Photosynthetica 2022, 60(2):271-279 | DOI: 10.32615/ps.2022.019

Upregulation of the mitochondrial alternative oxidase pathway improves PSII function and photosynthetic electron transport in tomato seedlings under chilling stress

J.J. ZENG, W.H. HU, X.H. HU, H.M. TAO, L. ZHONG, L.L. LIU
School of Life Sciences, Jinggangshan University, 343009 Ji'an, China

The aim of this study was to explore how the mitochondrial alternative oxidase (AOX) pathway alleviates photoinhibition in chilled tomato (Solanum lycopersicum) seedlings. Chilling induced photoinhibition in tomato seedlings despite the increases in thermal energy dissipation and cyclic electron flow around PSI (CEF-PSI). Chilling inhibited the function of PSII and blocked electron transport at the PSII acceptor side, however, it did not affect the oxygen-evolving complex on the donor side of PSII. Upregulation of the AOX pathway protects against photoinhibition by improving PSII function and photosynthetic electron transport in tomato seedlings under chilling stress. The AOX pathway maintained the open state of PSII and the stability of the entire photosynthetic electron transport chain. Moreover, the protective role of the AOX pathway on PSII was more important than that on PSI. However, inhibition of the AOX pathway could be compensated by increasing CEF-PSI activity under chilling stress.

Additional key words: chlorophyll fluorescence; JIP-test; OJIP curve; salicylhydroxamic acid; Solanum lycopersicum.

Received: December 10, 2021; Revised: March 17, 2022; Accepted: March 17, 2022; Prepublished online: March 31, 2022; Published: May 2, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
ZENG, J.J., HU, W.H., HU, X.H., TAO, H.M., ZHONG, L., & LIU, L.L. (2022). Upregulation of the mitochondrial alternative oxidase pathway improves PSII function and photosynthetic electron transport in tomato seedlings under chilling stress. Photosynthetica60(2), 271-279. doi: 10.32615/ps.2022.019
Download citation

