Plant Physiol. 164: 13-23, 2014. Go to original source...
  39. Briggs W.R., Christie J.M.: Phototropins 1 and 2: versatile plant blue-light receptors. ‒ Trends Plant Sci. 7: 204-210, 2002. Go to original source...
  40. Brodersen C.R., Vogelmann T.C.: Do changes in light direction affect absorption profiles in leaves? - Funct. Plant Biol. 37: 403-412, 2010. Go to original source...
  41. Brody S.S.: New excited state of chlorophyll. ‒ Science 128: 838-839, 1958. Go to original source...
  42. Brugnoli E., Björkman O.: Chloroplast movements in leaves: Influence on chlorophyll fluorescence and measurements of light-induced absorbance changes related to ΔpH and zeaxanthin formation. ‒ Photosynth. Res. 32: 23-35, 1992. Go to original source...
  43. Büchel C.: Light harvesting complexes in chlorophyll c- containing algae. ‒ BBA-Bioenergetics 1861: 148027, 2020. Go to original source...
  44. Campbell D., Hurry V., Clarke A.K. et al.: Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. ‒ Microbiol. Mol. Biol. Rev. 62: 667-683, 1998. Go to original source...
  45. Castillon A., Shen H., Huq E.: Phytochrome Interacting Factors: central players in phytochrome-mediated light signaling networks. ‒ Trends Plant Sci. 12: 514-521, 2007. Go to original source...
  46. Chater C.C.C., Caine R.S., Fleming A.J., Gray J.E.: Origins and evolution of stomatal development. ‒ Plant Physiol. 174: 624-638, 2017. Go to original source...
  47. Chaves I., Pokorny R., Byrdin M. et al.: The cryptochromes: blue light photoreceptors in plants and animals. ‒ Annu. Rev. Plant Biol. 62: 335-364, 2011. Go to original source...
  48. Chen M., Blankenship R.E.: Expanding the solar spectrum used by photosynthesis. ‒ Trends Plant Sci. 16: 427-431, 2011. Go to original source...
  49. Chen M., Floetenmeyer M., Bibby T.S.: Supramolecular organization of phycobiliproteins in the chlorophyll d-containing cyanobacterium Acaryochloris marina. ‒ FEBS Lett. 583: 2535-2539, 2009. Go to original source...
  50. Chen M., Schliep M., Willows R.D. et al.: A red-shifted chlorophyll. ‒ Science 329: 1318-1319, 2010. Go to original source...
  51. Chow W.S.: Photoprotection and photoinhibition damage. ‒ In: Barber J. (ed.): Advances in Molecular and Cell Biology. Vol. 10. Pp. 151-196. JAI Press Inc., Stamford 1994. Go to original source...
  52. Christie J.M.: Phototropin blue-light receptors. ‒ Annu. Rev. Plant Biol. 58: 21-45, 2007. Go to original source...
  53. Christie J.M., Blackwood L., Petersen J., Sullivan S.: Plant flavoprotein photoreceptors. ‒ Plant Cell Physiol. 56: 401-413, 2015. Go to original source...
  54. Christie J.M., Briggs W.R.: Blue light sensing in higher plants. ‒ J. Biol. Chem. 276: 11457-11460, 2001. Go to original source...
  55. Chukhutsina V.U., Liu X., Xu P., Croce R.: Light-harvesting complex II is an antenna of photosystem I in dark-adapted plants. ‒ Nat. Plants 6: 860-868, 2020. Go to original source...
  56. Croce R.: Beyond 'seeing is believing': the antenna size of the photosystems in vivo. ‒ New Phytol. 228: 1214-1218, 2020. Go to original source...
  57. Croce R., Chojnicka A., Morosinotto T. et al.: The low-energy forms of photosystem I light-harvesting complexes: Spectroscopic properties and pigment-pigment interaction characteristics. ‒ Biophys J. 93: 2418-2428, 2007. Go to original source...
  58. Croce R., van Amerongen H.: Light-harvesting in photosystem I. ‒Photosynth. Res. 116: 153-166, 2013a. Go to original source...
  59. Croce R., van Amerongen H.: Light harvesting in photosystem II. ‒Photosynth. Res. 116: 251-263, 2013b. Go to original source...
  60. Croce R., van Amerongen H.: Natural strategies for photosynthetic light harvesting. ‒ Nat. Chem. Biol. 10: 492-501, 2014. Go to original source...
  61. Croce R., van Amerongen H.: Light harvesting in oxygenic photosynthesis: Structural biology meets spectroscopy. ‒ Science 369: eaay2058, 2020. Go to original source...
  62. Croce R., van Grondelle R., van Amerongen H., van Stokkum I.H.M. (ed.): Light Harvesting in Photosynthesis. Foundations of Biochemistry and Biophysics. Pp. 625. CRC Press, Taylor & Francis Group, London 2018. Go to original source...
  63. Cui M., Vogelmann T.C., Smith W.K.: Chlorophyll and light gradients in sun and shade leaves of Spinacia oleracea. - Plant Cell Environ. 14: 493-500, 1991. Go to original source...
  64. D'Amico-Damião V., Carvalho R.F.: Cryptochrome-related abiotic stress responses in plants. ‒ Front. Plant Sci. 9: 1897, 2018. Go to original source...
  65. Darko E., Heydarizadeh P., Schoefs B., Sabzalian M.R.: Photosynthesis under artificial light: the shift in primary and secondary metabolism. ‒ Philos. T. Roy. Soc. B 369: 20130243, 2014. Go to original source...
  66. Das M., Rabinowitch E., Szalay L., Papageorgiou G.: The "sieve effect" in Chlorella suspensions. - J. Phys. Chem. 71: 3543-3549, 1967. Go to original source...
  67. Daszkowska-Golec A., Szarejko I.: Open or close the gate - stomata action under the control of phytohormones in drought stress conditions. ‒ Front Plant Sci. 4: 138, 2013. Go to original source...
  68. Dau H.: Molecular mechanisms and quantitative models of variable photosystem II fluorescence. ‒ Photochem. Photobiol. 60: 1-23, 1994. Go to original source...
  69. Davis P.A., Caylor S., Whippo C.W., Hangarter R.P.: Changes in leaf optical properties associated with light-dependent chloroplast movements. ‒ Plant Cell Environ. 34: 2047-2059, 2011. Go to original source...
  70. Demmig-Adams B., Garab G., Adams III W.W., Govindjee G. (ed.): Nonphotochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Advances in Photosynthesis and Respiration. Vol. 40. Pp. 649. Springer, Dordrecht 2014. Go to original source...
  71. Demotes-Mainard S., Péron T., Corot A. et al.: Plant responses to red and far-red lights, applications in horticulture. ‒ Environ. Exp. Bot. 121: 4-21, 2016. Go to original source...
  72. Dismukes G.C., Klimov V.V., Baranov S.V. et al.: The origin of atmospheric oxygen on Earth: the innovation of oxygenic photosynthesis. ‒ P. Natl. Acad. Sci. USA 98: 2170-2175, 2001. Go to original source...
  73. Drake P.L., de Boer H.J., Schymanski S.J., Veneklaas E.J.: Two sides to every leaf: water and CO2 transport in hypostomatous and amphistomatous leaves. - New Phytol. 222: 1179-1187, 2019. Go to original source...
  74. Driesen E., Van den Ende W., De Proft M., Saeys W.: Influence of environmental factors light, CO2, temperature, and relative humidity on stomatal opening and development: A review. ‒ Agronomy 10: 1975, 2020. Go to original source...
  75. Dueck T., Ieperen W., Taulavuori K.: Light perception, signalling and plant responses to spectral quality and photoperiod in natural and horticultural environments. ‒ Environ. Exp. Bot. 121: 1-3, 2016. Go to original source...
  76. Dutta S., Cruz J.A., Imran S.M. et al.: Variations in chloroplast movement and chlorophyll fluorescence among chloroplast division mutants under light stress. ‒ J. Exp. Bot. 68: 3541-3555, 2017. Go to original source...
  77. Duxbury Z., Schliep M., Ritchie R.J. et al.: Chromatic photoacclimation extends utilisable photosynthetically active radiation in the chlorophyll d-containing cyanobacterium, Acaryochloris marina. ‒ Photosynth. Res. 101: 69-75, 2009. Go to original source...
  78. Duysens L.N.M.: The flattening of the absorption spectrum of suspension as compared to that of solutions. - Biochim. Biophys. Acta 19: 1-12, 1956. Go to original source...
  79. Duysens L.N.M.: Transfer and trapping of excitation energy in photosystem II. ‒ In: Wolstenholme G.E.W., Fitzsimons D.W. (ed.): Chlorophyll Organization and Energy Transfer in Photosynthesis. Ciba Foundation Symposium 61 (New Series). Pp. 323-340. Excerpta Medica, Amsterdam-Oxford-New York 1979. Go to original source...
  80. Duysens L.N.M., Sweers H.E.: Mechanisms of two photochemical reactions in algae as studied by means of fluorescence. ‒ In: Japanese Society of Plant Physiologists (ed.): Studies on microalgae and photosynthetic bacteria. Pp. 353-372. University of Tokyo Press, Tokyo 1963.
  81. Emerson R., Chalmers R., Cederstrand C.: Some factors influencing the long-wave limit of photosynthesis. ‒ P. Natl. Acad. Sci. USA 43: 133-143, 1957. Go to original source...
  82. Emerson R., Lewis C.M.: The dependence of the quantum yield of Chlorella photosynthesis on wavelength of light. ‒ Am. J. Bot. 30: 165-178, 1943. Go to original source...
  83. Emerson R., Rabinowitch E.: Red drop and the role of auxiliary pigments in photosynthesis. ‒ Plant Physiol. 35: 477-485, 1960. Go to original source...
  84. Engelmann E., Zucchelli G.., Casazza A.P. et al.: Influence of the photosystem I-light harvesting complex I antenna domains on fluorescence decay. ‒ Biochemistry 45: 6947-6955, 2006. Go to original source...
  85. Evans J.R.: The dependence of quantum yield on wavelength and growth irradiance. ‒ Aust. J. Plant Physiol. 14: 69-79, 1987. Go to original source...
  86. Evans J.R.: Leaf anatomy enables more equal access to light and CO2 between chloroplasts. - New Phytol. 143: 93-104, 1999. Go to original source...
  87. Evans J.R.: Potential errors in electron transport rates calculated from chlorophyll fluorescence as revealed by a multilayer leaf model. ‒ Plant Cell Physiol. 50: 698-706, 2009. Go to original source...
  88. Evans J.R., Morgan P.B., von Caemmerer S.: Light quality affects chloroplast electron transport rates estimated from Chl fluorescence measurements. ‒ Plant Cell Physiol. 58: 1652-1660, 2017. Go to original source...
  89. Evans J.R., Vogelmann T.C.: Profiles of 14C fixation through spinach leaves in relation to light absorption and photosynthetic capacity. - Plant Cell Environ. 26: 547-560, 2003. Go to original source...
  90. Everroad C., Six C., Partensky F. et al.: Biochemical bases of type IV chromatic adaptation in marine Synechococcus spp. ‒ J. Bacteriol. 188: 3345-3356, 2006. Go to original source...
