Photosynthetica 2022, 60(3):457-464 | DOI: 10.32615/ps.2022.040

Diurnal decline in the photosynthetic capacity of uppermost leaves in an eggplant canopy grown in a horticultural greenhouse

K. NOMURA1, M. SAITO1, M. ITO1, S. YAMANE2, T. IWAO1, I. TADA1, T. YAMAZAKI1, S. ONO3, D. YASUTAKE1, 4, M. KITANO1
1 IoP Collaborative Creation Center, Kochi University, 200 Otsu, Monobe, Nankoku City, 783-8502 Kochi, Japan
2 Faculty of Agriculture and Marine Sciences, Kochi University, 200 Otsu, Monobe, Nankoku City, 783-8502 Kochi, Japan
3 Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka City, 819-0395 Fukuoka, Japan
4 Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka City, 819-0395 Fukuoka, Japan

Parameters representing leaf photosynthetic capacity, namely, the maximal carboxylation rate (Vcmax), maximal electron transport rate (Jmax), and triose phosphate-utilization rate (Tp), can vary depending on various factors. The present study investigated diurnal variations in Vcmax, Jmax, and Tp of uppermost leaves of soil-grown, well-watered eggplant in a greenhouse based on the simultaneous measurements of leaf gas exchange and chlorophyll fluorescence. The values of net photosynthetic rates and electron transport rates plotted against intercellular CO2 concentrations were noticeably higher in the morning than in the afternoon. Significant differences were detected among the values of Vcmax, Jmax, and Tp obtained at different times of day (08:30, 11:00, 13:30, and 16:00 h). All three parameters tended to decline as the time of day advanced; compared to the values at 08:30 h, Vcmax, Jmax, and Tp declined by approximately 15% at 16:00 h. Among the three parameters, Tp appeared to be the most sensitive to time.

Additional key words: CO2-photosynthesis curve; diurnal variation; Farquhar-von Caemmerer-Berry photosynthesis model; horticultural crop; photosynthesis limitation; triose phosphate utilization.

Received: June 11, 2022; Revised: June 11, 2022; Accepted: August 10, 2022; Prepublished online: August 31, 2022; Published: September 8, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
NOMURA, K., SAITO, M., ITO, M., YAMANE, S., IWAO, T., TADA, I., ... KITANO, M. (2022). Diurnal decline in the photosynthetic capacity of uppermost leaves in an eggplant canopy grown in a horticultural greenhouse. Photosynthetica60(3), 457-464. doi: 10.32615/ps.2022.040
Download citation

