Photosynthetica 2022, 60(3):420-429 | DOI: 10.32615/ps.2022.034

The effects of nitrogen application on the growth, photosynthesis, and antioxidant activity of Amaranthus viridis

C.-C. CHEN1, M.-Y. HUANG2, K.-H. LIN3, M.-T. HSUEH4
1 National Research Institute of Chinese Medicine, 11221 Taipei, Taiwan
2 Department of Life Sciences, Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 40227 Taichung, Taiwan
3 Department of Horticulture and Biotechnology, Chinese Culture University, 11114 Taipei, Taiwan
4 Taitung District Agricultural Research and Extension Station, 950244 Taitung, Taiwan

Amaranthus viridis is a functional food due to its antioxidant activity. The aim of this study was to investigate the responses of photosynthesis, growth, and antioxidant properties in A. viridis to nitrogen (N) applications. A. viridis plants were cultivated under low N (LN), medium N (MN), and high N (HN), and harvested at the reproductive phase. The dry mass and plant height of A. viridis plants increased with elevated N, and the dry mass of HN was saturated. Net photosynthetic rate, stomatal conductance, and water-use efficiency in the leaves at HN were strengthened. Meanwhile, under HN, chlorophylls (Chl), their precursors, and degradation intermediates in the leaves were highly accumulated, and the minor route of Chl degradation pathway was induced dramatically. However, 2,2-diphenyl-1-picrylhydrazyl radical-scavenging, ferrous iron-chelating, and reducing power in the extracts were reduced under HN. Conclusively, an appropriate N application balanced the yield and antioxidant properties of A. viridis.

Additional key words: antioxidant activity; chlorophyll biosynthesis; chlorophyll degradation; dry mass; nitrogen fertilization; photosynthesis.

Received: February 8, 2022; Revised: June 12, 2022; Accepted: July 13, 2022; Prepublished online: August 16, 2022; Published: September 8, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
CHEN, C.-C., HUANG, M.-Y., LIN, K.-H., & HSUEH, M.-T. (2022). The effects of nitrogen application on the growth, photosynthesis, and antioxidant activity of Amaranthus viridis. Photosynthetica60(3), 420-429. doi: 10.32615/ps.2022.034
Download citation