  91. Flexas J., Escalona J.M., Evain S. et al.: Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C3 plants. - Physiol. Plantarum 114: 231-240, 2002. Go to original source...
  92. Franklin K.A., Quail P.H.: Phytochrome functions in Arabidopsis development. ‒ J. Exp. Bot. 61: 11-24, 2010. Go to original source...
  93. Frechilla S., Talbott L.D., Bogomolni R.A., Zeiger E.: Reversal of blue light-stimulated stomatal opening by green light. ‒ Plant Cell Physiol. 41: 171-176, 2000. Go to original source...
  94. French C.S.: The distribution and action in photosynthesis of several forms of chlorophyll. ‒ P. Natl. Acad. Sci. USA 68: 2893-2897, 1971. Go to original source...
  95. French C.S., Brown J.S., Lawrence M.C.: Four universal forms of chlorophyll a. ‒ Plant Physiol. 49: 421-429, 1972. Go to original source...
  96. Fuente D., Keller J, Conejero J.A. et al.: Light distribution and spectral composition within cultures of micro-algae: Quantitative modelling of the light field in photobioreactors. -Algal Res. 23: 166-177, 2017. Go to original source...
  97. Fujita Y., Ohki K.: On the 710 nm fluorescence emitted by the diatom Phaeodactylum tricornutum at room temperature. ‒ Plant Cell Physiol. 45: 392-397, 2004. Go to original source...
  98. Fushimi K., Hasegawa M., Ito T. et al.: Evolution-inspired design of multicolored photoswitches from a single cyanobacteriochrome scaffold. ‒ P. Natl. Acad. Sci. USA 117: 15573-15580, 2020. Go to original source...
  99. Fushimi K., Narikawa R.: Cyanobacteriochromes: photoreceptors covering the entire UV-to-visible spectrum. ‒ Curr. Opin. Struct. Biol. 57: 39-46, 2019. Go to original source...
  100. Fushimi K., Narikawa R.: Phytochromes and cyanobacteriochromes: Photoreceptor molecules incorporating a linear tetrapyrrole chromophore. ‒ In: Yawo H., Kandori H., Koizumi A., Kageyama R. (ed.): Optogenetics. Advances in Experimental Medicine and Biology. Vol. 1293. Pp. 167-187. Springer, Singapore 2021. Go to original source...
  101. Gaidukov N.: Die Farbervänderung bei den Prozessen der Komplementären chromatischen Adaptation. [The color change in the processes of complementary chromatic adaptation.] ‒ Ber. Deutsch. Bot. Ges 21: 517-522, 1903. [In German] Go to original source...
  102. Gan F., Zhang S., Rockwell N.C. et al.: Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. ‒ Science 345: 1312-1317, 2014. Go to original source...
  103. Genty B., Briantais J.-M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. ‒ BBA-Gen. Subjects 990: 87-92, 1989. Go to original source...
  104. Giera W., Szewczyk S., McConnel M.D. et al.: Uphill energy transfer in photosystem I from Chlamydomonas reinhardtii. Time-resolved fluorescence measurements at 77 K. ‒ Photosynth. Res. 137: 321-335, 2018. Go to original source...
  105. Gisriel C., Shen G., Kurashov V. et al.: The structure of Photosystem I acclimated to far-red light illuminates an ecologically important acclimation process in photosynthesis. ‒ Sci. Adv. 6: eaay6415, 2020a. Go to original source...
  106. Gisriel C.J., Wang J., Brudvig G.W., Bryant D.A.: Opportunities and challenges for assigning cofactors in cryo-EM density maps of chlorophyll-containing proteins. - Commun. Biol. 3: 408, 2020b. Go to original source...
  107. Gitelson A.A., Buschmann C., Lichtenthaler H.K.: Leaf chlorophyll fluorescence corrected for re-absorption by means of absorption and reflectance measurements. - J. Plant Physiol. 152: 283-296, 1998. Go to original source...
  108. Gobets B., van Grondelle R.: Energy transfer and trapping in photosystem I. ‒ BBA-Bioenergetics 1507: 80-99, 2001. Go to original source...
  109. Goh C.-H.: Phototropins and chloroplast activity in plant blue light signaling. ‒ Plant Signal. Behav. 4: 693-695, 2009. Go to original source...
  110. Golbeck J.H.: Structure, function and organization of the photosystem I reaction center complex. ‒ BBA-Rev. Bioenergetics 895: 167-204, 1987. Go to original source...
  111. Gotoh E., Suetsugu N., Higa T. et al.: Palisade cell shape affects the light-induced chloroplast movements and leaf photosynthesis. ‒ Sci. Rep.-UK 8: 1472, 2018b. Go to original source...
  112. Gotoh E., Suetsugu N., Yamori W. et al.: Chloroplast accumulation response enhances leaf photosynthesis and plant biomass production. ‒ Plant Physiol. 178: 1358-1369, 2018a. Go to original source...
  113. Govindjee G.: Observations on P750A from Anacystis nidulans. ‒Naturwissenschaften 50: 720-721, 1963. Go to original source...
  114. Govindjee G.: Sixty-three years since Kautsky: Chlorophyll a fluorescence. ‒ Aust. J. Plant Physiol. 22: 131-160, 1995. Go to original source...
  115. Govindjee G.: Chlorophyll a fluorescence: a bit of basics and history. ‒ In: Papageorgiou G.C., Govindjee G. (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Vol. 19. Pp. 1-41. Springer, Dordrecht 2004. Go to original source...
  116. Govindjee G., Braun B.Z.: Light absorption, emission and photosynthesis. ‒ In: Stewart W.D.P. (ed.): Algal Physiology and Biochemistry, Pp. 346-390. Blackwell Scientific Publication Ltd., Oxford 1974.
  117. Govindjee G., Papageorgiou G.C.: Chlorophyll fluorescence and photosynthesis: fluorescence transients. ‒ In: Giese A.C. (ed.): Photophysiology: Current Topics in Photobiology and Photochemistry. Vol. 6. Pp. 1-46. Academic Press, New York 1971. Go to original source...
  118. Govindjee G., Papageorgiou G.C., Govindjee R.: Eugene I. Rabinowitch: A prophet of photosynthesis and of peace in the world. - Photosynth. Res. 141: 143-150, 2019. Go to original source...
  119. Govindjee G., Shevela D., Björn L.O.: Evolution of the Z-scheme of photosynthesis: a perspective. ‒ Photosynth. Res. 133: 5-15, 2017. Go to original source...
  120. Greenbaum N.L., Mauzerall D.: Effect of irradiance level on distribution of chlorophylls between PS II and PS I as determined from optical cross-sections. ‒ BBA-Bioenergetics 1057: 195-207, 1991. Go to original source...
  121. Grossman A.R.: A molecular understanding of complementary chromatic adaptation. ‒ Photosynth. Res. 76: 207-215, 2003. Go to original source...
  122. Guruprasad K., Bhattacharjee S., Kataria S. et al.: Growth enhancement of soybean (Glycine max) upon exclusion of UV-B and UV-B/A components of solar radiation: characterization of photosynthetic parameters in leaves. ‒ Photosynth. Res. 94: 299-306, 2007. Go to original source...
  123. Hák R., Lichtenthaler H.K., Rinderle U.: Decrease of the fluorescence ratio F690/F730 during greening and development of leaves. - Radiat. Environ. Bioph. 29: 329-336, 1990. Go to original source...
  124. Hall J., Renger T., Müh F. et al.: The lowest-energy chlorophyll of photosystem II is adjacent to the peripheral antenna: Emitting states of CP47 assigned via circularly polarized luminescence. ‒ BBA-Bioenergetics 1857: 1580-1593, 2016. Go to original source...
  125. Hamaguchi T., Kawakami K., Shinzawa-Itoh K. et al.: Structure of the far-red light utilizing photosystem I of Acaryochloris marina. ‒ Nat. Commun. 12: 2333, 2021. Go to original source...
  126. Hamdani S., Khan N., Perveen S. et al.: Changes in the photosynthesis properties and photoprotection capacity in rice (Oryza sativa) grown under red, blue, or white light. ‒ Photosynth. Res. 139: 107-121, 2019. Go to original source...
  127. Harper S.M., Neil L.C., Gardner K.H.: Structural basis of a phototropin light switch. ‒ Science 301: 1541-1544, 2003. Go to original source...
  128. Harris D., Bar-Zvi S., Lahav A. et al.: The structural basis for the extraordinary energy-transfer capabilities of the phycobilisome. ‒ In: Harris J.R., Boekema E.J. (ed.): Membrane Protein Complexes: Structure and Function, Subcellular Biochemistry. Vol. 87. Pp. 57-82. Springer, Singapore 2018. Go to original source...
  129. Harris D., Tal O., Jallet D. et al.: Orange carotenoid protein burrows into the phycobilisome to provide photoprotection. ‒ P. Natl. Acad. Sci. USA 113: E1655-E1662, 2016. Go to original source...
  130. Hasan M.M., Bashir T., Ghosh R. et al.: An overview of LEDs' effects on the production of bioactive compounds and crop quality. ‒ Molecules 22: 1420, 2017. Go to original source...
  131. Haupt W., Scheuerlein R.: Chloroplast movement. - Plant Cell Environ. 13: 595-614, 1990. Go to original source...
  132. Hayes S.: Location, location, location: phototropin 2 action at the chloroplast membrane. ‒ Plant Physiol. 183: 27-28, 2020. Go to original source...
  133. He D., Kozai T., Niu G., Zhang X.: Light-emitting diodes for horticulture. ‒ In: Li J., Zhang G.Q. (ed.): Light-Emitting Diodes. Solid State Lighting Technology and Application Series. Vol. 4. Pp. 513-547. Springer, Cham 2019. Go to original source...
  134. Herbstová M., Bína D., Kaòa R. et al.: Red-light phenotype in a marine diatom involves a specialized oligomeric red-shifted antenna and altered cell morphology. ‒ Sci. Rep.-UK 7: 11976, 2017. Go to original source...
  135. Hernández R., Kubota C.: Growth and morphological response of cucumber seedlings to supplemental red and blue photon flux ratios under varied solar daily light integrals. ‒ Sci. Hortic.-Amsterdam 173: 92-99, 2014. Go to original source...
  136. Hirose Y., Rockwell N.C., Nishiyama K. et al.: Green/red cyanobacteriochromes regulate complementary chromatic acclimation via a protochromic photocycle. ‒ P. Natl. Acad. Sci. USA 110: 4974-4979, 2013. Go to original source...
  137. Hirose Y., Song C., Watanabe M. et al.: Diverse chromatic acclimation processes regulating phycoerythrocyanin and rod-shaped phycobilisome in cyanobacteria. ‒ Mol. Plant 12: 715-725, 2019. Go to original source...
  138. Ho M.Y., Niedzwiedzki D.M., MacGregor-Chatwin C. et al.: Extensive remodeling of the photosynthetic apparatus alters energy transfer among photosynthetic complexes when cyanobacteria acclimate to far-red light. ‒ BBA-Bioenergetics 1861: 148064, 2020. Go to original source...