References

  1. Baldocchi D.D.: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. - Glob. Change Biol. 9: 479-492, 2003. Go to original source...
  2. Ball J.T., Woodrow I.E., Berry J.A.: A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. -In: Biggins J. (ed.): Progress in Photosynthesis Research. Pp. 221-224. Springer, Dordrecht 1987. Go to original source...
  3. Bernacchi C.J., Pimentel C., Long S.P.: In vivo temperature response functions of parameters required to model RuBP-limited photosynthesis. - Plant Cell Environ. 26: 1419-1430, 2003. Go to original source...
  4. Bernacchi C.J., Singsaas E.L., Pimentel C. et al.: Improved temperature response functions for models of Rubisco-limited photosynthesis. - Plant Cell Environ. 24: 253-259, 2001. Go to original source...
  5. Brodribb T.J., Holbrook N.M.: Diurnal depression of leaf hydraulic conductance in a tropical tree species. - Plant Cell Environ. 27: 820-827, 2004. Go to original source...
  6. Collatz G.J., Ball J.T., Grivet C., Berry J.A.: Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. - Agr. Forest Meteorol. 54: 107-136, 1991. Go to original source...
  7. De Kauwe M.G., Lin Y.S., Wright I.J. et al.: A test of the 'one-point method' for estimating maximum carboxylation capacity from field-measured, light-saturated photosynthesis. -New Phytol. 210: 1130-1144, 2016. Go to original source...
  8. De Pury D.G.G., Farquhar G.D.: Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. - Plant Cell Environ. 20: 537-557, 1997. Go to original source...
  9. Fabre D., Yin X., Dingkuhn M. et al.: Is triose phosphate utilization involved in the feedback inhibition of photosynthesis in rice under conditions of sink limitation? - J. Exp. Bot. 70: 5773-5785, 2019. Go to original source...
  10. Farquhar G.D., von Caemmerer S., Berry J.A.: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. - Planta 149: 78-90, 1980. Go to original source...
  11. Flexas J., Ribas-Carbó M., Diaz-Espejo A. et al.: Mesophyll conductance to CO2: Current knowledge and future prospects. - Plant Cell Environ. 31: 602-621, 2008. Go to original source...
  12. Flexas J., Scoffoni C., Gago J., Sack L.: Leaf mesophyll conductance and leaf hydraulic conductance: An introduction to their measurement and coordination. - J. Exp. Bot. 64: 3965-3981, 2013. Go to original source...
  13. Gaastra P.: Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature, and stomatal diffusion resistance. PhD Thesis. Pp. 68. Wageningen University 1959.
  14. Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. - BBA-Gen. Subjects 990: 87-92, 1989. Go to original source...
  15. Jones H.G.: Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology. Pp. 407. Cambridge University Press, Cambridge 2013. Go to original source...
  16. Kets K., Darbah J.N.T., Sober A. et al.: Diurnal changes in photosynthetic parameters of Populus tremuloides, modulated by elevated concentrations of CO2 and/or O3 and daily climatic variation. - Environ. Pollut. 158: 1000-1007, 2010. Go to original source...
  17. Kimura K., Yasutake D., Koikawa K., Kitano M.: Spatiotemporal variability of leaf photosynthesis and its linkage with microclimates across an environment-controlled greenhouse. -Biosyst. Eng. 195: 97-115, 2020. Go to original source...
  18. Larkum A.W.D.: Limitations and prospects of natural photosyn­thesis for bioenergy production. - Curr. Opin. Biotech. 21: 271-276, 2010. Go to original source...
  19. Leakey A.D.B., Ainsworth E.A., Bernacchi C.J. et al.: Elevated CO2 effects on plant carbon, nitrogen, and water relations: Six important lessons from FACE. - J. Exp. Bot. 60: 2859-2876, 2009. Go to original source...
  20. Long S.P., Bernacchi C.J.: Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. - J. Exp. Bot. 54: 2393-2401, 2003. Go to original source...
  21. Maai E., Nishimura K., Takisawa R., Nakazaki T.: Light stress-induced chloroplast movement and midday depression of photosynthesis in sorghum leaves. - Plant Prod. Sci. 23: 172-181, 2020. Go to original source...
  22. Maxwell K., Johnson G.N.: Chlorophyll fluorescence - a practical guide. - J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  23. McClain A.M., Sharkey T.D.: Triose phosphate utilization and beyond: From photosynthesis to end product synthesis. - J. Exp. Bot. 70: 1755-1766, 2019. Go to original source...