References

  1. Amiour N., Imbaud S., Clément G. et al.: The use of metabolomics integrated with transcriptomic and proteomic studies for identifying key steps involved in the control of nitrogen metabolism in crops such as maize. - J. Exp. Bot. 63: 5017-5033, 2012. Go to original source...
  2. Ayodele V.I.: Influence of nitrogen fertilisation on yield of Amaranthus species. - Acta Hortic. 571: 89-94, 2002. Go to original source...
  3. Bang J.-H., Lee K.J., Jeong W.T. et al.: Antioxidant activity and phytochemical content of nine Amaranthus species. - Agronomy 11: 1032, 2021. Go to original source...
  4. Bode S., Quentmeier C.C., Liao P.-N., Walla P.J.: On the regulation of photosynthesis by excitonic interactions between carotenoids and chlorophylls. - P. Natl. Acad. Sci. USA 106: 12311-12316, 2009. Go to original source...
  5. Cechin I., Valquilha É.M.: Nitrogen effect on gas exchange characteristics, dry matter production and nitrate accumula­tion of Amaranthus cruentus L. - Braz. J. Bot. 42: 373-381, 2019. Go to original source...
  6. Chen C.-C., Lin K.-H., Huang M.-Y. et al.: Effects of light quality on the chlorophyll degradation pathway in rice seedling leaves. - Not. Bot. Horti. Agrobot. Cluj-Napoca 44: 393-398, 2016. Go to original source...
  7. Chen Y., Wang F., Wu Z. et al.: Effects of long-term nitrogen fertilization on the formation of metabolites related to tea quality in subtropical China. - Metabolites 11: 146, 2021. Go to original source...
  8. Curci P.L., Aiese Cigliano R., Zuluaga D.L. et al.: Transcriptomic response of durum wheat to nitrogen starvation. - Sci. Rep.-UK 7: 1176, 2017. Go to original source...
  9. Datta S., Sinha B.K., Bhattacharjee S., Seal T.: Nutritional composition, mineral content, antioxidant activity and quantitative estimation of water soluble vitamins and phenolics by RP-HPLC in some lesser used wild edible plants. - Heliyon 5: e01431, 2019. Go to original source...
  10. Deng B., Li Y., Xu D. et al.: Nitrogen availability alters flavonoid accumulation in Cyclocarya paliurus via the effects on the internal carbon/nitrogen balance. - Sci Rep.-UK 9: 2370, 2019. Go to original source...
  11. Djeridane A., Yousfi M., Nadjemi B. et al.: Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. - Food Chem. 97: 654-660, 2006. Go to original source...
  12. Dordas C.A., Sioulas C.: Safflower yield, chlorophyll content, photosynthesis, and water use efficiency response to nitrogen fertilization under rainfed conditions. - Ind. Crop. Prod. 27: 75-85, 2008. Go to original source...
  13. Eckhardt U., Grimm B., Hörtensteiner S.: Recent advances in chlorophyll biosynthesis and breakdown in higher plants. - Plant Mol. Biol. 56: 1-14, 2004. Go to original source...
  14. Ferreira C.C., Ribeiro Júnior W.Q., Ramos M.L.G. et al.: [Effect of different sowing densities and nitrogen doses in grain yield and biometry of amaranth, at savanna in central Brazil.] - Biosci. J. 30: 534-546, 2014. [In Portuguese]
  15. Gélinas B., Seguin P.: Evaluation of management practices for grain amaranth production in eastern Canada. - Agron. J. 100: 344-351, 2008. Go to original source...
  16. Girija K., Lakshman K.: Anti-hyperlipidemic activity of methanol extracts of three plants of Amaranthus in triton-WR 1339 induced hyperlipidemic rats. - Asian Pac. J. Trop. Biomed. 1: S62-S65, 2011. Go to original source...
  17. Girija K., Lakshman K., Udaya C. et al.: Anti-diabetic and anti-cholesterolemic activity of methanol extracts of three species of Amaranthus. - Asian Pac. J. Trop. Biomed. 1: 133-138, 2011. Go to original source...
  18. Guil J.L., Rodríguez-Garcí I., Torija E.: Nutritional and toxic factors in selected wild edible plants. - Plant Food. Hum. Nutr. 51: 99-107, 1997. Go to original source...
  19. Hu X., Gu T., Khan I. et al.: Research progress in the interconversion, turnover and degradation of chlorophyll. - Cells 10: 3134, 2021. Go to original source...
  20. Huang M.-Y., Huang W.-D., Chou H.-M. et al.: Herbivorous insects alter the chlorophyll biosynthetic and degradation pathway of galls on host plant. - J. Asia Pac. Entomol. 17: 431-434, 2014. Go to original source...
  21. Hudson D., Guevara D., Yaish M.W. et al.: GNC and CGA1 modulate chlorophyll biosynthesis and glutamate synthase (GLU1/Fd-GOGAT) expression in Arabidopsis. - PLoS ONE 6: e26765, 2011. Go to original source...
  22. Hunt Jr. E.R., Weber J.A., Gates D.M.: Effects of nitrate application on Amaranthus powellii Wats.: I. Changes in photosynthesis, growth rates, and leaf area. - Plant Physiol. 79: 609-613, 1985. Go to original source...
  23. Ibrahim M.H., Jaafar H.Z.E.: Involvement of carbohydrate, protein and phenylanine ammonia lyase in up-regulation of secondary metabolites in Labisia pumila under various CO2 and N2 level. - Molecules 16: 4172-4190, 2011. Go to original source...
  24. Kumar B.S.A., Lakshman K., Jayaveera K.N. et al.: Estimation of rutin and quercetin in Amaranthus viridis Linn by HPLC. - Asian J. Exp. Sci. 23: 51-54, 2009a.
  25. Kumar B.S.A., Lakshman K., Jayaveera K.N. et al.: Antinociceptive and antipyretic activities of Amaranthus viridis linn in different experimental models. - Avicenna J. Med. Biotech. 1: 167-171, 2009b.
  26. Kumar B.S.A., Lakshman K., Jayaveea K.N. et al.: Antidiabetic, antihyperlipidemic and antioxidant activities of methanolic extract of Amaranthus viridis Linn in alloxan induced diabetic rats. - Exp. Toxicol. Pathol. 64: 75-79, 2012. Go to original source...
  27. Kumar B.S.A., Lakshman K., Swamy V.B.N. et al.: Hepatoprotective and antioxidant activities of Amaranthus viridis Linn. - Maced. J. Med. Sci. 4: 125-130, 2011.