  139. Ho M.Y., Shen G., Canniffe D.P. et al.: Light-dependent chlorophyll f synthase is a highly divergent paralog of PsbA of photosystem II. ‒ Science 353: 213-227, 2016. Go to original source...
  140. Hoang Q.T.N., Han Y.J., Kim J.I.: Plant phytochromes and their phosphorylation. ‒ Int. J. Mol. Sci. 20: 3450, 2019. Go to original source...
  141. Hogewoning S.W., Douwstra P., Trouwborst G. et al.: An artificial solar spectrum substantially alters plant development compared with usual climate room irradiance spectra. ‒ J. Exp. Bot. 61: 1267-1276, 2010. Go to original source...
  142. Hogewoning S.W., Trouwborst G., Engbers G.J. et al.: Plant physiological acclimation to irradiation by light-emitting diodes (LEDs). ‒ Acta Hortic. 761: 183-191, 2007. Go to original source...
  143. Hogewoning S.W., Wientjes E., Douwstra P. et al.: Photosynthetic quantum yield dynamics: from photosystems to leaves. ‒ Plant Cell 24: 1921-1935, 2012. Go to original source...
  144. Hohmann-Marriott M.F., Blankenship R.E.: Evolution of photosynthesis. ‒ Annu. Rev. Plant Biol. 62: 515-548, 2011. Go to original source...
  145. Howard M.M., Bae A., Königer M.: The importance of chloroplast movement, nonphotochemical quenching, and electron transport rates in light acclimation and tolerance to high light in Arabidopsis thaliana. ‒ Am. J. Bot. 106: 1444-1453, 2019. Go to original source...
  146. Hu K., Govindjee G., Tan J. et al.: Co-author and co-cited reference network analysis for chlorophyll fluorescence research from 1991 to 2018. ‒ Photosynthetica 58: 110-124, 2020. Go to original source...
  147. Hu Q., Miyashita H., Iwasaki I. et al.: A Photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. - P. Natl. Acad. Sci. USA 95: 13319-13323, 1998. Go to original source...
  148. Huché-Thélier L., Crespel L., Le Gourrierec J. et al.: Light signaling and plant responses to blue and UV radiations - Perspectives for applications in horticulture. ‒ Environ. Exp. Bot. 121: 22-38, 2016. Go to original source...
  149. Iino M., Ogawa T., Zeiger E.: Kinetic properties of the blue-light response of stomata. ‒ P. Natl. Acad. Sci. USA 82: 8019-8023, 1985. Go to original source...
  150. Ikeuchi M., Ishizuka T.: Cyanobacteriochromes: a new superfamily of tetrapyrrole-binding photoreceptors in cyanobacteria. ‒ Photoch. Photobio. Sci. 7: 1159-1167, 2008. Go to original source...
  151. Inada K.: Action spectra for photosynthesis in higher plants. ‒ Plant Cell Physiol. 17: 355-365, 1976.
  152. Inoue S.I., Kinoshita T: Blue light regulation of stomatal opening and the plasma membrane H+-ATPase. - Plant Physiol. 174: 531-538, 2017. Go to original source...
  153. Ishishita K., Higa T., Tanaka H. et al.: Phototropin2 contributes to the chloroplast avoidance response at the chloroplast-plasma membrane interface. ‒ Plant Physiol. 183: 304-316, 2020. Go to original source...
  154. Jarillo J.A., Gabrys H., Capel J. et al.: Phototropin-related NPL1 controls chloroplast relocation induced by blue light. ‒ Nature 410: 952-954, 2001. Go to original source...
  155. Jávorfi T., Erostyák J., Gál J. et al.: Quantitative spectrophotometry using integrating cavities. - J. Photoch. Photobio. B 82: 127-131, 2006. Go to original source...
  156. Jennings R.C., Zuccerelli G., Croce R., Garlaschi F.M.: The photochemical trapping rate from red spectral states in PSI-LHCI is determined by thermal activation of energy transfer to bulk chlorophylls. ‒ BBA-Bioenergetics 1557: 91-98, 2003. Go to original source...
  157. Johnson D.M., Smith W.K., Vogelmann T.C., Brodersen C.R.: Leaf architecture and direction of incident light influence mesophyll fluorescence profiles. - Am. J. Bot. 92: 1425-1431, 2005. Go to original source...
  158. Joliot P., Joliot A.: Compartaive study of the fluorescence yield and of the C550 absorption change at room temperature. - BBA-Bioenergetics 546: 93-105, 1979. Go to original source...
  159. Jordan P., Fromme P., Witt H.T. et al.: Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. ‒Nature 411: 909-917, 2001. Go to original source...
  160. Kadota A., Yamada N., Suetsugu N. et al.: Short actin-based mechanism for light-directed chloroplast movement in Arabidopsis. ‒ P. Natl. Acad. Sci. USA 106: 13106-13111, 2009. Go to original source...
  161. Kalaitzoglou P., van Ieperen W., Harbinson J. et al.: Effects of continuous or end-of-day far-red light on tomato plant growth, morphology, light absorption, and fruit production. ‒ Front. Plant Sci. 10: 322, 2019. Go to original source...
  162. Kalaji H.M., Schansker G., Brestic M. et al.: Frequently asked questions about chlorophyll fluorescence, the sequel. ‒ Photosynth. Res. 132: 13-66, 2017. Go to original source...
  163. Kalaji H.M., Schansker G., Ladle R.J. et al.: Frequently asked questions about chlorophyll fluorescence: practical issues. ‒ Photosynth. Res. 122: 121-158, 2014. Go to original source...
  164. Kale R., Hebert A.E., Frankel L.K. et al.: Amino acid oxidation of the D1 and D2 proteins by oxygen radicals during photoinhibition of photosystem II. ‒ P. Natl. Acad. Sci. USA 114: 2988-2993, 2017. Go to original source...
  165. Kami C., Lorrain S., Hornitschek P., Fankhauser C.: Light-regulated plant growth and development. ‒ Curr. Top. Dev. Biol. 91: 29-66, 2010. Go to original source...
  166. Kaòa R., Kotabová E., Komárek O. et al.: The slow S to M fluorescence rise in cyanobacteria is due to a state 2 to state 1 transition. ‒ BBA-Bioenergetics 1817: 1237-1247, 2012. Go to original source...
  167. Kaòa R., Prá¹il O., Komárek O. et al.: Spectral characteristic of fluorescence induction in a model cyanobacterium, Synechococcus sp. (PCC 7942). ‒ BBA-Bioenergetics 1787: 1170-1178, 2009. Go to original source...
  168. Karapetyan N.V., Bolychevtseva Yu.V., Yurina N.P. et al.: Long-wavelength chlorophylls in PSI of cyanobacteria: Origin, localization, and functions. ‒ Biochemistry-Moscow 79: 213-220, 2014. Go to original source...
  169. Karapetyan N.V., Schlodder E., van Grondelle R., Dekker J.P.: The long wavelength chlorophylls of photosystem I. ‒ In: Golbeck J.H., Govindjee G., Sharkey T. (ed.): The Light-Driven Plastocyanin: Ferredoxin Oxidoreductase. Advances in Photosynthesis and Respiration. Vol. 24. Pp. 177-192. Springer, Dordrecht 2006. Go to original source...
  170. Karlsson P.E.: Blue light regulation of stomata in wheat seedlings. I. Influence of red background illumination and initial conductance level. ‒ Physiol. Plantarum 66: 202-206, 1986. Go to original source...
  171. Kasajima I., Suetsugu N., Wada M., Takahara K: Collective calculation of actual values of non-photochemical quenching from their apparent values after chloroplast movement and photoinhibition. - Am. J. Plant Sci. 6: 1792-1805, 2015. Go to original source...
  172. Kato K., Shinoda T., Nagao R. et al.: Structural basis for the adaptation and function of chlorophyll f in photosystem I. ‒ Nat. Commun. 11: 238, 2020. Go to original source...
  173. Katz J.J., Norris J.R.: Chlorophyll and light energy transduction in photosynthesis. ‒ In: Sanadi D.R., Packer L. (ed.): Current Topics in Bioenergetics. Vol. 5. Pp. 41-75. Academic Press, New York 1973. Go to original source...
  174. Kautsky H., Hirsch A.: Neue Versuche zur Kohlensäureassimilation. [New attempts on carbon dioxide assimilation.] -Naturwissenschaften 19: 964, 1931. [In German] Go to original source...
  175. Keenan T.F., Hollinger D.Y., Bohrer G. et al.: Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. ‒ Nature 499: 324-327, 2013. Go to original source...
  176. Kehoe D.M., Gutu A.: Responding to color: The regulation of complementary chromatic adaptation. ‒ Annu. Rev. Plant Biol. 57: 127-150, 2006. Go to original source...
  177. Khanna R., Li J., Tseng T.-S. et al.: COP1 jointly modulates cytoskeletal processes and electrophysiological responses required for stomatal closure. - Mol. Plant 7: 1441-1454, 2014. Go to original source...
  178. Kiang N.Y., Segura A., Tinetti G. et al.: Spectral signatures of photosynthesis II: coevolution with other stars and the atmosphere on extrasolar worlds. ‒ Astrobiology 7: 252-274, 2007b. Go to original source...
  179. Kiang N.Y., Siefert J., Govindjee G., Blankenship R.E.: Spectral signatures of photosynthesis. I. Review of Earth organisms. ‒ Astrobiology 7: 222-251, 2007a. Go to original source...
  180. Kinoshita T., Shimazaki K.: Biochemical evidence for the requirement of 14-3-3 protein binding in activation of the guard-cell plasma membrane H+-ATPase by blue light. ‒ Plant Cell Physiol. 43: 1359-1365, 2002. Go to original source...
  181. Kirilovsky D., Kerfeld C.A.: Cyanobacterial photoprotection by the orange carotenoid protein. ‒Nat. Plants 2: 16180, 2016. Go to original source...
  182. Kitajima M., Butler W.L.: Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. ‒ BBA-Bioenergetics 376: 105-115, 1975. Go to original source...
  183. Knox R.S.: Thermodynamics and the primary processes of photosynthesis. ‒ Biophys. J. 9: 1351-1362, 1969. Go to original source...
  184. Kodru S., Malavath T., Devadasu E. et al.: The slow S to M rise of chlorophyll a fluorescence induction reflects transition from state 2 to state 1 in the green alga Chlamydomonas reinhardtii. ‒ Photosynth. Res. 125: 219-231, 2015. Go to original source...
  185. Koizumi M., Takahashi K., Mineuchi K. et al.: Light gradients and the transverse distribution of chlorophyll fluorescence in mangrove and Camellia leaves. - Ann. Bot.-London 81: 527-533, 1998. Go to original source...
  186. Kok B.: A critical consideration of the quantum yield of Chlorella photosynthesis. - Enzymologia 13: 1-56, 1948.
  187. Kolber Z.S., Prá¹il O., Falkowski P.G.: Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: Defining methodology and experimental protocols. ‒ BBA-Bioenergetics 1367: 88-106, 1998. Go to original source...
