Photosynthetica 2022, 60(1):121-135 | DOI: 10.32615/ps.2022.010

Photosystem II in bio-photovoltaic devices

R.A. VOLOSHIN1, S.M. SHUMILOVA1, E.V. ZADNEPROVSKAYA1, S.K. ZHARMUKHAMEDOV2, S. ALWASEL3, H.J.M. HOU4, S.I. ALLAKHVERDIEV1, 2, 3
1 Controlled Photobiosynthesis Laboratory, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
2 Institute of Basic Biological Problems, RAS, Pushchino, 142290 Moscow Region, Russia
3 College of Science, King Saud University, Riyadh, Saudi Arabia
4 Laboratory of Forensic Analysis and Photosynthesis, Department of Physical/Forensic Sciences, Alabama State University, Montgomery, 36104 Alabama, United States

Hybrid photoelectrodes containing biological pigment-protein complexes can be used for environmentally friendly solar energy conversion, herbicide detection, and other applications. The total number of scientific publications on hybrid bio-based devices has grown rapidly over the past decades. Particular attention is paid to the integration of the complexes of PSII into photoelectrochemical devices. A notable feature of these complexes from a practical point of view is their ability to obtain electrons from abundant water. The utilization or imitation of the PSII functionality seems promising for all of the following: generating photoelectricity, photo-producing hydrogen, and detecting herbicides. This review summarizes recent advances in the development of hybrid devices based on PSII. In a brief historical review, we also highlighted the use of quinone-type bacterial reaction centers in hybrid devices. These proteins are the first from which the photoelectricity signal was detected. The photocurrent in these first systems, developed in the 70s-80s, was about 1 nA cm-2. In the latest work, by Güzel et al. (2020), a stable current of about 888 μA cm-2 as achieved in a PSII-based solar cell. The present review is inspired by this impressive progress. The advantages, disadvantages, and future endeavors of PSII-inspired bio-photovoltaic devices are also presented.

Additional key words: Keywords: electron transfer; photoanode; photo-bioelectrochemical cell; photocurrent.

Received: May 30, 2021; Revised: January 27, 2022; Accepted: February 18, 2022; Prepublished online: March 7, 2022; Published: March 18, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
VOLOSHIN, R.A., SHUMILOVA, S.M., ZADNEPROVSKAYA, E.V., ZHARMUKHAMEDOV, S.K., ALWASEL, S., HOU, H.J.M., & ALLAKHVERDIEV, S.I. (2022). Photosystem II in bio-photovoltaic devices. Photosynthetica60(SPECIAL ISSUE 2022), 121-135. doi: 10.32615/ps.2022.010
Download citation

References

  1. Allakhverdiev S.I., Kreslavski V.D. Thavasi V. et al.: Hydrogen photoproduction by use of photosynthetic organisms and biomimetic systems. - Photoch. Photobio. Sci. 8: 148-156, 2009. Go to original source...
  2. Allakhverdiev S.I., Kreslavski V., Thavasi V. et al.: Photosynthetic energy conversion: Hydrogen photoproduction by natural and biomimetic means. - In: Mukherjee A. (ed.): Biomimetics Learning from Nature. Pp. 49-75. InTech 2010a.
  3. Allakhverdiev S.I., Thavasi V., Kreslavski V.D. et al.: Photosynthetic hydrogen production. - J. Photoch. Photobio. C 11: 101-113, 2010b. Go to original source...
  4. Allen M.J.: Direct conversion of radiant into electrical energy using plant systems. - In: Buvet R., Allen M.J., Massué J.-P. (ed.): Living Systems As Energy Converters. Proceedings of the European Conference on Living Systems as Energy Converters. Pp. 271-274. Elsevier 1977. Go to original source...
  5. Antonacci A., Attaallah R., Arduini F. et al.: A dual electro-optical biosensor based on Chlamydomonas reinhardtii immobilised on paper-based nanomodified screen-printed electrodes for herbicide monitoring. - J. Nanobiotechnology 19: 145, 2021. Go to original source...
  6. Babu V.J., Kumar M.K., Nair A.S. et al.: Visible light photocatalytic water splitting for hydrogen production from N-TiO2 rice grain shaped electrospun nanostructures. - Int. J. Hydrogen Energ. 37: 8897-8904, 2012. Go to original source...
  7. Badura A., Guschin D., Esper B. et al.: Photo-induced electron transfer between photosystem 2 via cross-linked redox hydrogels. - Electroanalysis 20: 1043-1047, 2008. Go to original source...