References

  1. Akhter M.S., Noreen S., Mahmood S. et al.: Influence of salinity stress on PSII in barley (Hordeum vulgare L.) genotypes, probed by chlorophyll-a fluorescence. - J. King Saud Univ. Sci. 33: 101239, 2021. Go to original source...
  2. Alber N.A., Vanlerberghe G.C.: The flexibility of metabolic interactions between chloroplasts and mitochondria in Nicotiana tabacum leaf. - Plant J. 106: 1625-1646, 2021. Go to original source...
  3. Allakhverdiev S.I.: Recent progress in the studies of structure and function of photosystem II. - J. Photoch. Photobio. B 104: 1-8, 2011. Go to original source...
  4. Allen D.J., Ort D.R.: Impacts of chilling temperatures on photosynthesis in warm-climate plants. - Trends Plant Sci. 6: 36-42, 2001. Go to original source...
  5. Analin B., Mohanan A., Bakka K., Challabathula D.: Cytochrome oxidase and alternative oxidase pathways of mitochondrial electron transport chain are important for the photosynthetic performance of pea plants under salinity stress conditions. - Plant Physiol. Bioch. 154: 248-259, 2020. Go to original source...
  6. Bartoli C.G., Gomez F., Gergoff G. et al.: Up-regulation of the mitochondrial alternative oxidase pathway enhances photosynthetic electron transport under drought conditions. - J. Exp. Bot. 56: 1269-1276, 2005. Go to original source...
  7. Bertamini M., Muthuchelian K., Rubinigg M. et al.: Photoinhibition of photosynthesis in leaves of grapevine (Vitis vinifera L. cv. Riesling). Effect of chilling nights. - Photosynthetica 43: 551-557, 2005. Go to original source...
  8. Challabathula D., Analin B., Mohanan A., Bakka K.: Differential modulation of photosynthesis, ROS and antioxidant enzyme activities in stress-sensitive and -tolerant rice cultivars during salinity and drought upon restriction of COX and AOX pathway of mitochondrial oxidative electron transport. - J. Plant Physiol. 268: 153583, 2022. Go to original source...
  9. Chen S., Strasser R.J., Qiang S.: In vivo assessment of effect of phytotoxin tenuazonic acid on PSII reaction centers. - Plant Physiol. Bioch. 84: 10-21, 2014. Go to original source...
  10. Cheng D., Gao H., Zhang L.: Upregulation of mitochondrial alternative oxidase pathway protects photosynthetic apparatus against photodamage under chilling stress in Rumex K-1 leaves. - Photosynthetica 58: 1116-1121, 2020. Go to original source...
  11. Cheng D.D., Zhang L.T.: Mitochondrial alternative oxidase pathway acts as an electron sink during photosynthetic induction in Rumex K-1 leaves. - Photosynthetica 59: 615-624, 2021. Go to original source...
  12. Clifton R., Lister R., Parker K.L. et al.: Stress-induced co-expression of alternative respiratory chain components in Arabidopsis thaliana. - Plant Mol. Biol. 58: 193-212, 2005. Go to original source...
  13. D±browski P., Baczewska-D±browska A.H., Kalaji H.M. et al.: Exploration of chlorophyll a fluorescence and plant gas exchange parameters as indicators of drought tolerance in perennial ryegrass. - Sensors-Basel 19: 2736, 2019. Go to original source...
  14. Dahal K., Martyn G.D., Vanlerberghe G.C.: Improved photosynthetic performance during severe drought in Nicotiana tabacum overexpressing a nonenergy conserving respiratory electron sink. - New Phytol. 208: 382-395, 2015. Go to original source...
  15. Dahal K., Vanlerberghe G.C.: Improved chloroplast energy balance during water deficit enhances plant growth: more crop per drop. - J. Exp. Bot. 69: 1183-1197, 2018. Go to original source...
  16. Florez-Sarasa I., Flexas J., Rasmusson A.G. et al.: In vivo cytochrome and alternative pathway respiration in leaves of Arabidopsis thaliana plants with altered alternative oxidase under different light conditions. - Plant Cell Environ. 34: 1373-1383, 2011. Go to original source...
  17. Gan P., Liu F., Li R.B. et al.: Chloroplasts - beyond energy capture and carbon fixation: tuning of photosynthesis in response to chilling stress. - Int. J. Mol. Sci. 20: 5046, 2019. Go to original source...
  18. Gandin A., Duffes C., Day D.A., Cousins A.B.: The absence of alternative oxidase AOX1a results in altered response of photosynthetic carbon assimilation to increasing CO2 in Arabidopsis thaliana. - Plant Cell Physiol. 53: 1627-1637, 2012. Go to original source...
  19. Garmash E.V.: Role of mitochondrial alternative oxidase in the regulation of cellular homeostasis during development of photosynthetic function in greening leaves. - Plant Biol. 23: 221-228, 2021. Go to original source...
  20. Giraud E., Ho L.H.M., Clifton R. et al.: The absence of ALTERNATIVE OXIDASE1a in Arabidopsis results in acute sensitivity to combined light and drought stress. - Plant Physiol. 147: 595-610, 2008. Go to original source...
  21. Grabelnych O.I., Borovik O.A., Tauson E.L. et al.: Mitochondrial energy-dissipating systems (alternative oxidase, uncoupling proteins, and external NADH dehydrogenase) are involved in development of frost-resistance of winter wheat seedlings. - Biochemistry-Moscow 79: 506-519, 2014. Go to original source...
  22. Guo Y., Zhang Y., Liu Y. et al.: Effect of AtLFNR1 deficiency on chlorophyll a fluorescence rise kinetics OJIP of Arabidopsis. - Photosynthetica 58: 391-398, 2020. Go to original source...
  23. Hu W.H., Yan X.H., He Y., Ye X.L.: Role of alternative oxidase pathway in protection against drought-induced photoinhibition in pepper leaves. - Photosynthetica 56: 1297-1303, 2018. Go to original source...
  24. Hu W.H., Yan X.H., Yu J.Q.: Importance of the mitochondrial alternative oxidase (AOX) pathway in alleviating photoinhibition in cucumber leaves under chilling injury and subsequent recovery when leaves are subjected to high light intensity. - J. Hortic. Sci. Biotech. 92: 31-38, 2017. Go to original source...
  25. Huang W., Zhang S.B., Cao K.F.: The different effects of chilling stress under moderate light intensity on photosystem II compared with photosystem I and subsequent recovery in tropical tree species. - Photosynth. Res. 103: 175-182, 2010. Go to original source...