  188. Kollist H., Nuhkat M., Roelfsema M.R.G.: Closing gaps: linking elements that control stomatal movement. ‒ New Phytol. 203: 44-62, 2014. Go to original source...
  189. Kong S.G., Okajima K.: Diverse photoreceptors and light responses in plants. ‒ J. Plant Res. 129: 111-114, 2016. Go to original source...
  190. Kong S.G., Wada M.: Recent advances in understanding the molecular mechanism of chloroplast photorelocation movement. ‒ BBA-Bioenergetics 1837: 522-530, 2014. Go to original source...
  191. Kosugi M., Ozawa S.I., Takahashi Y. et al.: Red-shifted chlorophyll a bands allow uphill energy transfer to photosystem II reaction centers in an aerial green alga, Prasiola crispa, harvested in Antarctica. ‒ BBA-Bioenergetics 1861: 148139, 2020. Go to original source...
  192. Kotabová E., Jare¹ová J., Kaòa R. et al.: Novel type of red-shifted chlorophyll a antenna complex from Chromera velia. I. Physiological relevance and functional connection to photosystems. ‒ BBA-Bioenergetics 1837: 734-743, 2014. Go to original source...
  193. Kouøil R., Nosek L., Opatíková M. et al.: Unique organization of photosystem II supercomplexes and megacomplexes in Norway spruce. ‒ Plant J. 104: 215-225, 2020. Go to original source...
  194. Krause G.H., Weis E.: Chlorophyll fluorescence and photosynthesis: The basics. ‒ Annu. Rev. Plant Phys. 42: 313-349, 1991. Go to original source...
  195. Kubota-Kawai H., Burton-Smith R.N., Tokutsu R. et al.: Ten antenna proteins are associated with the core in the supramolecular organization of the photosystem I supercomplex in Chlamydomonas reinhardtii. ‒ J. Biol. Chem. 294: 4304-4314, 2019. Go to original source...
  196. Kumazaki S., Abiko K., Ikegami I. et al.: Energy equilibration and primary charge separation in chlorophyll d-based photosystem I reaction center isolated from Acaryochloris marina. ‒ FEBS Lett. 530: 153-157, 2002. Go to original source...
  197. Laisk A., Oja V.: Variable fluorescence of closed photochemical reaction centers. ‒ Photosynth. Res. 143: 335-346, 2020. Go to original source...
  198. Langsdorf G., Buschmann C., Sowinska M. et al.: Multicolour fluorescence imaging of sugar beet leaves with different N-status by flash lamp UV-excitation. - Photosynthetica 38: 539-551, 2000. Go to original source...
  199. Larkum A.W.D.: The evolution of chlorophylls and photosynthesis. ‒ In: Grimm B., Porra R.J., Rüdiger W., Scheer H. (ed.): Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications. Pp. 261-282. Springer, Dordrecht 2006.
  200. Larkum A.W.D., Kühl M.: Chlorophyll d: the puzzle resolved. - Trends Plant Sci. 10: 355-357, 2005. Go to original source...
  201. Latouche G., Cerovic Z.G., Montagnini F., Moya I.: Light-induced changes of NADPH fluorescence in isolated chloroplasts: a spectral and fluorescence lifetime study. - BBA-Bioenergetics 1460: 311-329, 2000. Go to original source...
  202. Lawson T., Blatt M.R.: Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. ‒ Plant Physiol. 164: 1556-1570, 2014. Go to original source...
  203. Lawson T., Terashima I., Fujita T., Wang Y.: Coordination between photosynthesis and stomatal behavior. ‒ In: Adams III W.W., Terashima I. (ed.): The Leaf: A Platform for Performing Photosynthesis. Pp. 141-161. Springer, Cham 2018. Go to original source...
  204. Lawson T., Vialet-Chabrand S.: Speedy stomata, photosynthesis and plant water use efficiency. ‒ New Phytol. 221: 93-98, 2019. Go to original source...
  205. Lazár D.: Chlorophyll a fluorescence induction. ‒ BBA-Bioenergetics 1412: 1-28, 1999. Go to original source...
  206. Lazár D.: The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. ‒ Funct. Plant Biol. 33: 9-30, 2006. Go to original source...
  207. Lazár D.: Simulations show that a small part of variable chlorophyll a fluorescence originates in photosystem I and contributes to overall fluorescence rise. ‒ J. Theor. Biol. 335: 249-264, 2013. Go to original source...
  208. Lazár D.: Parameters of photosynthetic energy partitioning. ‒ J. Plant Physiol. 175: 131-147, 2015. Go to original source...
  209. Lazár D., Nau¹ J.: Statistical properties of chlorophyll fluorescence parameters. - Photosynthetica 35: 121-127, 1998. Go to original source...
  210. Lee Y., Kim Y.W., Jeon B.W. et al.: Phosphatidylinositol 4,5-bisphosphate is important for stomatal opening. ‒ Plant J. 52: 803-816, 2007. Go to original source...
  211. Lehmer O.R., Catling D.C., Parenteau M.N. et al.: The peak absorbance wavelength of photosynthetic pigments around other stars from spectral optimization. - Front. Astron. Space Sci. 8: 689441, 2021. Go to original source...
  212. Levitan O., Chen M., Kuang X. et al.: Structural and functional analyses of photosystem II in the marine diatom Phaeodactylum tricornutum. ‒ P. Natl. Acad. Sci. USA 116: 17316-17322, 2019. Go to original source...
  213. Li J., Li G., Wang H., Deng X.W.: Phytochrome signaling mechanisms. ‒ The Arabidopsis Book 2011: e0148, 2011. Go to original source...
  214. Li T., Podola B., Melkonian M.: Investigating dynamic processes in a porous substrate biofilm photobioreactor - A modeling approach. - Algal Res. 13: 30-40, 2016. Go to original source...
  215. Li X.-P., Björkman O., Shih C. et al.: A pigment-binding protein essential for regulation of photosynthetic light harvesting. ‒ Nature 403: 391-395, 2000. Go to original source...
  216. Lichtenberg M., Kühl M.: Pronounced gradients of light, photosynthesis and O2 consumption in the tissue of the brown alga Fucus serratus. - New Phytol. 207: 559-569, 2015. Go to original source...
  217. Lichtenberg M., Trampe E.C.L., Vogelmann T.C., Kühl M.: Light sheet microscopy imaging of light absorption and photosynthesis distribution in plant tissue. - Plant Physiol. 175: 721-733, 2017. Go to original source...
  218. Lichtenthaler H.K.: Multi-colour fluorescence imaging of photosynthetic activity and plant stress. - Photosynthetica 59: 364-380, 2021. Go to original source...
  219. Lichtenthaler H.K., Babani F.: Detection of photosynthetic activity and water stress by imaging the red chlorophyll fluorescence. - Plant Physiol. Bioch. 38: 889-895, 2000. Go to original source...
  220. Lichtenthaler H.K., Buschmann C., Rahmsdorf U.: The importance of blue light for the development of sun-type chloroplasts. ‒ In: Senger H. (ed.): The Blue Light Syndrome. Proceedings in Life Sciences. Pp. 485-494. Springer, Berlin-Heidelberg 1980. Go to original source...
  221. Lichtenthaler H.K., Lang M., Sowinska M. et al.: Detection of vegetation stress via a new high resolution fluorescence imaging system. - J. Plant Physiol. 148: 599-612, 1996. Go to original source...
  222. Lin C.: Blue light receptors and signal transduction. - Plant Cell 14: S207-S225, 2002. Go to original source...
  223. Liscum E., Nittler P., Koskie K.: The continuing arc toward phototropic enlightenment. ‒ J. Exp. Bot. 71: 1652-1658, 2020. Go to original source...
  224. Litvin F.F., Krasnovsky A.A.: Investigation of intermediate stages of chlorophyll formation. - Doklady Akademii Nauk SSSR 117: 106-109, 1957.
  225. Liu H., Blankenship R.E.: On the interface of light-harvesting antenna complexes and reaction centers in oxygenic photosynthesis. ‒ BBA-Bioenergetics 1860: 148079, 2019. Go to original source...
  226. Liu H., Liu B., Zhao C. et al.: The action mechanisms of plant cryptochromes. ‒ Trends Plant Sci. 16: 684-691, 2011. Go to original source...
  227. Lüttge U.: CO2-concentrating: consequences in crassulacean acid metabolism. ‒ J. Exp. Bot. 53: 2131-2142, 2002. Go to original source...
  228. Lysenko V., Lazár D., Verduny T.: A method of a bicolor fast-Fourier pulse-amplitude modulation chlorophyll fluorometry. -Photosynthetica 56: 1447-1452, 2018. Go to original source...
  229. Magdaong N.C.M., Blankenship R.E.: Photoprotective, excited-state quenching mechanisms in diverse photosynthetic organisms. ‒ J. Biol. Chem. 293: 5018-5025, 2018. Go to original source...
  230. Magyar M., Sipka G., Kovács L. et al.: Rate-limiting steps in the dark-to-light transition of Photosystem II - revealed by chlorophyll-a fluorescence induction. - Sci. Rep.-UK 8: 2755, 2018. Go to original source...
  231. Mamedov M., Govindjee G., Nadtochenko V., Semenov A.: Primary electron transfer processes in photosynthetic reaction centers from oxygenic organisms. ‒ Photosynth. Res. 125: 51-63, 2015. Go to original source...
  232. Mao J., Zhang Y.C., Sang Y. et al.: A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. ‒ P. Natl. Acad. Sci. USA 102: 12270-12275, 2005. Go to original source...
  233. Marosvölgyi M.A., van Gorkom H.J.: Cost of color of photosynthesis. - Photosynth. Res. 103: 105-109, 2010. Go to original source...
  234. Marrs J.K., Reblin J.S., Logan B.A. et al.: Solar-induced fluorescence does not track photosynthetic carbon assimilation following induced stomatal closure. - Geophys. Res. Lett. 47: e2020GL087956, 2020. Go to original source...
  235. Mascoli V., Bersanini L., Croce R.: Far-red absorption and light-use efficiency trade-offs in chlorophyll f photosynthesis. ‒ Nat. Plants 6: 1044-1053, 2020. Go to original source...
  236. Matsubara S., Morosinotto T., Osmond C.B., Bassi R.: Short- and long-term operation of the lutein-epoxide cycle in light-harvesting antenna complexes. ‒ Plant Physiol. 144: 926-941, 2007. Go to original source...
  237. Matsuda R., Ohashi-Kaneko K., Fujiwara K., Kurata K.: Analysis of the relationship between blue-light photon flux density and the photosynthetic properties of spinach (Spinacia oleracea L.) leaves with regard to the acclimation of photosynthesis to growth irradiance. ‒ Soil Sci. Plant Nutr. 53: 459-465, 2007. Go to original source...
  238. Matthews J.S.A., Lawson T.: Climate change and stomatal physiology. ‒ Annu. Plant Rev. Online 2: apr0667, 2019. Go to original source...