  8. Barber J., Tran P.D.: From natural to artificial photosynthesis. - J. R. Soc. Interface 10: 20120984, 2013. Go to original source...
  9. Bettazzi F., Laschi S., Mascini M.: One-shot screen-printed thylakoid membrane-based biosensor for the detection of photosynthetic inhibitors in discrete samples. - Anal. Chim. Acta 589: 14-21, 2007. Go to original source...
  10. Brinkert K., Le Formal F., Li X. et al.: Photocurrents from photosystem II in a metal oxide hybrid system: Electron transfer pathways. - BBA-Bioenergetics 1857: 1497-1505, 2016. Go to original source...
  11. Bukhov N.G., Egorova E.A., Govindachary S., Carpentier R.: Changes in polyphasic chlorophyll a fluorescence induction curve upon inhibition of donor or acceptor side of photosystem II in isolated thylakoids. - BBA-Bioenergetics 1657: 121-130, 2004. Go to original source...
  12. Carpentier R., Loranger C., Chartrand J., Purcell M.: Photoelectrochemical cell containing chloroplast membranes as a biosensor for phytotoxicity measurement. - Anal. Chim. Acta 249: 55-60, 1991. Go to original source...
  13. Chen H., Blaber M.G., Standridge S.D. et al.: Computational modeling of plasmon-enhanced light absorption in a multicomponent dye sensitized solar cell. - J. Phys. Chem. C 116: 10215-10221, 2012. Go to original source...
  14. Chou L.Y., Liu R., He W. et al.: Direct oxygen and hydrogen production by photo water splitting using a robust bioinspired manganese-oxo oligomer complex/tungsten oxide catalytic system. - Int. J. Hydrogen Energ. 37: 8889-8896, 2012. Go to original source...
  15. Conrad R., Büchel C., Wilhelm C. et al.: Changes in yield of in-vivo fluorescence of chlorophyll a as a tool for selective herbicide monitoring. - J. Appl. Phycol. 5: 505-516, 1993. Go to original source...
  16. Cox N., Messinger J.: Reflections on substrate water and dioxygen formation. - BBA-Bioenergetics 1827: 1020-1030, 2013. Go to original source...
  17. Dankov K., Rashkov G., Misra A.N., Apostolova E.L.: Temperature sensitivity of photosystem II in isolated thylakoid membranes from fluridone-treated pea leaves. - Turk. J. Bot. 39: 420-428, 2015. Go to original source...
  18. den Hollander M.J., Magis J.G., Fuchsenberger P. et al.: Enhanced photocurrent generation by photosynthetic bacterial reaction centers through molecular relays, light-harvesting complexes, and direct protein-gold interactions. - Langmuir 27: 10282-10294, 2011. Go to original source...
  19. Dogutan D.K., Nocera D.G.: Artificial photosynthesis at efficiencies greatly exceeding that of natural photosynthesis. -Acc. Chem. Res. 52: 3143-3148, 2019. Go to original source...
  20. Drachev L.A., Kondrashin A.A., Samuilov V.D., Skulachev V.P.: Generation of electric potential by reaction center complexes from Rhodospirillum rubrum. - FEBS Lett. 50: 219-222, 1975. Go to original source...
  21. Emerson R., Chalmers R., Cederstrand C.: Some factors influencing the long-wave limit of photosynthesis. - P. Natl. Acad. Sci. USA 43: 133-143, 1957. Go to original source...
  22. Faulkner C.J., Lees S., Ciesielski P.N. et al.: Rapid assembly of photosystem I monolayers on gold electrodes. - Langmuir 24: 8409-8412, 2008. Go to original source...
  23. Faure B., Salazar-Alvarez G., Ahniyaz A. et al.: Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens. - Sci. Technol. Adv. Mater. 14: 023001, 2013. Go to original source...
  24. Frenzel M., Hirsch T., Gutzmer J.: Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type - A meta-analysis. - Ore Geol. Rev. 76: 52-78, 2016. Go to original source...
  25. Friebe V.M., Frese R.N.: Photosynthetic reaction center-based biophotovoltaics. - Curr. Opin. Electrochem. 5: 126-134, 2017. Go to original source...
  26. Friebe V.M., Millo D., Swainsbury D.J.K. et al.: Cytochrome c provides an electron-funneling antenna for efficient photocurrent generation in a reaction center biophotocathode. - ACS Appl. Mater. Interfaces 9: 23379-23388, 2017. Go to original source...