  28. Mancinelli A.L., Yang C.P.H., Lindquist P. et al.: Photocontrol of anthocyanin synthesis: III. The action of streptomycin on the synthesis of chlorophyll and anthocyanin. - Plant Physiol. 55: 251-257, 1975. Go to original source...
  29. Maseko I., Mabhaudhi T., Beletse Y.G. et al.: Growth and yield responses of Amaranthus cruentus, Corchorus olitorius and Vigna unguiculata to nitrogen application under drip irrigated commercial production. - Acta Hortic. 1253: 303-310, 2019. Go to original source...
  30. Midorikawa K., Kuroda M., Terauchi K. et al.: Additional nitrogen fertilization at heading time of rice down-regulates cellulose synthesis in seed endosperm. - PLoS ONE 9: e98738, 2014. Go to original source...
  31. Nguyen H.C., Lin K.-H., Huang M.-Y. et al.: Antioxidant activities of the methanol extracts of various parts of Phalaenopsis orchids with white, yellow, and purple flowers. - Not. Bot. Horti. Agrobo. 46: 457-465, 2018. Go to original source...
  32. Oda-Yamamizo C., Mitsuda N., Sakamoto S. et al.: The NAC transcription factor ANAC046 is a positive regulator of chlorophyll degradation and senescence in Arabidopsis leaves. - Sci. Rep.-UK 6: 23609, 2016. Go to original source...
  33. Olarewaju O.A., Alashi A.M., Taiwo K.A. et al.: Influence of nitrogen fertilizer micro-dosing on phenolic content, antioxidant, and anticholinesterase properties of aqueous extracts of three tropical leafy vegetables. - J. Food Biochem. 42: e12566, 2018. Go to original source...
  34. Pandhare R., Balakrishnan S., Mohite P. et al.: Antidiabetic and antihyperlipidaemic potential of Amaranthus viridis (L.) Merr. in streptozotocin induced diabetic rats. - Asian Pac. J. Trop. Dis. 2: S180-185, 2012. Go to original source...
  35. Popoola O.O.: Phenolic compounds composition and in vitro antioxidant activity of Nigerian Amaranthus viridis seed as affected by autoclaving and germination. - Measurement: Food 6: 100028, 2022. Go to original source...
  36. Reddy K.N., Pattanaik C., Reddy C.S., Raju V.S.: Traditional knowledge on wild food plants in Andhra Pradesh. - Indian J. Tradit. Knowl. 6: 223-229, 2007.
  37. Saravanan G., Ponmurugan P., Sathiyavathi M. et al.: Cardioprotective activity of Amaranthus viridis Linn: Effect on serum marker enzymes, cardiac troponin and antioxidant system in experimental myocardial infarcted rats. - Int. J. Cardiol. 165: 494-498, 2013. Go to original source...
  38. Schulte auf'm Erley G., Kaul H.-P., Kruse M., Aufhammer W.: Yield and nitrogen utilization efficiency of the pseudocereals amaranth, quinoa, and buckwheat under differing nitrogen fertilization. - Eur. J. Agron. 22: 95-100, 2005.
  39. Sena L.P., VanderJagt D.J., Rivera C. et al.: Analysis of nutritional components of eight famine foods of the Republic of Niger. - Plant Food. Hum. Nutr. 52: 17-30, 1998. Go to original source...
  40. Sharma N., Gupta P.C., Rao C.V.: Nutrient content, mineral content and antioxidant activity of Amaranthus viridis and Moringa oleifera leaves. - Res. J. Med. Plant. 6: 253-259, 2012. Go to original source...
  41. Shioi Y., Sasa T.: Purification of solubilized chlorophyllase from Chlorella protothecoides. - Method. Enzymol. 123: 421-427, 1986. Go to original source...
  42. Silva A.D., Ávila S., Küster R.T. et al.: In vitro bioaccessibility of proteins, phenolics, flavonoids and antioxidant activity of Amaranthus viridis. - Plant Food. Hum. Nutr. 76: 478-486, 2021. Go to original source...
  43. Sun Y., Guo J., Li Y. et al.: Negative effects of the simulated nitrogen deposition on plant phenolic metabolism: A meta-analysis. - Sci. Total Environ. 719: 137442, 2020. Go to original source...
  44. Togawa-Urakoshi Y., Ueno O.: Photosynthetic nitrogen- and water-use efficiencies in C3 and C4 subtype grasses grown under two nitrogen supply levels. - Plant Prod. Sci. 25: 183-194, 2022. Go to original source...
  45. Tsutsumi N., Tohya M., Nakashima T., Ueno O.: Variations in structural, biochemical, and physiological traits of photosynthesis and resource use efficiency in Amaranthus species (NAD-ME-type C4). - Plant Prod. Sci. 20: 300-312, 2017. Go to original source...
  46. Wang T., Han H., Xie B. et al.: Comparative chlorophyll fluorescence and growth responses of two Amaranthus species to increased N supply variability. - Pol. J. Environ. Stud. 31: 3867-3878, 2022. Go to original source...
  47. Yang C.M., Chang K.W., Yin M.H., Huang H.M.: Methods for the determination of chlorophylls and their derivatives. - Taiwania 43: 116-122, 1998. Go to original source...
  48. Yang C.-M., Yang M.-M., Hsu J.-M., Jane W.-N.: Herbivorous insect causes deficiency of pigment-protein complexes in an oval-pointed cecidomyiid gall of Machilus thunbergii leaf. - Bot. Bull. Acad. Sin. 44: 315-321, 2003.
  49. Zaid A., Mohammad F.: Methyl jasmonate and nitrogen interact to alleviate cadmium stress in Mentha arvensis by regulating physio-biochemical damages and ROS detoxification. - J. Plant Growth Regul. 37: 1331-1348, 2018. Go to original source...
  50. Zhang Y., Ma X.-M., Wang X.-C. et al.: UPLC-QTOF analysis reveals metabolomic changes in the flag leaf of wheat (Triticum aestivum L.) under low-nitrogen stress. - Plant Physiol. Bioch. 111: 30-38, 2017. Go to original source...
  51. Zhao C., Wang Z., Cui R. et al.: Effects of nitrogen application on phytochemical component levels and anticancer and antioxidant activities of Allium fistulosum. - PeerJ 9: e11706, 2021. Go to original source...
  52. Zhao W., Yang X., Yu H. et al.: RNA-Seq-based transcriptome profiling of early nitrogen deficiency response in cucumber seedlings provides new insight into the putative nitrogen regulatory network. - Plant Cell Physiol. 56: 455-467, 2015. Go to original source...