  239. Matthews J.S.A., Vialet-Chabrand S., Lawson T.: Acclimation to fluctuating light impacts the rapidity of response and diurnal rhythm of stomatal conductance. ‒ Plant Physiol. 176: 1939-1951, 2018. Go to original source...
  240. Matthews J.S.A., Vialet-Chabrand S., Lawson T.: Role of blue and red light in stomatal dynamic behaviour. ‒ J. Exp. Bot. 71: 2253-2269, 2020. Go to original source...
  241. Mauzerall D.: Light-induced fluorescence changes in Chlorella, and the primary photoreactions for the production of oxygen. ‒P. Natl. Acad. Sci. USA 69: 1358-1362, 1972. Go to original source...
  242. Mauzerall D.: Why chlorophyll? ‒ Ann. N. Y. Acad. Sci. 206: 483-494, 1973. Go to original source...
  243. Mauzerall D.: Chlorophyll and photosynthesis. ‒ Philos. T. Roy. Soc. B 273: 287-294, 1976. Go to original source...
  244. Mawson B.T., Franklin A., Filion W.G., Cummins W.R.: Comparative studies of fluorescence from mesophyll and guard cell chloroplasts in Saxifraga cernua 1: Analysis of fluorescence kinetics as a function of excitation intensity. - Plant Physiol. 74: 481-486, 1984. Go to original source...
  245. McKown A.D., Guy R.D., Quamme L. et al.: Association genetics, geography and ecophysiology link stomatal patterning in Populus trichocarpa with carbon gain and disease resistance trade-offs. ‒ Mol. Ecol. 23: 5771-5790, 2014. Go to original source...
  246. Merzlyak M.N., Chivkunova O.B., Zhigalova T.V., Naqvi K.R.: Light absorption by isolated chloroplasts and leaves: effects of scattering and 'packing'. - Photosynth. Res. 102: 31-41, 2009. Go to original source...
  247. Mi H., Klughammer C., Schreiber U.: Light-induced dynamic changes of NADPH fluorescence in Synechocystis PCC 6803 and its ndhB-defective mutant M55. - Plant Cell Physiol. 41: 1129-1135, 2000. Go to original source...
  248. Mimuro M.: Photon capture, exciton migration and trapping and fluorescence emission in cyanobacteria and red algae. ‒In: Papageorgiou G.C., Govindjee G. (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Vol. 19. Pp. 173-195. Springer, Dordrecht 2004. Go to original source...
  249. Mirkovic T., Ostroumov E.E., Anna J.M. et al.: Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. ‒ Chem. Rev. 117: 249-293, 2017. Go to original source...
  250. Miyashita H., Ikemoto H., Kurano N. et al.: Chlorophyll d as a major pigment. ‒ Nature 383: 402, 1996. Go to original source...
  251. Möglich A., Yang X., Ayers R.A., Moffat K.: Structure and function of plant photoreceptors. ‒ Annu. Rev. Plant Biol. 61: 21-47, 2010. Go to original source...
  252. Montgomery B.L.: Mechanisms and fitness implications of photomorphogenesis during chromatic acclimation in cyanobacteria. ‒ J. Exp. Bot. 67: 4079-4090, 2016. Go to original source...
  253. Montgomery B.L.: Lessons from Plants. Pp. 240. Harvard University Press, Cambridge 2021. Go to original source...
  254. Moreno M.V., Rockwell N.C., Mora M. et al.: A far-red cyanobacteriochrome lineage specific for verdins. ‒ P. Natl. Acad. Sci. USA 117: 27962-27970, 2020. Go to original source...
  255. Muir C.D.: Making pore choices: repeated regime shifts in stomatal ratio. ‒ P. Roy. Soc. Lond. B Bio. 282: 20151498, 2015. Go to original source...
  256. Myers J., Graham J.R.: Enhancement in Chlorella. ‒ Plant Physiol. 38: 105-116, 1963. Go to original source...
  257. Natali A., Croce R.: Characterization of the major light-harvesting complexes (LHCBM) of the green alga Chlamydomonas reinhardtii. ‒ PLoS ONE 10: e0119211, 2015. Go to original source...
  258. Nau¹ J., Klinkovský T., Ilík P., Cikánek D.: Model studies of chlorophyll fluorescence reabsorption at chloroplast level under different exciting conditions. - Photosynth. Res. 40: 67-74, 1994. Go to original source...
  259. Nau¹ J., Lazár D., Baránková B., Arno¹tová B.: On the source of non-linear light absorbance in photosynthetic samples. - Photosynth. Res. 136: 345-355, 2018. Go to original source...
  260. Nau¹ J., Prokopová J., Øebíèek J., ©pundová M.: SPAD chlorophyll meter reading can be pronouncedly affected by chloroplast movement. - Photosynth. Res. 105: 265-271, 2010. Go to original source...
  261. Nedbal L., Trtílek M., Kaftan D.: Flash fluorescence induction: A novel method to study regulation of photosystem II. ‒ J. Photoch. Photobio. B 48: 154-157, 1999. Go to original source...
  262. Negi S., Perrine Z., Friedland N. et al.: Light regulation of light harvesting antenna size substantially enhances photosynthetic efficiency and biomass yield in green algae. ‒ Plant J. 103: 584-603, 2020. Go to original source...
  263. Nelson N., Junge W.: Structure and energy transfer in photosystems of oxygenic photosynthesis. ‒ Annu. Rev. Biochem. 84: 659-683, 2015. Go to original source...
  264. Nishio J.N.: Why are higher plants green? Evolution of the higher plant photosynthetic pigment complement. ‒ Plant Cell Environ. 23: 539-548, 2000. Go to original source...
  265. Nishio J.N., Sun J., Vogelmann T.C.: Carbon fixation gradients across spinach leaves do not follow internal light gradients. - Plant Cell 5: 953-961, 1993. Go to original source...
  266. Nobel P.S.: Photochemistry of photosynthesis. ‒ In: Nobel P.S.: Photochemical and Environmental Plant Physiology. 4th Edition. Pp. 228-275. Academic Press, Amsterdam 2009. Go to original source...
  267. Nürnberg D.J., Morton J., Santabarbara S. et al.: Photochemistry beyond the red limit in chlorophyll f-containing photo-systems. ‒ Science 360: 1210-1213, 2018. Go to original source...
  268. Ogawa T., Grantz D., Boyer J., Govindjee G.: Effects of cations and abscisic acid on chlorophyll a fluorescence in guard cells of Vicia faba. - Plant Physiol. 69: 1140-1144, 1982. Go to original source...
  269. Ogawa T., Misumi M., Sonoike K.: Estimation of photosynthesis in cyanobacteria by pulse-amplitude modulation chlorophyll fluorescence: problems and solutions. ‒ Photosynth. Res. 133: 63-73, 2017. Go to original source...
  270. Oguchi R., Douwstra P., Fujita T. et al.: Intra-leaf gradients of photoinhibition induced by different color lights: implications for the dual mechanisms of photoinhibition and for the application of conventional chlorophyll fluorometers. ‒ New Phytol. 191: 146-159, 2011. Go to original source...
  271. Oguchi R., Terashima I., Chow W.S.: The involvement of dual mechanisms of photoinactivation of photosystem II in Capsicum annuum L. plants. - Plant Cell Physiol. 50: 1815-1825, 2009. Go to original source...
  272. Oh S., Montgomery B.L.: Phytochromes: Where to start? ‒ Cell 171: 1254-1256, 2017. Go to original source...
  273. Ohkubo S., Miyashita H.: A niche for cyanobacteria producing chlorophyll f within a microbial mat. ‒ ISME J. 11: 2368-2378, 2017. Go to original source...
  274. Oka K., Ueno Y., Yokono M. et al.: Adaptation of light‑harvesting and energy‑transfer processes of a diatom Phaeodactylum tricornutum to different light qualities. ‒ Photosynth. Res. 146: 227-234, 2020. Go to original source...
  275. Olson J.M., Blankenship R.E.: Thinking about the evolution of photosynthesis. ‒ Photosynth. Res. 80: 373-386, 2004. Go to original source...
  276. Ort D.R., Merchant S.S., Alric J. et al.: Redesigning photosynthesis to sustainably meet global food and bioenergy demand. ‒ P. Natl. Acad. Sci. USA 112: 8529-8536, 2015. Go to original source...
  277. Osmond B., Chow W.S., Wyber R. et al.: Relative functional and optical absorption cross-sections of PSII and other photosynthetic parameters monitored in situ, at a distance with a time resolution of a few seconds, using a prototype light induced fluorescence transient (LIFT) device. ‒ Funct. Plant Biol. 44: 985-1006, 2017. Go to original source...
  278. Ostroumov E.E., Khan Y.R., Scholes G.D., Govindjee G.: Photophysics of photosynthetic pigment-protein complexes. ‒In: Demmig-Adams B., Garab G., Adams III W.W., Govindjee G. (ed.): Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria. Advances in Photosynthesis and Respiration. Vol. 40. Pp. 97-128. Springer, Dordrecht 2014. Go to original source...
  279. Ouzounis T., Rosenqvist E., Ottosen C.-O.: Spectral effects of artificial light on plant physiology and secondary metabolism: A review. ‒ HortScience 50: 1128-1135, 2015. Go to original source...
  280. Padhi B., Chauhan G., Kandoi D. et al.: A comparison of chlorophyll fluorescence transient measurements, using Handy PEA and FluorPen fluorometers. - Photosynthetica 59: 399-408, 2021. Go to original source...
  281. Paik I., Huq E.: Plant photoreceptors: Multi-functional sensory proteins and their signaling networks. ‒ Semin. Cell Dev. Biol. 92: 114-121, 2019. Go to original source...
  282. Palenik B.: Chromatic adaptation in marine Synechococcus strains. ‒ Appl. Environ. Microb. 67: 991-994, 2001. Go to original source...
  283. Palmitessa O.D., Pantaleo M.A., Santamaria P.: Applications and development of LEDs as supplementary lighting for tomato at different latitudes. ‒ Agronomy 11: 835, 2021. Go to original source...
  284. Pan X., Cao P., Su X. et al.: Structural analysis and comparison of light-harvesting complexes I and II. ‒ BBA-Bioenergetics 1861: 148038, 2020. Go to original source...
  285. Pan X., Ma J., Su X. et al.: Structure of the maize photosystem I supercomplex with light-harvesting complexes I and II. ‒ Science 360: 1109-1113, 2018. Go to original source...
  286. Papageorgiou G.C.: Chlorophyll fluorescence: an intrinsic probe of photosynthesis. ‒ In: Govindjee G. (ed.): Bioenergetics of Photosynthesis. Pp. 319-371. Academic Press, New York 1975. Go to original source...
  287. Papageorgiou G.C.: The photosynthesis of cyanobacteria (blue bacteria) from the perspective of signal analysis of chlorophyll a fluorescence. ‒ J. Sci. Ind. Res. India 155: 596-617, 1996.
  288. Papageorgiou G.C., Govindjee G.: Changes in intensity and spectral distribution of fluorescence. Effect of light treatment on normal and DCMU-poisoned Anacystis nidulans. ‒ Biophys. J. 7: 375-389, 1967. Go to original source...
