Photosynthetica 2022, 60(2):200-211 | DOI: 10.32615/ps.2021.067

Effect of short-term combined alkaline stress on antioxidant metabolism, photosynthesis, and leaf-air temperature difference in sorghum

J.J. GUO1, †, X.X. XU2, †, R.D. ZHANG3, X.F. CHEN1, Y.F. XING1, B. LI1, C. LIU1, Y.F. ZHOU1
1 College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
2 Tongliao Agricultural Technology Extension Station, Tongliao, Inner Mongolia, China
3 Institute of Cash Crops, Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi, China

Alkaline stress is important abiotic stress that restricts the growth and physiological activity of sorghum (Sorghum bicolor L. Moench). We aimed to investigate the effects of alkaline stress on alkali-tolerant SX44B and alkali-sensitive 262B sorghum inbred lines. The results showed that alkaline stress decreased the content of chlorophyll, activity of photosystem II, net photosynthetic rate, and destroyed chloroplast morphology. These changes were less pronounced in SX44B, possibly owing to its higher antioxidant enzyme activity and nonphotochemical quenching. Alkaline stress decreased water content, transpiration rate, and stomatal conductance while increasing the leaf temperature, with the effect being more pronounced in 262B. A significant correlation was observed between leaf-air temperature difference (ΔT) and relative water content and gas-exchange parameters, especially in 262B. Therefore, ΔT is an effective indicator for monitoring changes in sorghum leaves under alkaline stress and evaluating the alkali tolerance of different sorghum germplasm.

Additional key words: alkaline stress; antioxidant enzymes; chlorophyll fluorescence; leaf-air temperature difference; physiology.

Received: August 3, 2021; Revised: November 23, 2021; Accepted: December 10, 2021; Prepublished online: February 8, 2022; Published: May 2, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
GUO, J.J., XU, X.X., ZHANG, R.D., CHEN, X.F., XING, Y.F., LI, B., LIU, C., & ZHOU, Y.F. (2022). Effect of short-term combined alkaline stress on antioxidant metabolism, photosynthesis, and leaf-air temperature difference in sorghum. Photosynthetica60(2), 200-211. doi: 10.32615/ps.2021.067
Download citation