  27. Frolov L., Rosenwaks Y., Carmeli C., Carmeli I.: Fabrication of a photoelectronic device by direct chemical binding of the photosynthetic reaction center protein to metal surfaces. - Adv. Mater. 17: 2434-2437, 2005. Go to original source...
  28. Fu H.-Y., Picot D., Choquet Y. et al.: Redesigning the QA binding site of Photosystem II allows reduction of exogenous quinones. - Nat. Commun. 8: 15274, 2017. Go to original source...
  29. Fujishima A., Honda K.: Electrochemical photolysis of water at a semiconductor electrode. - Nature 238: 37-38, 1972. Go to original source...
  30. Gall B., Zehetner A., Scherz A., Scheer H.: Modification of pigment composition in the isolated reaction center of photosystem II. - FEBS Lett. 434: 88-92, 1998. Go to original source...
  31. Gangotri K.M., Bhimwal M.K.: The photochemical conversion of solar energy into electrical energy: Eosin-fructose system. -Environ. Prog. Sustain. Energy 30: 493-499, 2011. Go to original source...
  32. Giardi M.T., Guzzella L., Euzet P. et al.: Detection of herbicide subclasses by an optical multibiosensor based on an array of photosystem II mutants. - Environ. Sci. Technol. 39: 5378-5384, 2005. Go to original source...
  33. Giardi M.T., Koblížek M., Masojídek J.: Photosystem II-based biosensors for the detection of pollutants. - Biosens. Bioelectron. 16: 1027-1033, 2001. Go to original source...
  34. Gizzie E.A., Scott Niezgoda J., Robinson M.T. et al.: Photosystem I-polyaniline/TiO 2 solid-state solar cells: simple devices for biohybrid solar energy conversion. - Energy Environ. Sci. 8: 3572-3576, 2015. Go to original source...
  35. Govindjee, Kern J.F., Messinger J., Whitmarsh J.: Photosystem II. - In: Encyclopedia of Life Sciences. Pp. 1-15. John Wiley & Sons, Ltd, Chichester 2010.
  36. Grätzel M.: Mesoporous oxide junctions and nanostructured solar cells. - Curr. Opin. Colloid Interface Sci. 4: 314-321, 1999. Go to original source...
  37. Grätzel M.: Photoelectrochemical cells. - Nature 414: 338-344, 2001. Go to original source...
  38. Grätzel M.: Photovoltaic and photoelectrochemical conversion of solar energy. - Philos. T. Roy. Soc. A 365: 993-1005, 2007. Go to original source...
  39. Güzel R., Yediyildiz F., Ocak Y.S. et al.: Photosystem (PSII)-based hybrid nanococktails for the fabrication of BIO-DSSC and photo-induced memory device. - J. Photoch. Photobio. A Chem. 401: 112743, 2020. Go to original source...
  40. Hakala M., Rantamäki S., Puputti E.M. et al.: Photoinhibition of manganese enzymes: Insights into the mechanism of photosystem II photoinhibition. - J. Exp. Bot. 57: 1809-1816, 2006. Go to original source...
  41. Hasan K., Grippo V., Sperling E. et al.: Evaluation of photocurrent generation from different photosynthetic organisms. - ChemElectroChem 4: 412-417, 2017. Go to original source...
  42. He Y., Hamann T., Wang D.: Thin film photoelectrodes for solar water splitting. - Chem. Soc. Rev. 48: 2182-2215, 2019. Go to original source...
  43. Hou H.J.M.: Toward molecular mechanisms of solar water splitting in semiconductor/manganese materials and photosystem II. - In: Shen J.R., Satoh K., Allakhverdiev S.I. (ed.): Photosynthesis: Molecular Approaches to Solar Energy Conversion. Advances in Photosynthesis and Respiration (Including Bioenergy and Related Processes). Vol. 47. Pp. 105-129. Springer, Cham 2021. Go to original source...
  44. IEA: World Energy Outlook 2019. IEA, Paris 2019.
  45. Ihssen J., Braun A., Faccio G. et al.: Light harvesting proteins for solar fuel generation in bioengineered photoelectrochemical cells. - Curr. Protein Pept. Sci. 15: 374-384, 2014. Go to original source...
  46. Kalaji H.M., Schansker G., Brestic M. et al.: Frequently asked questions about chlorophyll fluorescence, the sequel. - Photosynth. Res. 132: 13-66, 2017. Go to original source...