  289. Papageorgiou G.C., Govindjee G.: Light-induced changes in the fluorescence yield of chlorophyll a in vivo. I. Anacystis nidulans. ‒ Biophys. J. 8: 1299-1315, 1968a. Go to original source...
  290. Papageorgiou G.C., Govindjee G.: Light induced changes in the fluorescence yield of chlorophyll a in vivo. II. Chlorella pyrenoidosa. ‒ Biophys. J. 8: 1316-1328, 1968b. Go to original source...
  291. Papageorgiou G.C., Govindjee G. (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Vol. 19. Pp. 818. Springer, Dordrecht 2004. Go to original source...
  292. Papageorgiou G.C., Govindjee G.: Photosystem II fluorescence: slow changes - scaling from the past. ‒ J. Photoch. Photobio. B 104: 258-270, 2011. Go to original source...
  293. Papageorgiou G.C., Govindjee G.: The non-photochemical quenching of the electronically excited state of chlorophyll a in plants: definitions, timelines, viewpoints, open questions. ‒In: Demmig-Adams B., Garab G., Adams III W.W., Govindjee G. (ed.): Nonphotochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Pp. 1-44. Advances in Photosynthesis and Respiration. Vol. 40. Springer, Dordrecht 2014. Go to original source...
  294. Papageorgiou G.C., Tsimilli-Michael M., Stamatakis K.: The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint. ‒ Photosynth. Res. 94: 275-290, 2007. Go to original source...
  295. Paradiso R., Proietti S.: Light‑quality manipulation to control plant growth and photomorphogenesis in greenhouse horticulture: The state of the art and the opportunities of modern LED systems. ‒ J. Plant Growth Regul., 2021. (In press) Go to original source...
  296. Pattison P.M., Tsao J.Y., Brainard G.C., Bugbee B.: LEDs for photons, physiology and food. ‒ Nature 563: 493-500, 2018. Go to original source...
  297. Peers G., Truong T.B., Ostendorf E. et al.: An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. ‒ Nature 462: 518-521, 2009. Go to original source...
  298. Pérez-Bueno M.K., Pineda M., Díaz-Casado E., Barón M.: Spatial and temporal dynamics of primary and secondary metabolism in Phaseolus vulgaris challenged by Pseudomonas syringae. -Physiol. Plantarum 153: 161-174, 2015. Go to original source...
  299. Pettai H., Oja V., Freiberg A., Laisk A.: Photosynthetic activity of far-red light in green plants. ‒ BBA-Bioenergetics 1708: 311-321, 2005a. Go to original source...
  300. Pettai H., Oja V., Freiberg A., Laisk A.: The long-wavelength limit of plant photosynthesis. ‒ FEBS Lett. 579: 4017-4019, 2005b. Go to original source...
  301. Pfündel E.E.: Deriving room temperature excitation spectra for photosystem I and photosystem II fluorescence in intact leaves from the dependence of FV/FM on excitation wavelength. ‒ Photosynth. Res. 100: 163-177, 2009. Go to original source...
  302. Pfündel E.E.: Simultaneously measuring pulse‑amplitude‑modulated (PAM) chlorophyll fluorescence of leaves at wavelengths shorter and longer than 700 nm. - Photosynth. Res. 147: 345-358, 2021. Go to original source...
  303. Pfündel E.E., Latouche G., Meister A., Cerovic Z.G.: Linking chloroplast relocation to different responses of photosynthesis to blue and red radiation in low and high light-acclimated leaves of Arabidopsis thaliana (L.). - Photosynth. Res. 137: 105-128, 2018. Go to original source...
  304. Pi X., Zhao S., Wang W. et al.: The pigment-protein network of a diatom photosystem II-light-harvesting antenna supercomplex. - Science 365: eaaax4406, 2019. Go to original source...
  305. Prá¹il O., Kolber Z.S., Falkowski P.G.: Control of the maximal chlorophyll fluorescence yield by the QB binding site. ‒ Photosynthetica 56: 150-162, 2018. Go to original source...
  306. Ptushenko O.S., Ptushenko V.V., Solovchenko A.E.: Spectrum of light as a determinant of plant functioning: A historical perspective. - Life 10: 25, 2020. Go to original source...
  307. Qin X., Suga M., Kuang T., Shen J.R.: Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex. - Science 348: 989-995, 2015. Go to original source...
  308. Rappaport F., Béal D., Joliot A., Joliot P.: On the advantages of using green light to study fluorescence yield changes in leaves. ‒ BBA-Bioenergetics 1767: 56-65, 2007. Go to original source...
  309. Raven J.A.: Functional evolution of photochemical energy transformations in oxygen-producing organisms. - Funct. Plant Biol. 36: 505-515, 2009. Go to original source...
  310. Razzak M.A., Ranade S.S., Strand Å., García-Gil M.: Environment: Differential response of Scots pine seedlings to variable intensity and ratio of R and FR light. ‒ Plant Cell Environ. 40: 1332-1340, 2017. Go to original source...
  311. Remelli W., Santabarbara S.: Excitation and emission wavelength dependence of fluorescence spectra in whole cells of the cyanobacterium Synechocystis sp. PPC6803: Influence on the estimation of photosystem II maximal quantum efficiency. - BBA-Bioenergetics 1859: 1207-1222, 2018. Go to original source...
  312. Ritchie R.J., Larkum A.W.D., Ribas I.: Could photosynthesis function on Proxima Centauri b? ‒ Int. J. Astrobiol. 17: 147-176, 2018. Go to original source...
  313. Rivadossi A., Zucchelli G., Garlaschi F.M., Jennings R.C.: The importance of PS I chlorophyll red forms in light-harvesting by leaves. ‒ Photosynth. Res. 60: 209-215, 1999. Go to original source...
  314. Rockwell N.C., Duanmu D., Martin S.S. et al.: Eukaryotic algal phytochromes span the visible spectrum. ‒ P. Natl. Acad. Sci. USA 111: 3871-3876, 2014. Go to original source...
  315. Rockwell N.C., Lagarias J.C.: A brief history of phytochromes. - ChemPhysChem 11: 1172-1180, 2010. Go to original source...
  316. Rockwell N.C., Lagarias J.C.: Phytochrome diversification in cyanobacteria and eukaryotic algae. ‒ Curr. Opin. Plant Biol. 37: 87-93, 2017. Go to original source...
  317. Rockwell N.C., Su Y.S., Lagarias J.C.: Phytochrome structure and signaling mechanisms. - Annu. Rev. Plant Biol. 57: 837-858, 2006. Go to original source...
  318. Roelfsema M.R.G., Hedrich R.: In the light of stomatal opening: new insights into 'the Watergate'. New Phytol. 167: 665-691, 2005. Go to original source...
  319. Romero J.M., Cordon G.B., Lagorio M.G.: Modeling re-absorption of fluorescence from the leaf to the canopy level. -Remote Sens. Environ. 204: 138-146, 2018. Go to original source...
  320. Ronald J., Davis S.J.: Focusing on the nuclear and subnuclear dynamics of light and circadian signalling. ‒ Plant Cell Environ. 42: 2871-2884, 2019. Go to original source...
  321. Ross R.T., Calvin M.: Thermodynamics of light emission and free-energy storage in photosynthesis. ‒ Biophys. J. 7: 595-614, 1967. Go to original source...
  322. Ruberti I., Sessa G., Ciolfi A. et al.: Plant adaptation to dynamically changing environment: the shade avoidance response. ‒ Biotechnol. Adv. 30: 1047-1058, 2012. Go to original source...
  323. Rudall P.J., Hilton J., Bateman R.M.: Several developmental and morphogenetic factors govern the evolution of stomatal patterning in land plants. ‒ New Phytol. 200: 598-614, 2013. Go to original source...
  324. Russo M., Casazza A.P., Cerullo G. et al.: Direct evidence for excitation energy transfer limitations imposed by low-energy chlorophylls in photosystem I - Light harvesting complex I of land plants. ‒ J. Phys. Chem. B 125: 3566-3573, 2021. Go to original source...
  325. Sanfilippo J.E, Garczarek L., Partensky F., Kehoe D.M.: Chromatic acclimation in cyanobacteria: A diverse and widespread process for optimizing photosynthesis. ‒ Annu. Rev. Microbiol. 73: 407-433, 2019. Go to original source...
  326. Sanfilippo J.E., Nguyen A.A.., Karty J.A. et al.: Self-regulating genomic island encoding tandem regulators confers chromatic acclimation to marine Synechococcus. ‒ P. Natl. Acad. Sci. USA 113: 6077-6082, 2016. Go to original source...
  327. Santabarbara S., Casazza A.P., Belgio E. et al.: Light harvesting by long-wavelength chlorophyll forms (red forms) in algae: Focus on their presence, distribution and function. ‒In: Larkum A.W.D., Grossman A.R., Raven J.R. (ed.): Photosynthesis in Algae: Biochemical and Physiological Mechanisms. Advances in Photosynthesis and Respiration. Vol. 45. Pp. 261-297. Springer, Cham 2020. Go to original source...
  328. Santabarbara S., Monteleone F.V., Remellia W. et al.: Comparative excitation-emission dependence of the FV/FM ratio in model green algae and cyanobacterial strains. - Physiol. Plantarum 166: 351-364, 2019. Go to original source...
  329. Schansker G., Tóth Z.S., Kovács L. et al.: Evidence for a fluorescence yield change driven by a light induced conformational change within photosystem II during the fast chlorophyll a fluorescence rise. ‒ BBA-Bioenergetics 1807: 1032-1043, 2011. Go to original source...
  330. Schreiber U.: Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. ‒ In: Papageorgiou G.C., Govindjee G. (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Vol. 19. Pp. 279-319. Springer, Dordrecht 2004. Go to original source...
  331. Schreiber U., Klughammer C.: New NADPH/9-AA module for the DUAL-PAM-100: Description, operation and examples of application. - PAM Appl. Notes 2: 1-13, 2009.
  332. Schreiber U., Klughammer C.: Evidence for variable chlorophyll fluorescence of photosystem I in vivo. - Photosynth. Res. 149: 213-231, 2021. Go to original source...
  333. Schreiber U., Klughammer C., Koblowski J.: High-end chlorophyll fluorescence analysis with the MULTI-COLOR-PAM. I. Various light qualities and their applications. - PAM Appl. Notes 1: 1-21, 2011.
  334. Schreiber U., Klughammer C., Kolbowski J.: Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer. ‒ Photosynth. Res. 113: 127-144, 2012. Go to original source...
  335. Schreiber U., Kühl M., Klimant I., Reising H.: Measurement of chlorophyll fluorescence within leaves using a modified PAM fluorometer with a fiber-optic microprobe. - Photosynth. Res. 47: 103-109, 1996. Go to original source...
  336. Schreiber U., Schliwa U., Bilger W.: Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. ‒ Photosynth. Res. 10: 51-62, 1986. Go to original source...
  337. Segeèová A., Pérez-Bueno M.L., Barón M. et al.: Non-invasive determination of toxic stress biomarkers by high-throughput screening of photoautotrophic cell suspension cultures with multi-colour fluorescence imaging. - Plant Methods 15: 100, 2019. Go to original source...