  24. Medlyn B.E., Dreyer E., Ellsworth D. et al.: Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. - Plant Cell Environ. 25: 1167-1179, 2002. Go to original source...
  25. Medlyn B.E., Duursma R.A., Eamus D. et al.: Reconciling the optimal and empirical approaches to modelling stomatal conductance. - Glob. Change Biol. 17: 2134-2144, 2011. Go to original source...
  26. Murchie E.H., Lawson T.: Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. - J. Exp. Bot. 64: 3983-3998, 2013. Go to original source...
  27. Nakai H., Yasutake D., Kimura K. et al.: Dynamics of carbon export from leaves as translocation affected by the coordination of carbohydrate availability in field strawberry. -Environ. Exp. Bot. 196: 104806, 2022. Go to original source...
  28. Nascimento H.C.S., Marenco R.A.: Mesophyll conductance variations in response to diurnal environmental factors in Myrcia paivae and Minquartia guianensis in Central Amazonia. - Photosynthetica 51: 457-464, 2013. Go to original source...
  29. Newville M., Stensitzki T., Allen D.B. et al.: LMFIT: Non-linear least-square minimization and curve-fitting for Python, 2014. Available at: https://lmfit.github.io/lmfit-py/.
  30. Nomura K., Yasutake D., Kaneko T. et al.: Long-term estimation of the canopy photosynthesis of a leafy vegetable based on greenhouse climate conditions and nadir photographs. - Sci. Hortic.-Amsterdam 289: 110433, 2021. Go to original source...
  31. Parelle J., Roudaut J.-P., Ducrey M.: Light acclimation and photosynthetic response of beech (Fagus sylvatica L.) saplings under artificial shading or natural Mediterranean conditions. - Ann. For. Sci. 63: 257-266, 2006. Go to original source...
  32. Piao S., Sitch S., Ciais P. et al.: Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. - Glob. Change Biol. 19: 2117-2132, 2013. Go to original source...
  33. Prior S.A., Runion G.B., Marble S.C. et al.: A review of elevated atmospheric CO2 effects on plant growth and water relations: Implications for horticulture. - HortScience 46: 158-162, 2011. Go to original source...
  34. Rogers A., Medlyn B.E., Dukes J.S. et al.: A roadmap for improving the representation of photosynthesis in Earth system models. - New Phytol. 213: 22-42, 2017. Go to original source...
  35. Ryu Y., Berry J.A., Baldocchi D.D.: What is global photo­synthesis? History, uncertainties and opportunities. - Remote Sens. Environ. 223: 95-114, 2019. Go to original source...
  36. Sharkey T.D.: Photosynthesis in intact leaves of C3 plants: Physics, physiology and rate limitations. - Bot. Rev. 51: 53-105, 1985. Go to original source...
  37. Singsaas E.L., Ort D.R., DeLucia E.H. et al.: Diurnal regulation of photosynthesis in understory saplings. - New Phytol. 145: 39-49, 2000. Go to original source...
  38. Stinziano J., Harjoe M., Roback C. et al.: Photosynthetic capacity exhibits diurnal variation, implications for terrestrial biosphere models and gas exchange measurements. - Authorea, 1-25, 2020. Go to original source...
  39. Stinziano J.R., Morgan P.B., Lynch D.J. et al.: The rapid A-Ci response: photosynthesis in the phenomic era. - Plant Cell Environ. 40: 1256-1262, 2017. Go to original source...
  40. Tanizaki T., Yokoyama G., Kitano M., Yasutake D.: Contribution of diffusional and non-diffusional limitations to the midday depression of photosynthesis which varies dynamically even under constant environmental conditions. - Int. Agrophys. 36: 207-212, 2022. Go to original source...
  41. Tholen D., Boom C., Noguchi K. et al.: The chloroplast avoidance response decreases internal conductance to CO2 diffusion in Arabidopsis thaliana leaves. - Plant Cell Environ. 31: 1688-1700, 2008. Go to original source...
  42. von Caemmerer S.: Biochemical Models of Leaf Photosynthesis. Pp. 165. CSIRO Publishing, Collingwood 2000. Go to original source...
  43. Walker A.P., Quaife T., van Bodegom P.M. et al.: The impact of alternative trait-scaling hypotheses for the maximum photosynthetic carboxylation rate (Vcmax) on global gross primary production. - New Phytol. 215: 1370-1386, 2017. Go to original source...
  44. Yamori W., Hikosaka K., Way D.A.: Temperature response of photosynthesis in C3, C4, and CAM plants: Temperature acclimation and temperature adaptation. - Photosynth. Res. 119: 101-117, 2014. Go to original source...