  47. Kalaji H.M., Schansker G., Ladle R.J. et al.: Frequently asked questions about in vivo chlorophyll fluorescence: Practical issues. - Photosynth. Res. 122: 121-158, 2014. Go to original source...
  48. Kato M., Cardona T., Rutherford A.W., Reisner E.: Covalent immobilization of oriented photosystem II on a nanostructured electrode for solar water oxidation. - J. Am. Chem. Soc. 135: 10610-10613, 2013. Go to original source...
  49. Kato M., Zhang J.Z., Paul N., Reisner E.: Protein film photoelectrochemistry of the water oxidation enzyme photosystem II. - Chem. Soc. Rev. 43: 6485-6497, 2014. Go to original source...
  50. Kavadiya S., Chadha T.S., Liu H. et al.: Directed assembly of the thylakoid membrane on nanostructured TiO2 for a photo-electrochemical cell. - Nanoscale 8: 1868-1872, 2016. Go to original source...
  51. Kavan L., O'Regan B., Kay A., Grätzel M.: Preparation of TiO2 (anatase) films on electrodes by anodic oxidative hydrolysis of TiCl3. - J. Electroanal. Chem. 346: 291-307, 1993. Go to original source...
  52. Kiley P., Zhao X., Vaughn M. et al.: Self-assembling peptide detergents stabilize isolated photosystem I on a dry surface for an extended time. - PLoS Biol. 3: e230, 2005. Go to original source...
  53. Koblížek M., Malý J., Masojídek J. et al.: A biosensor for the detection of triazine and phenylurea herbicides designed using Photosystem II coupled to a screen-printed electrode. - Biotechnol. Bioeng. 78: 110-116, 2002. Go to original source...
  54. Kornienko N., Zhang J.Z., Sakimoto K.K. et al.: Interfacing nature's catalytic machinery with synthetic materials for semi-artificial photosynthesis. - Nat. Nanotechnol. 13: 890-899, 2018. Go to original source...
  55. Kostic M.M.: Energy : Global and Historical Background. - In: Capehart B.L. (ed.): Encyclopedia of Energy Engeneering. Pp. 1-15. Taylor & Francis/Marcel Dekker 2007.
  56. Kothe T., Plumeré N., Badura A. et al.: Combination of a photosystem 1-based photocathode and a photosystem 2-based photoanode to a Z-scheme mimic for biophotovoltaic applications. - Angew. Chem. Int. Ed. 52: 14233-14236, 2013. Go to original source...
  57. Kumar P., Kuppam C. (eds.): Bioelectrochemical Systems. Pp. 326. Springer Singapore, Singapore 2020. Go to original source...
  58. Lavergne J., Trissl H.W.: Theory of fluorescence induction in photosystem II: derivation of analytical expressions in a model including exciton-radical-pair equilibrium and restricted energy transfer between photosynthetic units. - Biophys. J. 68: 2474-2492, 1995. Go to original source...
  59. Lebedev N., Trammell S.A., Spano A. et al.: Conductive wiring of immobilized photosynthetic reaction center to electrode by cytochrome c. - J. Am. Chem. Soc. 128: 12044-12045, 2006. Go to original source...
  60. Lewis N.S., Nocera D.G.: Powering the planet: chemical challenges in solar energy utilization. - P. Natl. Acad. Sci. USA 103: 15729-15735, 2006. Go to original source...
  61. Li J., Wei X., Peng T.: Fabrication of herbicide biosensors based on the inhibition of enzyme activity that catalyzes the scavenging of hydrogen peroxide in a thylakoid membrane. - Anal. Sci. 21: 1217-1222, 2005. Go to original source...
  62. Li Z., Wang W., Ding C. et al.: Biomimetic electron transport via multiredox shuttles from photosystem II to a photoelectrochemical cell for solar water splitting. - Energy Environ. Sci. 10: 765-771, 2017. Go to original source...
  63. Liu R., Lin Y., Chou L.-Y. et al.: Water splitting by tungsten oxide prepared by atomic layer deposition and decorated with an oxygen-evolving catalyst. - Angew. Chem. Int. Ed. 50: 499-502, 2011. Go to original source...
  64. Lu Y., Yuan M., Liu Y. et al.: Photoelectric performance of bacteria photosynthetic proteins entrapped on tailored mesoporous WO3-TiO2 films. - Langmuir 21: 4071-4076, 2005a. Go to original source...