  338. Semchonok D.A., Li M., Bruce B.D. et al.: Cryo-EM structure of a tetrameric cyanobacterial photosystem I complex reveals novel subunit interactions. ‒ BBA-Bioenergetics 1857: 1619-1626, 2016. Go to original source...
  339. Semer J., Navrátil M., ©punda V., ©troch M.: Chlorophyll fluorescence parameters to assess utilization of excitation energy in photosystem II independently of changes in leaf absorption. - J. Photoch. Photobio. B 197: 111535, 2019. Go to original source...
  340. Sheng X., Watanabe A., Li A. et al.: Structural insight into light harvesting for photosystem II in green algae. ‒ Nat. Plants 5: 1320-1330, 2019. Go to original source...
  341. Shevela D., Kern J.F., Govindjee G. et al.: Photosystem II. ‒ eLS 2: 1-20, 2021. Go to original source...
  342. Shibata Y., Nishi S., Kawakami K. et al.: Photosystem II does not possess a simple excitation energy funnel: Time-resolved fluorescence spectroscopy meets theory. ‒ J. Am. Chem. Soc. 135: 6903-6914, 2013. Go to original source...
  343. Shimazaki K., Doi M., Assmann S.M., Kinoshita T.: Light regulation of stomatal movement. ‒ Annu. Rev. Plant Biol. 58: 219-247, 2007. Go to original source...
  344. Shtein I., Popper Z.A., Harpaz-Saad S.: Permanently open stomata of aquatic angiosperms display modified cellulose crystallinity patterns. ‒ Plant Signal. Behav. 12: e1339858, 2017. Go to original source...
  345. Shukla A., Biswas A., Blot N. et al.: Phycoerythrin-specific bilin lyase-isomerase controls blue-green chromatic acclimation in marine Synechococcus. ‒ P. Natl. Acad. Sci. USA 109: 20136-20141, 2012. Go to original source...
  346. Sipka G., Magyar M., Mezzetti A. et al.: Light-adapted charge-separated state of photosystem II: structural and functional dynamics of the closed reaction center. - Plant Cell 33: 1286-1302, 2021. Go to original source...
  347. Sipka H., Müller P., Brettel K. et al.: Redox transients of P680 associated with the incremental chlorophyll-a fluorescence yield rises elicited by a series of saturating flashes in diuron-treated photosystem II core complex of Thermosynechococcus vulcanus. - Physiol. Plantarum 166: 22-32, 2019. Go to original source...
  348. Slattery R.A., Grennan A.K., Sivaguru M. et al.: Light sheet microscopy reveals more gradual light attenuation in light-green versus dark-green soybean leaves. - J. Exp. Bot. 67: 4697-4709, 2016. Go to original source...
  349. Slattery R.A., Ort D.R.: Perspectives on improving light distribution and light use efficiency in crop canopies. ‒ Plant Physiol. 185: 34-48, 2021. Go to original source...
  350. Smith H., Whitelam G.C.: The shade avoidance syndrome: multiple responses mediated by multiple phytochromes. ‒ Plant Cell Environ. 20: 840-844, 1997. Go to original source...
  351. Somers D.E., Devlin P.F., Kay S.A.: Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. ‒ Science 282: 1488-1490, 1998. Go to original source...
  352. Sonoike K., Hihara Y., Ikeuchi M.: Physiological significance of the regulation of photosystem stoichiometry upon high light acclimation of Synechocystis sp. PCC 6803. ‒ Plant Cell Physiol. 42: 379-384, 2001. Go to original source...
  353. Srivastava A., Zeiger E.: Fast fluorescence quenching from isolated guard cell chloroplasts of Vicia faba is induced by blue light and not by red light. - Plant Physiol. 100: 1562-1566, 1992. Go to original source...
  354. Stamatakis Κ., Papageorgiou G.C., Govindjee G.: Effects of exogenous β-carotene, a chemical scavenger of singlet oxygen, on the millisecond rise of chlorophyll a fluorescence of cyanobacterium Synechococcus sp. PCC 7942. ‒ Photosynth. Res. 130: 317-324, 2016. Go to original source...
  355. Stamatakis K., Tsimilli-Michael M., Papageorgiou G.C.: Fluorescence induction in the phycobilisome-containing cyanobacterium Synechococcus sp PCC 7942: Analysis of the slow fluorescence transient. ‒ BBA-Bioenergetics 1767: 766-772, 2007. Go to original source...
  356. Stirbet A., Govindjee G.: On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. ‒J. Photoch. Photobio. B 104: 236-257, 2011. Go to original source...
  357. Stirbet A., Govindjee G.: Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise. ‒ Photosynth. Res. 113: 15-61, 2012. Go to original source...
  358. Stirbet A., Lazár D., Guo Y., Govindjee G.: Photosynthesis: basics, history and modelling. - Ann. Bot.-London 126: 511-537, 2020. Go to original source...
  359. Stirbet A., Lazár D., Kromdijk J., Govindjee G.: Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? ‒ Photosynthetica 56: 86-104, 2018. Go to original source...
  360. Stirbet A., Lazár D., Papageorgiou G.C., Govindjee G.: Chlorophyll a fluorescence in cyanobacteria: relation to photosynthesis. ‒ In: Mishra A.K., Tiwari D.N., Rai A.N. (ed.): Cyanobacteria - From Basic Science to Applications. Pp. 79-130. Academic Press, London 2019. Go to original source...
  361. Stomp M., Huisman J., de Jongh F. et al.: Adaptive divergence in pigment composition promotes phytoplankton biodiversity. ‒ Nature 432: 104-107, 2004. Go to original source...
  362. Stomp M., Huisman J., Stal L.J., Matthijs H.C.P.: Colorful niches of phototrophic microorganisms shaped by vibrations of the water molecule. ‒ ISME J. 1: 271-282, 2007a. Go to original source...
  363. Stomp M., Huisman J., Vörös L. et al.: Colourful coexistence of red and green picocyanobacteria in lakes and seas. ‒ Ecol. Lett. 10: 290-298, 2007b. Go to original source...
  364. Stomp M., van Dijk M.A., van Overzee H.M.J. et al.: The timescale of phenotypic plasticity and its impact on competition in fluctuating environments. ‒ Am. Nat. 172: 169-185, 2008. Go to original source...
  365. Strasser B.J., Strasser R.J.: Measuring fast fluorescence transients to address environmental questions: the JIP test. ‒ In: Mathis P. (ed.): Photosynthesis: From Light to Biosphere. Vol. 5. Pp. 977-980. Kluwer Academic, Dordrecht 1995. Go to original source...
  366. Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll fluorescence transient. ‒ In: Papageorgiou G.C., Govindjee G. (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Vol. 19. Pp. 321-362. Springer, Dordrecht 2004. Go to original source...
  367. Suetsugu N., Dolja V.V., Wada M.: Why have chloroplasts developed a unique motility system? ‒ Plant Signal. Behav. 5: 1190-1196, 2010. Go to original source...
  368. Suetsugu N., Higa T., Gotoh E., Wada M.: Light-induced movements of chloroplasts and nuclei are regulated in both cp-actin-filament-dependent and -independent manners in Arabidopsis thaliana. ‒ PLoS ONE 11: e0157429, 2016. Go to original source...
  369. Suetsugu N., Takami T., Ebisu Y. et al.: Guard cell chloroplasts are essential for blue light-dependent stomatal opening in Arabidopsis. ‒ PLoS ONE 9: e108374, 2014. Go to original source...
  370. Suetsugu N., Wada M.: Chloroplast photorelocation movement mediated by phototropin family proteins in green plants. ‒ Biol. Chem. 388: 927-935, 2007. Go to original source...
  371. Suetsugu N., Wada M.: Chloroplast photorelocation movement. ‒In: Sandelius A.S., Aronsson H. (ed.): The Chloroplasts. Plant Cell Monographs Series. Pp. 335-366. Springer, Berlin-Heidelberg 2009. Go to original source...
  372. Suga M., Ozawa S.I., Yoshida-Motomura K. et al.: Structure of the green algal photosystem I supercomplex with a decameric light-harvesting complex I. ‒ Nat. Plants 5: 626-636, 2019. Go to original source...
  373. Sun J., Nishio J.N., Vogelmann T.C.: Green light drives CO2 fixation deep within leaves. - Plant Cell Physiol. 39: 1020-1026, 1998. Go to original source...
  374. Su¹ila P., Lazár D., Ilík P. et al.: The gradient of exciting radiation within a sample affects the relative height of steps in the fast chlorophyll a fluorescence rise. - Photosynthetica 42: 161-172, 2004. Go to original source...
  375. Takahashi K., Mineuchi K., Nakamura T. et al.: A system for imaging transverse distribution of scattered light and chlorophyll fluorescence in intact rice leaves. - Plant Cell Environ. 17: 105-110, 1994. Go to original source...
  376. Takemiya A., Sugiyama N., Fujimoto H. et al.: Phosphorylation of BLUS1 kinase by phototropins is a primary step in stomatal opening. ‒ Nat. Commun. 4: 2094, 2013. Go to original source...
  377. Talbott L.D., Hammad J.W., Harn L.C. et al.: Reversal by green light of blue light-stimulated stomatal opening in intact, attached leaves of Arabidopsis operates only in the potassium-dependent, morning phase of movement. ‒ Plant Cell Physiol. 47: 332-339, 2006. Go to original source...
  378. Talbott L.D., Nikolova G., Ortiz A. et al.: Green light reversal of blue-light-stimulated stomatal opening is found in a diversity of plant species. ‒ Am. J. Bot. 89: 366-368, 2002. Go to original source...
  379. Tandeau de Marsac N.: Occurrence and nature of chromatic adaptation in cyanobacteria. ‒ J. Bacteriol. 130: 82-91, 1977.
  380. Terashima I., Fujita T., Inoue T. et al.: Green light drives leaf photosynthesis more efficiently than red light in strong white light: Revisiting the enigmatic question of why leaves are green. ‒ Plant Cell Physiol. 50: 684-697, 2009. Go to original source...
  381. Terashima I., Inoue Y.: Palisade tissue chloroplasts and spongy tissue chloroplasts in spinach: biochemical and ultrastructural differences. - Plant Cell Physiol. 26: 63-75, 1985a.
  382. Terashima I., Inoue Y.: Vertical gradient in photosynthetic properties of spinach chloroplasts dependent on intra-leaf light environment. - Plant Cell Physiol. 26: 781-785, 1985b. Go to original source...
  383. Terashima I., Saeki T.: Light environment within a leaf. I. Optical properties of paradermal sections of Camellia leaves with special reference to differences in the optical properties of palisade and spongy tissues. - Plant Cell Physiol. 24: 1493-1501, 1983. Go to original source...
  384. Thapper A., Mamedov F., Mokvist F. et al.: Defining the far-red limit of photosystem II in spinach. ‒ Plant Cell 21: 2391-2401, 2009. Go to original source...
  385. Trissl H.-W., Gao Y., Wulf K.: Theoretical fluorescence induction curves derived from coupled differential equations describing the primary photochemistry of photosystem II by an exciton-radical pair equilibrium. - Biophys. J. 64: 974-988, 1993. Go to original source...