  26. Ikkonen E.N., Grabelnykh O.I., Sherudilo E.G., Shibaeva T.G.: Salicylhydroxamic acid-resistant and sensitive components of respiration in chilling-sensitive plants subjected to a daily short-term temperature drop. - Russ. J. Plant Physiol. 67: 60-67, 2020. Go to original source...
  27. Jiang Z.X., Watanabe C.K.A., Miyagi A. et al.: Mitochondrial AOX supports redox balance of photosynthetic electron transport, primary metabolite balance, and growth in Arabidopsis thaliana under high light. - Int. J. Mol. Sci. 20: 3067, 2019. Go to original source...
  28. Kiener C.M., Bramlage W.J.: Temperature effects on the activity of the alternative respiratory pathway in chill-sensitive Cucumis sativus. - Plant Physiol. 68: 1474-1478, 1981. Go to original source...
  29. Kramer D.M., Johnson G., Kiirats O., Edwards G.E.: New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. - Photosynth. Res. 79: 209-218, 2004. Go to original source...
  30. Lei Y., Zheng Y., Dai K. et al.: Different responses of photosystem I and photosystem II in three tropical oilseed crops exposed to chilling stress and subsequent recovery. - Trees 28: 923-933, 2014. Go to original source...
  31. Li J.W., Zhang S.B.: Differences in the responses of photosystems I and II in Cymbidium sinense and C. tracyanum to long-term chilling stress. - Front. Plant Sci. 6: 1097, 2016. Go to original source...
  32. Lyons J.M.: Chilling injury in plants. - Ann. Rev. Plant Physio. 24: 445-466, 1973. Go to original source...
  33. Maxwell K., Johnson G.N.: Chlorophyll fluorescence - a practical guide. - J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  34. Noguchi K., Yoshida K.: Interaction between photosynthesis and respiration in illuminated leaves. - Mitochondrion 8: 87-99, 2008. Go to original source...
  35. Nunes-Nesi A., Sulpice R., Gibon Y., Fernie A.R.: The enigmatic contribution of mitochondrial function in photosynthesis. - J. Exp. Bot. 59: 1675-1684, 2008. Go to original source...
  36. Ort D.R., Baker N.R.: A photoprotective role for O2 as an alternative electron sink in photosynthesis? - Curr. Opin. Plant Biol. 5: 193-198, 2002. Go to original source...
  37. Raghavendra A.S., Padmasree K.: Beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation. - Trends Plant Sci. 8: 546-553, 2003. Go to original source...
  38. Ramazan S., Bhat H.A., Zargar M.A. et al.: Combined gas exchange characteristic, chlorophyll fluorescence and response curves as selection traits for temperature tolerance in maize genotypes. - Photosynth. Res. 150: 213-225, 2021. Go to original source...
  39. Sonoike K.: Photoinhibition of photosystem I: its physiological significance in the chilling sensitivity of plants. - Plant Cell Physiol. 37: 239-247, 1996. Go to original source...
  40. Strasser R.J., Srivastava A., Govindjee.: Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. - Photochem. Photobiol. 61: 32-42, 1995. Go to original source...
  41. Takagi D., Amako K., Hashiguchi M. et al.: Chloroplastic ATP synthase builds up a proton motive force preventing production of reactive oxygen species in photosystem I. - Plant J. 91: 306-324, 2017. Go to original source...
  42. Umbach A.L., Fiorani F., Siedow J.N.: Characterization of transformed Arabidopsis with altered alternative oxidase levels and analysis of effects on reactive oxygen species in tissue. - Plant Physiol. 139: 1806-1820, 2005. Go to original source...
  43. Vanlerberghe G.C., Cvetkovska M., Wang J.: Is the maintenance of homeostatic mitochondrial signaling during stress a physiological role for alternative oxidase? - Physiol. Plantarum 137: 392-406, 2009. Go to original source...
  44. Vanlerberghe G.C., Dahal K., Alber N. et al.: Photosynthesis, respiration and growth: a carbon and energy balancing act for alternative oxidase. - Mitochondrion 52: 197-211, 2020. Go to original source...
  45. Vishwakarma A., Bashyam L., Senthilkumaran B. et al.: Physiological role of AOX1a in photosynthesis and maintenance of cellular redox homeostasis under high light in Arabidopsis thaliana. - Plant Physiol. Bioch. 81: 44-53, 2014. Go to original source...
  46. Watanabe C.K.A., Yamori W., Takahashi S. et al.: Mitochondrial alternative pathway-associated photoprotection of photosystem II is related to the photorespiratory pathway. - Plant Cell Physiol. 57: 1426-1431, 2016. Go to original source...
  47. Yamori W., Sakata N., Suxuki Y. et al.: Cyclic electron flow around photosystem I via chloroplast NAD(P)H dehydrogenase (NDH) complex performs a significant physiological role during photosynthesis and plant growth at low temperature in rice. - Plant J. 68: 966-976, 2011. Go to original source...
  48. Yoshida K., Terashima I., Noguchi K.: Up-regulation of mitochondrial alternative oxidase concomitant with chloroplast over-reduction by excess light. - Plant Cell Physiol. 48: 606-614, 2007. Go to original source...
  49. Yoshida K., Watanabe C.K., Terashima I., Noguchi K.: Physiological impact of mitochondrial alternative oxidase on photosynthesis and growth in Arabidopsis thaliana. - Plant Cell Environ. 34: 1890-1899, 2011. Go to original source...
  50. Yu J.Q., Matsui Y.: Effects of roots exudates and allelochemicals on ion uptake by cucumber seedlings. - J. Chem. Ecol. 23: 817-827, 1997. Go to original source...
  51. Zhang L.T., Xu R., Liu J.G.: Efficacy of botanical pesticide for rotifer extermination during the cultivation of Nannochloropsis oculata probed by chlorophyll a fluorescence transient. - Photosynthetica 58: 156-162, 2020. Go to original source...
  52. Zhang L.T., Zhang Z.S., Gao H.Y. et al.: The mitochondrial alternative oxidase pathway protects the photosynthetic apparatus against photodamage in Rumex K-1 leaves. - BMC Plant Biol. 12: 40, 2012. Go to original source...
  53. Zheng J., Fang C., Ru L. et al.: Glutathione-ascorbate cycle and photosynthetic electronic transfer in alternative oxidase-manipulated waterlogging tolerance in watermelon seedlings. -Horticulturae 7: 130, 2021. Go to original source...