  65. Lu Y.D., Liu Y., Xu J.J. et al.: Bio-nanocomposite photoelectrode composed of the bacteria photosynthetic reaction center entrapped on a nanocrystalline TiO2 matrix. - Sensors-Basel 5: 258-265, 2005b. Go to original source...
  66. Lukashev E.P., Nadtochenko V.A., Permenova E.P. et al.: Electron phototransfer between photosynthetic reaction centers of the bacteria Rhodobacter sphaeroides and semiconductor mesoporous TiO2 films. - Dokl. Biochem. Biophys. 415: 211-216, 2007. Go to original source...
  67. Maksimov E.G., Lukashev E.P., Seifullina N.K. et al.: Photophysical properties of hybrid complexes of quantum dots and reaction centers of purple photosynthetic bacteria Rhodobacter sphaeroides adsorbed on crystalline mesoporous TiO2 films. - Nanotechnol. Russ. 8: 423-431, 2013. Go to original source...
  68. Malý J., Klem K., Lukavská A., Masojídek J.: Degradation and movement in soil of the herbicide isoproturon analyzed by a Photosystem II-based biosensor. - J. Environ. Qual. 34: 1780-1788, 2005a. Go to original source...
  69. Malý J., Krejčí J., Ilie M. et al.: Monolayers of photosystem II on gold electrodes with enhanced sensor response - effect of porosity and protein layer arrangement. - Anal. Bioanal. Chem. 381: 1558-1567, 2005b. Go to original source...
  70. Masojídek J., Souček P., Máchová J. et al.: Detection of photosynthetic herbicides: Algal growth inhibition test vs. electrochemical photosystem II biosensor. - Ecotox. Environ. Safe. 74: 117-122, 2011. Go to original source...
  71. McConnell I., Li G., Brudvig G.W.: Energy conversion in natural and artificial photosynthesis. - Chem. Biol. 17: 434-447, 2010. Go to original source...
  72. Mersch D., Lee C.Y., Zhang J.Z. et al.: Wiring of photosystem II to hydrogenase for photoelectrochemical water splitting. - J. Am. Chem. Soc. 137: 8541-8549, 2015. Go to original source...
  73. Mershin A., Matsumoto K., Kaiser L. et al.: Self-assembled photosystem-I biophotovoltaics on nanostructured TiO2 and ZnO. - Sci. Rep.-UK 2: 234, 2012. Go to original source...
  74. Merz D., Geyer M., Moss D.A., Ache H.-J.: Chlorophyll fluorescence biosensor for the detection of herbicides. - Fresenius J. Anal. Chem. 354: 299-305, 1996. Go to original source...
  75. Michel H., Deisenhofer J.: Relevance of the photosynthetic reaction center from purple bacteria to the structure of photosystem II. - Biochemistry 27: 1-7, 1988. Go to original source...
  76. Miyachi M., Ikehira S., Nishiori D. et al.: Photocurrent generation of reconstituted photosystem ii on a self-assembled gold film. - Langmuir 33: 1351-1358, 2017. Go to original source...
  77. Müh F., Glöckner C., Hellmich J., Zouni A.: Light-induced quinone reduction in photosystem II. - BBA-Bioenergetics 1817: 44-65, 2012. Go to original source...
  78. Musazade E., Voloshin R.A., Brady N. et al.: Biohybrid solar cells: Fundamentals, progress, and challenges. - J. Photoch. Photobio. C 35: 134-156, 2018. Go to original source...
  79. Nelson N., Yocum C.F.: Structure and function of photosystems I and II. - Annu. Rev. Plant Biol. 57: 521-565, 2006. Go to original source...
  80. Nguyen K., Bruce B.D.: Growing green electricity: Progress and strategies for use of Photosystem I for sustainable photovoltaic energy conversion. - BBA-Bioenergetics 1837: 1553-1566, 2014. Go to original source...
  81. Nikandrov V.V., Borisova Y.V., Bocharov E.A. et al.: Photochemical properties of photosystem 1 immobilized in a mesoporous semiconductor matrix. - High Energy Chem. 46: 200-205, 2012. Go to original source...
  82. Nisbet E.G., Grassineau N.V., Howe C.J. et al.: The age of Rubisco: The evolution of oxygenic photosynthesis. - Geobiology 5: 311-335, 2007. Go to original source...