  386. Tros M., Mascoli V., Shen G. et al.: Breaking the red limit: Efficient trapping of long-wavelength excitations in chlorophyll-f-containing photosystem I. ‒ Chem. 7: 155-173, 2021. Go to original source...
  387. Tsimilli-Michael M.: Revisiting JIP-test: An educative review on concepts, assumptions, approximations, definitions and terminology. ‒ Photosynthetica 58: 275-292, 2020. Go to original source...
  388. Tsimilli-Michael M., Stamatakis K., Papageorgiou G.C.: Dark-to-light transition in Synechococcus sp. PCC 7942 cells studied by fluorescence kinetics assesses plastoquinone redox poise in the dark and photosystem II fluorescence component and dynamics during state 2 to state 1 transition. ‒ Photosynth. Res. 99: 243-255, 2009. Go to original source...
  389. van Amerongen H., Valkunas L., van Grondelle R.: Photosynthetic excitons. Pp. 604. World Scientific Publishing, Singapore 2000. Go to original source...
  390. Vavilin D.V., Tyystjärvi E., Aro E.-M.: Model for the fluorescence induction curve of photoinhibited thylakoids. ‒ Biophys. J. 75: 503-512, 1998. Go to original source...
  391. Vialet-Chabrand S., Matthews J.S.A., Simkin A.J. et al.: Importance of fluctuations in light on plant photosynthetic acclimation of Arabidopsis thaliana. ‒ Plant Physiol. 173: 2163-2179, 2017. Go to original source...
  392. Villafani Y., Yang H.W., Park Y.I.: Color sensing and signal transmission diversity of cyanobacterial phytochromes and cyanobacteriochromes. ‒ Mol. Cells 43: 509-516, 2020.
  393. Vogelmann T.C., Björn L.O.: Measurement of light gradients and spectral regime in plant tissue with a fiber-optic probe. - Physiol. Plantarum 60: 361-368, 1984. Go to original source...
  394. Vogelmann T.C., Bornman J.F., Josserand S.: Photosynthetic light gradients and spectral regime within leaves of Medicago sativa. - Philos. T. Roy. Soc. B 323: 411-421, 1989. Go to original source...
  395. Vogelmann T.C., Evans J.R.: Profiles of light absorption and chlorophyll within spinach leaves from chlorophyll fluorescence. - Plant Cell Environ. 25: 1313-1323, 2002. Go to original source...
  396. Vogelmann T.C., Han T.: Measurement of gradients of absorbed light in spinach leaves from chlorophyll fluorescence profiles. - Plant Cell Environ. 23: 1303-1311, 2000. Go to original source...
  397. Wada M.: Chloroplast and nuclear photorelocation movements. ‒ P. Jpn. Acad. B-Phys. 92: 387-411, 2016. Go to original source...
  398. Wallner T., Pedroza L., Voigt K. et al.: The cyanobacterial phytochrome 2 regulates the expression of motility-related genes through the second messenger cyclic di-GMP. ‒ Photoch. Photobio. Sci. 19: 631-643, 2020. Go to original source...
  399. Wang F., Robson T.M., Casal J.J. et al.: Contributions of cryptochromes and phototropins to stomatal opening through the day. ‒ Funct. Plant Biol. 47: 226-238, 2020. Go to original source...
  400. Wang J., Lu W., Tong Y., Yang Q.: Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce (Lactuca sativa L.) exposed to different ratios of red light to blue light. - Front. Plant Sci. 7: 250, 2016. Go to original source...
  401. Wang Q., Lin C.: Mechanisms of cryptochrome-mediated photoresponses in plants. ‒ Annu. Rev. Plant Biol. 71: 103-129, 2020. Go to original source...
  402. Wang W., Yu L.J., Xu C. et al.: Structural basis for blue-green light harvesting and energy dissipation in diatoms. ‒ Science 363: eaav0365, 2019. Go to original source...
  403. Wang X.Q., Wu W.H., Assmann S.M.: Differential responses of abaxial and adaxial guard cells of broad bean to abscisic acid and calcium. ‒ Plant Physiol. 118: 1421-1429, 1998. Go to original source...
  404. Wang X.Y., Xu X.M., Cui J.: The importance of blue light for leaf area expansion, development of photosynthetic apparatus, and chloroplast ultrastructure of Cucumis sativus grown under weak light. ‒ Photosynthetica 53: 213-222, 2015. Go to original source...
  405. White S., Anandraj A., Trois C.: NADPH fluorescence as an indicator of hydrogen production in the green algae Chlamydomonas reinhardtii. - Int. J. Hydrogen Energ. 39: 1640-1647, 2014. Go to original source...
  406. Wientjes E., Croce R.: PMS: photosystem I electron donor or fluorescence quencher. ‒ Photosynth. Res. 111: 185-191, 2012. Go to original source...
  407. Wientjes E., Philippi J., Borst J.W., van Amerongen H.: Imaging the Photosystem I/Photosystem II chlorophyll ratio inside the leaf. ‒ BBA-Bioenergetics 1858: 259-265, 2017. Go to original source...
  408. Wientjes E., van Amerongen H., Croce R.: LHCII is an antenna of both photosystems after long-term acclimation. - BBA-Bioenergetics 1827: 420-426, 2013b. Go to original source...
  409. Wientjes E., van Amerongen H., Croce R.: Quantum yield of charge separation in photosystem II: Functional effect of changes in the antenna size upon light acclimation. ‒ J. Phys. Chem. B 117: 11200-11208, 2013a. Go to original source...
  410. Wientjes E., van Stokkum I.H.M., van Amerongen H., Croce R.: The role of the individual Lhcas in photosystem I excitation energy trapping. ‒ Biophys J. 101: 745-754, 2011. Go to original source...
  411. Wilson A., Ajlani G., Verbavatz J.-M. et al.: A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. ‒ Plant Cell 18: 992-1007, 2006. Go to original source...
  412. Wiltbank L.B., Kehoe D.M.: Two cyanobacterial photoreceptors regulate photosynthetic light harvesting by sensing teal, green, yellow, and red light. ‒ mBio 7: e02130-15, 2016. Go to original source...
  413. Wiltbank L.B., Kehoe D.M.: Diverse light responses of cyanobacteria mediated by phytochrome superfamily photoreceptors. ‒ Nat. Rev. Microbiol. 17: 37-50, 2019. Go to original source...
  414. Wong S.C., Cowan I.R., Farquhar G.D.: Stomatal conductance correlates with photosynthetic capacity. ‒ Nature 282: 424-426, 1979. Go to original source...
  415. Wraight C.A., Crofts A.R.: Energy-dependent quenching of chlorophyll a fluorescence in isolated chloroplasts. ‒ Eur. J. Biochem. 17: 319-327, 1970. Go to original source...
  416. Wu T., Lin Y., Zheng L. et al.: Analyses of multi-color plant-growth light sources in achieving maximum photosynthesis efficiencies with enhanced color qualities. ‒ Opt. Express 26: 4135-4147, 2018. Go to original source...
  417. Xiong J.: Photosynthesis: what color was its origin? ‒ Genome Biol. 7: 245, 2006. Go to original source...
  418. Xiong D., Flexas J.: From one side to two sides: the effects of stomatal distribution on photosynthesis. - New Phytol. 228: 1754-1766, 2020. Go to original source...
  419. Xiong J., Fischer W.M., Inoue K. et al.: Molecular evidence for the early evolution of photosynthesis. ‒ Science 289: 1724-1730, 2000. Go to original source...
  420. Xu B., Long Y., Feng X. et al.: GABA signalling modulates stomatal opening to enhance plant water use efficiency and drought resilience. ‒ Nat. Commun. 12: 1952, 2021. Go to original source...
  421. Xu C., Pi X., Huang Y. et al.: Structural basis for energy transfer in a huge diatom PSI-FCPI supercomplex. ‒ Nat. Commun. 11: 5081, 2020b. Go to original source...
  422. Xu P., Chukhutsina V.U., Nawrocki W.J. et al.: Photosynthesis without β-carotene. ‒ eLife 9: e58984, 2020a. Go to original source...
  423. Yamamoto H.Y., Higashi R.M.: Violaxanthin deepoxidase: Lipid composition and substrate specificity. ‒ Arch. Biochem. Biophys. 190: 514-522, 1978. Go to original source...
  424. Yamamoto H.Y., Nakayama T., Chichester C.: Studies on the light and dark interconversions of leaf xanthophylls. ‒ Arch. Biochem. Biophys. 97: 168-173, 1962. Go to original source...
  425. Yamauchi S., Takemiya A., Sakamoto T. et al.: The plasma membrane H+-ATPase AHA1 plays a major role in stomatal opening in response to blue light. ‒ Plant Physiol. 171: 2731-2743, 2016. Go to original source...
  426. Yang F., Liu Q., Cheng Y. et al.: Low red/far-red ratio as a signal promotes carbon assimilation of soybean seedlings by increasing the photosynthetic capacity. ‒ BMC Plant Biol. 20: 148, 2020. Go to original source...
  427. Yeh K.C., Wu S.H., Murphy J.T., Lagarias J.C.: A cyanobacterial phytochrome two-component light sensory system. ‒ Science 277: 1505-1508, 1997. Go to original source...
  428. Yu X., Liu H., Klejnot J., Lin C.: The cryptochrome blue light receptors. ‒ The Arabidopsis Book 8: e0135, 2010. Go to original source...
  429. Zamzam N., Rakowski R., Kaucikas M. et al.: Femtosecond visible transient absorption spectroscopy of chlorophyll-f-containing photosystem II. ‒ P. Natl. Acad. Sci. USA 117: 23158-23164, 2020. Go to original source...
  430. Zeiger E., Armond P., Melis A.: Fluorescence properties of guard cell chloroplasts. Evidence for linear electron transport and light-harvesting pigments of photosystem I and II. - Plant Physiol. 67: 17-20, 1980. Go to original source...
  431. Zhang Y., Kaiser E., Zhang Y. et al.: Red/blue light ratio strongly affects steady-state photosynthesis, but hardly affects photosynthetic induction in tomato (Solanum lycopersicum). -Physiol. Plantarum 167: 144-158, 2019. Go to original source...
  432. Zhao C., Gan F., Shen G., Bryant D.A.: RfpA, RfpB, and RfpC are the master control elements of far-red light photoacclimation (FaRLiP). ‒ Front. Microbiol. 6: 1303, 2015. Go to original source...
  433. Zheng L., He H., Song W.: Application of light-emitting diodes and the effect of light quality on horticultural crops: a review. ‒HortScience 54: 1656-1661, 2019. Go to original source...
  434. Zheng L., Van Labeke M.-C.: Long-term effects of red- and blue-light emitting diodes on leaf anatomy and photosynthetic efficiency of three ornamental pot plants. - Front. Plant Sci. 8: 917, 2017. Go to original source...
  435. Zouni A., Witt H.T., Kern J. et al.: Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. ‒Nature 409: 739-743, 2001. Go to original source...