Supplementary files

Download fileGuo_2787_supplement.docx

File size: 21.42 MB

References

  1. Affenzeller M.J., Darehshouri A., Andosch A. et al.: Salt stress-induced cell death in the unicellular green alga Micrasterias denticulata. - J. Exp. Bot. 60: 939-954, 2009. Go to original source...
  2. Amini S., Ghadiri H., Chen C.R., Marschner P.: Salt-affected soils, reclamation, carbon dynamics, and biochar: a review. - J. Soil. Sediment. 16: 939-953, 2016. Go to original source...
  3. Baker N.R.: A possible role for photosystem II in environmental perturbations of photosynthesis. - Physiol. Plantarum 81: 563-570, 1991. Go to original source...
  4. Blum A., Mayer J., Gozlan G.: Infrared thermal sensing of plant canopies as a screening technique for dehydration avoidance in wheat. - Field Crop. Res. 5: 137-146, 1982. Go to original source...
  5. Choudhury F.K., Rivero R.M., Blumwald E., Mittler R.: Reactive oxygen species, abiotic stress and stress combination. - Plant J. 90: 856-867, 2017. Go to original source...
  6. Deinlein U., Stephan A.B., Horie T. et al.: Plant salt-tolerance mechanisms. - Trends Plant Sci. 19: 371-379, 2014. Go to original source...
  7. Fielding J.L., Hall J.L.: A biochemical and cytochemical study of peroxidase activity in roots of Pisum sativum: I. A comparison of DAB-peroxidase and guaiacol-peroxidase with particular emphasis on the properties of cell wall activity. - J. Exp. Bot. 29: 969-981, 1978. Go to original source...
  8. Ge Y., Li Y., Zhu Y.M. et al.: Global transcriptome profiling of wild soybean (Glycine soja) roots under NaHCO3 treatment. -BMC Plant Biol. 10: 153, 2010. Go to original source...
  9. Guo L.Q., Wang H.Y., Ma Y. et al.: [Mechanisms of osmotic adjustment and ionic balance in Puccinellia tenuiflora in response to salt and alkali stresses.] - J. Northeast Norm. Univ. 42: 120-125, 2010. [In Chinese]
  10. Huang R.D.: Research progress on plant tolerance to soil salinity and alkalinity in sorghum. - J. Integr. Agr. 17: 739-746, 2018. Go to original source...
  11. Hussain S., Iqbal N., Brestic M. et al.: Changes in morphology, chlorophyll fluorescence performance and Rubisco activity of soybean in response to foliar application of ionic titanium under normal light and shade environment. - Sci. Total Environ. 658: 626-637, 2019. Go to original source...
  12. Leng C.X., Zheng F.Y., Zhao B.P. et al.: [Advances on alkaline tolerance of rice.] - Biotechnol. Bull. 36: 103-111, 2020. [In Chinese]
  13. Liu X.: [Research on the limitation of stomatal and non-stomatal to ban photosynthesis under the Na2CO3 stress.] - J. Anhui Agric. Sci. 38: 2861-2862+2913, 2010. [In Chinese]
  14. Lu C.M., Qiu N.W., Wang B.S., Zhang J.H.: Salinity treatment shows no effects on photosystem II photochemistry, but increases the resistance of photosystem II to heat stress in halophyte Suaeda salsa. - J. Exp. Bot. 54: 851-860, 2003. Go to original source...
  15. Ma J., Lv C.F., Zhang B.B. et al.: Comparative analysis of ultrastructure, antioxidant enzyme activities, and photo-synthetic performance in rice mutant 812HS prone to photooxidation. - Photosynthetica 55: 568-578, 2017. Go to original source...
  16. Munns R., Tester M.: Mechanisms of salinity tolerance. - Annu. Rev. Plant Biol. 59: 651-681, 2008. Go to original source...
  17. Noreen S., Ashraf M., Hussain M., Jamil A.: Exogenous application of salicylic acid enhances antioxidative capacity in salt-stressed sunflower (Helianthus annuus L.) plants. - Pak. J. Bot. 41: 473-479, 2009.
  18. Qiao X.Q., Shi G.X., Chen L. et al.: Lead-induced oxidative damage in steriled seedlings of Nymphoides peltatum. - Environ. Sci. Pollut. R. 20: 5047-5055, 2013. Go to original source...
  19. Ren B., Zhang J., Dong S. et al.: Effects of duration of waterlogging at different growth stages on grain growth of summer maize (Zea mays L.) under field conditions. - J. Agron. Crop Sci. 202: 564-575, 2016. Go to original source...
  20. Ren Z.G., Gao Z.Y., Zhang Y. et al.: [The influence of mixed salt and alkali stress on physiological and agronomic traits of sorghum.] - Crops 1:100-106, 2017. [In Chinese]
  21. Sewelam N., Kazan K., Schenk P.M.: Global plant stress signaling: Reactive oxygen species at the cross-road. - Front. Plant Sci. 7: 187, 2016. Go to original source...
  22. Sivakumar P., Sharmila P., Saradhi P.P.: Proline alleviates salt-stress-induced enhancement in ribulose-1,5-bisphosphate oxygenase activity. - Biochem. Bioph. Res. Co. 279: 512-515, 2000. Go to original source...
  23. Sun W., Ubierna N., Ma J.Y., Cousins A.B.: The influence of light quality on C4 photosynthesis under steady-state conditions in Zea mays and Miscanthus × giganteus: changes in rates of photosynthesis but not the efficiency of the CO2 concentrating mechanism. - Plant Cell Environ. 35: 982-993, 2012. Go to original source...
  24. Tuna A.L., Kaya C., Dikilitas M., Higgs D.: The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. - Environ. Exp. Bot. 62: 1-9, 2008. Go to original source...
  25. Wang Y.N., Jie W.G., Peng X.Y. et al.: Physiological adaptive strategies of oil seed crop Ricinus communis early seedlings (cotyledon vs. true leaf) under salt and alkali stresses: from the growth, photosynthesis and chlorophyll fluorescence. - Front. Plant Sci. 9: 1939, 2018. Go to original source...
  26. Wang Y.T., Zhou Y.F., Li F.X. et al.: [Relationship between leaf temperature and water status in sorghum under drought stress.] - Agr. Res. Arid Areas 31: 146-151, 2013. [In Chinese]
  27. Wang Z.C., Yang F., Qi C.Y., Liang Z.W.: [Osmotic regulation response of rice to soil salinity and alkalinity stresses.] - Agr. Res. Arid Areas 28: 153-157, 2010. [In Chinese]
  28. Wintermans J., De Mots A.: Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol. - BBA-Biophysics 2: 448-453, 1965. Go to original source...
  29. Yang C.W., Xu H.H., Wang L.L. et al.: Comparative effects of salt-stress and alkali-stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants. - Photosynthetica 47: 79-86, 2009. Go to original source...
  30. Yang J.Y., Zheng W., Tian Y. et al.: Effects of various mixed salt-alkaline stresses on growth, photosynthesis, and photo-synthetic pigment concentrations of Medicago ruthenica seedlings. - Photosynthetica 49: 275-284, 2011. Go to original source...
  31. Yin D., Chen S., Chen F. et al.: Morphological and physiological responses of two chrysanthemum cultivars differing in their tolerance to waterlogging. - Environ. Exp. Bot. 67: 87-93, 2009. Go to original source...
  32. Yordanova R., Christov K.N., Popova L.P.: Antioxidative enzymes in barley plants subjected to soil flooding. - Environ. Exp. Bot. 51: 93-101, 2004. Go to original source...
  33. Zhang R.D., Zhou Y.F., Yue Z.X. et al.: Changes in photosynthesis, chloroplast ultrastructure, and antioxidant metabolism in leaves of sorghum under waterlogging stress. - Photosynthetica 57: 1076-1083, 2019b. Go to original source...
  34. Zhang R.D., Zhou Y.F., Yue Z.X. et al.: The leaf-air temperature difference reflects the variation in water status and photosynthesis of sorghum under waterlogged conditions. - PLoS ONE 14: e0219209, 2019a. Go to original source...
  35. Zhao Q., Suo J.W., Chen S.X. et al.: Na2CO3-responsive mechanisms in halophyte Puccinellia tenuiflora roots revealed by physiological and proteomic analyses. - Sci. Rep.-UK 6: 32717, 2016. Go to original source...
  36. Zhou W.Y., Chen J.H., Lu L. et al.: [Changes on leaf chloro-plast ultrastructure and photosynthetic characteristics of Liriodendron sino-americanum somatic embryo regeneration seedlings under waterlogging stress.] - Sci. Silv. Sin. 54: 19-28, 2018. [In Chinese]