  83. Nishiori D., Zhu W., Salles R. et al.: Photosensing system using photosystem I and gold nanoparticle on graphene field-effect transistor. - ACS Appl. Mater. Interfaces 11: 42773-42779, 2019. Go to original source...
  84. Noji T., Suzuki H., Gotoh T. et al.: Photosystem II-gold nanoparticle conjugate as a nanodevice for the development of artificial light-driven water-splitting systems. - J. Phys. Chem. Lett. 2: 2448-2452, 2011. Go to original source...
  85. Oshima T., Nishioka S., Kikuchi Y. et al.: An artificial Z-scheme constructed from dye-sensitized metal oxide nanosheets for visible light-driven overall water splitting. - J. Am. Chem. Soc. 142: 8412-8420, 2020. Go to original source...
  86. Packham N.K., Packham C., Mueller P. et al.: Reconstitution de photochemically active reaction centers in planar phospholipid membranes. Light-induced electrical currents under voltage-clamped conditions. - FEBS Lett. 110: 101-106, 1980. Go to original source...
  87. Pandey A.K., Tyagi V.V., Selvaraj J.A. et al.: Recent advances in solar photovoltaic systems for emerging trends and advanced applications. - Renew. Sust. Energ. Rev. 53: 859-884, 2016. Go to original source...
  88. Pinhassi R.I., Kallmann D., Saper G. et al.: Hybrid bio-photo-electro-chemical cells for solar water splitting. - Nat. Commun. 7: 12552, 2016. Go to original source...
  89. Plumeré N., Nowaczyk M.M.: Biophotoelectrochemistry of photosynthetic proteins. - In: Jeuken L. (ed.): Biophotoelectrochemistry: From Bioelectrochemistry to Biophotovoltaics. Advances in Biochemical Engineering/Biotechnology. Vol. 158. Pp. 111-136. Springer, Cham 2016. Go to original source...
  90. Pratiyush A.S., Krishnamoorthy S., Muralidharan R. et al.: Advances in Ga2O3 solar-blind UV photodetectors. - In: Pearton S., Ren F., Mastro M. (ed.): Gallium Oxide: Technology, Devices and Applications. Pp. 369-399. Elsevier, Amsterdam 2018. Go to original source...
  91. Rao K.K., Hall D.O., Vlachopoulos N. et al.: Photoelectrochemical responses of photosystem II particles immobilized on dye-derivatized TiO2 films. - J. Photoch. Photobio. B 5: 379-389, 1990. Go to original source...
  92. Rasmussen M., Minteer S.D.: Photobioelectrochemistry: Solar energy conversion and biofuel production with photosynthetic catalysts. - J. Electrochem. Soc. 161: H647-H655, 2014. Go to original source...
  93. Ridge Carter J., Baker D.R., Austin Witt T. et al.: Enhanced photocurrent from Photosystem I upon in vitro truncation of the antennae chlorophyll. - Photosynth. Res. 127: 161-170, 2016. Go to original source...
  94. Rodionova M.V., Poudyal R.S., Tiwari I. et al.: Biofuel production: Challenges and opportunities. - Int. J. Hydrogen Energ. 42: 8450-8461, 2017. Go to original source...
  95. Say R., Kiliç G.A., Özcan A.A. et al.: Bioconjugated and cross-linked bionanostructures for bifunctional immunohistochemical labeling. - Microsc. Microanal. 18: 324-330, 2012. Go to original source...
  96. Schansker G., Tóth S.Z., Kovács L. et al.: Evidence for a fluorescence yield change driven by a light-induced conformational change within photosystem II during the fast chlorophyll a fluorescence rise. - BBA-Bioenergetics 1807: 1032-1043, 2011. Go to original source...
  97. Seibert M., Janzen A.F., Kendall-Tobias M.: Light-induced electron transport across semiconductor electrode/reaction-center film/electrolyte interfaces. - Photochem. Photobiol. 35: 193-200, 1982. Go to original source...
  98. Shah V.B., Henson W.R., Chadha T.S. et al.: Linker-free deposition and adhesion of photosystem I onto nanostructured TiO2 for biohybrid photoelectrochemical cells. - Langmuir 31: 1675-1682, 2015. Go to original source...
  99. Shah V.B., Orf G.S., Reisch S. et al.: Characterization and deposition of various light-harvesting antenna complexes by electrospray atomization. - Anal. Bioanal. Chem. 404: 2329-2338, 2012. Go to original source...
  100. Shevela D., Björn L.O., Govindjee: Oxygenic Photosynthesis. - In: Razeghifard R. (ed.): Natural and Artificial Photosynthesis: Solar Power as an Energy Source. Pp. 13-63. John Wiley & Sons Inc., Hoboken 2013. Go to original source...
  101. Sokol K.P., Mersch D., Hartmann V. et al.: Rational wiring of photosystem II to hierarchical indium tin oxide electrodes using redox polymers. - Energy Environ. Sci. 9: 3698-3709, 2016. Go to original source...
  102. Spies J.A., Perets E.A., Fisher K.J. et al.: Collaboration between experiment and theory in solar fuels research. - Chem. Soc. Rev. 48: 1865-1873, 2019. Go to original source...
  103. Stirbet A., Govindjee: On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient. - J. Photoch. Photobio. B 104: 236-257, 2011. Go to original source...
  104. Stirbet A., Lazár D., Kromdijk J., Govindjee: Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? - Photosynthetica 56: 86-104, 2018. Go to original source...
  105. Szewczyk S., Białek R., Burdziński G., Gibasiewicz K.: Photovoltaic activity of electrodes based on intact photosystem I electrodeposited on bare conducting glass. - Photosynth. Res. 144: 1-12, 2020. Go to original source...
  106. Terasaki N., Iwai M., Yamamoto N. et al.: Photocurrent generation properties of Histag-photosystem II immobilized on nanostructured gold electrode. - Thin Solid Films 516: 2553-2557, 2008. Go to original source...
  107. Terasaki N., Yamamoto N., Hiraga T. et al.: Fabrication of novel photosystem I-gold nanoparticle hybrids and their photocurrent enhancement. - Thin Solid Films 499: 153-156, 2006. Go to original source...
  108. Terasaki N., Yamamoto N., Hiraga T. et al.: Plugging a molecular wire into photosystem I: Reconstitution of the photoelectric conversion system on a gold electrode. - Angew. Chem. Int. Ed. 48: 1585-1587, 2009. Go to original source...
  109. Tian W., Zhang H., Sibbons J. et al.: Photoelectrochemical water oxidation and longevous photoelectric conversion by a photosystem II electrode. - Adv. Energy Mater. 11: 2100911, 2021. Go to original source...
  110. Tikhonov A.N.: pH-Dependent regulation of electron transport and ATP synthesis in chloroplasts. - Photosynth. Res. 116: 511-534, 2013. Go to original source...
  111. Touloupakis E., Giannoudi L., Piletsky S.A. et al.: A multi-biosensor based on immobilized Photosystem II on screen-printed electrodes for the detection of herbicides in river water. - Biosens. Bioelectron. 20: 1984-1992, 2005. Go to original source...
  112. Trammell S.A., Spano A., Price R., Lebedev N.: Effect of protein orientation on electron transfer between photosynthetic reaction centers and carbon electrodes. - Biosens. Bioelectron. 21: 1023-1028, 2006. Go to original source...
  113. Trammell S.A., Wang L., Zullo J.M. et al.: Orientated binding of photosynthetic reaction centers on gold using Ni-NTA self-assembled monolayers. - Biosens. Bioelectron. 19: 1649-1655, 2004. Go to original source...
  114. Tucci M., Bombelli P., Howe C.J. et al.: A storable mediatorless electrochemical biosensor for herbicide detection. - Microorganisms 7: 630, 2019. Go to original source...
  115. Vittadello M., Gorbunov M.Y., Mastrogiovanni D.T. et al.: Photoelectron generation by photosystem II core complexes tethered to gold surfaces. - ChemSusChem 3: 471-475, 2010. Go to original source...
  116. Vogt L., Vinyard D.J., Khan S., Brudvig G.W.: Oxygen-evolving complex of Photosystem II: An analysis of second-shell residues and hydrogen-bonding networks. - Curr. Opin. Chem. Biol. 25: 152-158, 2015. Go to original source...
  117. Voloshin R.A., Bedbenov V.S., Gabrielyan D.A. et al.: Optimization and characterization of TiO2-based solar cell design using diverse plant pigments. - Int. J. Hydrogen Energ. 42: 8576-8585, 2017. Go to original source...
  118. Voloshin R.A., Brady N.G., Zharmukhamedov S.K. et al.: Influence of osmolytes on the stability of thylakoid-based dye-sensitized solar cells. - Int. J. Energy Res. 43: 8878-8889, 2019. Go to original source...
  119. Voloshin R.A., Kreslavski V.D., Zharmukhamedov S.K. et al.: Photoelectrochemical cells based on photosynthetic systems: a review. - Biofuel Res. J. 2: 227-235, 2015. Go to original source...
  120. Voloshin R.A., Rodionova M.V., Zharmukhamedov S.K. et al.: Components of natural photosynthetic apparatus in solar cells. - In: Najafpour M.M. (ed.): Applied Photosynthesis - New Progress. Pp. 161-188. InTech, Rijeka 2016. Go to original source...
  121. Walker D.A.: Polarographic measurement of oxygen. - In: Hall D.O., Scurlock J.M.O., Bolhàr-Nordenkampf H.R. et al. (ed.): Photosynthesis and Production in a Changing Environment. Pp. 168-180. Springer, Dordrecht 1993. Go to original source...
  122. Walker D.A., Sivak M.N., Prinsley R.T., Cheesbrough J.K.: Simultaneous measurement of oscillations in oxygen evolution and chlorophyll a fluorescence in leaf pieces. - Plant Physiol. 73: 542-549, 1983. Go to original source...
  123. Walsh F.C., Arenas L.F., Ponce de León C. et al.: The continued development of reticulated vitreous carbon as a versatile electrode material: Structure, properties and applications. - Electrochim. Acta 215: 566-591, 2016. Go to original source...
  124. Wang P., Zhao F., Hartmann V. et al.: Reassessing the rationale behind herbicide biosensors: The case of a photosystem II/redox polymer-based bioelectrodefs. - Bioelectrochemistry 136: 107597, 2020. Go to original source...
  125. Wang W.-Q., Chapman D.J., Barber J.: Inhibition of water splitting increases the susceptibility of photosystem II to photoinhibition. - Plant Physiol. 99: 16-20, 1992. Go to original source...
  126. Weijermars R., Taylor P., Bahn O. et al.: Review of models and actors in energy mix optimization - can leader visions and decisions align with optimum model strategies for our future energy systems? - Energy Strategy Rev. 1: 5-18, 2012. Go to original source...
  127. Wey L.T., Bombelli P., Chen X. et al.: The development of biophotovoltaic systems for power generation and biological analysis. - ChemElectroChem 6: 5375-5386, 2019. Go to original source...
  128. Wiederrecht G.P., Seibert M., Govindjee, Wasielewski M.R.: Femtosecond photodichroism studies of isolated photosystem II reaction centers. - P. Natl. Acad. Sci. USA 91: 8999-9003, 1994. Go to original source...
  129. Xuan M., Li J.: Photosystem II-based biomimetic assembly for enhanced photosynthesis. - Natl. Sci. Rev. 8: nwab051, 2021. Go to original source...
  130. Yehezkeli O., Bedford N.M., Park E. et al.: Semiconductor-based, solar-driven photochemical cells for fuel generation from carbon dioxide in aqueous solutions. - ChemSusChem 9: 3188-3195, 2016. Go to original source...
  131. Yehezkeli O., Tel-Vered R., Michaeli D. et al.: Photosystem I (PSI)/Photosystem II (PSII)-based photo-bioelectrochemical cells revealing directional generation of photocurrents. - Small 9: 2970-2978, 2013. Go to original source...
  132. Yehezkeli O., Tel-Vered R., Michaeli D. et al.: Photosynthetic reaction center-functionalized electrodes for photo-bioelectrochemical cells. - Photosynth. Res. 120: 71-85, 2014. Go to original source...
  133. Yu D., Wang M., Zhu G. et al.: Enhanced photocurrent production by bio-dyes of photosynthetic macromolecules on designed TiO2 film. - Sci. Rep.-UK 5: 9375, 2015. Go to original source...
  134. Zaspa A.A., Vitukhnovskaya L.A., Mamedova A.M. et al.: Photovoltage generation by photosystem II core complexes immobilized onto a Millipore filter on an indium tin oxide electrode. - J. Bioenerg. Biomembr. 52: 495-504, 2020. Go to original source...
  135. Zhang J.Z., Reisner E.: Advancing photosystem II photoelectrochemistry for semi-artificial photosynthesis. - Nat. Rev. Chem. 4: 6-21, 2020. Go to original source...
  136. Zhang J.Z., Sokol K.P., Paul N. et al.: Competing charge transfer pathways at the photosystem II-electrode interface. - Nat. Chem. Biol. 12: 1046-1052, 2016. Go to original source...