Photosynthetica 2023, 61(1):73-93 | DOI: 10.32615/ps.2023.002
Photosynthetic machinery under salinity stress: Trepidations and adaptive mechanisms
- 1 Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), Regional Research Station (RRS), 392 012 Bharuch, Gujarat, India
- 2 Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), 132 001 Karnal, Haryana, India
- 3 Department of Plant Physiology, Kerala Agricultural University-College of Agriculture, 680 656 Thrissur, Kerala, India
- 4 Division of Plant Physiology, Indian Council of Agricultural Research-Indian Agricultural Research Institute (ICAR-IARI), 110 012 New Delhi, India
- 5 Department of Plant Physiology, Kerala Agricultural University-Regional Agricultural Research Station, 686 563 Kumarakom, Kerala, India
- 6 Forest Genetics and Biotechnology Division, KSCSTE-Kerala Forest Research Institute, Peechi, 680 653 Thrissur, Kerala, India
- 7 Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), Regional Research Station (RRS), 226 002 Lucknow, Uttar Pradesh, India
- 8 Indian Council of Agricultural Research-Central Agroforestry Research Institute (ICAR-CAFRI), 284 003 Jhansi, Uttar Pradesh, India
- 9 School of Natural Resource Management, Central Agricultural University-College of Post Graduate Studies in Agricultural Sciences (CAU), 793 103 Umiam, Meghalaya, India
- 10 Department of Biotechnology, Kuvempu University, Shankaraghatta, 577 451 Shivamogga, Karnataka, India
- 11 School of Science, Western Sydney University, Penrith NSW, 275 1, Australia
Chloroplasts and photosynthesis are the physiologically fateful arenas of salinity stress. Morphological and anatomical alterations in the leaf tissue, ultrastructural changes in the chloroplast, compromise in the integrity of the three-layered chloroplast membrane system, and defects in the light and dark reactions during the osmotic, ionic, and oxidative phases of salt stress are conversed in detail to bring the salinity-mediated physiological alterations in the chloroplast on to a single platform. Chloroplasts of salt-tolerant plants have evolved highly regulated salt-responsive pathways. Thylakoid membrane remodeling, ion homeostasis, osmoprotection, upregulation of chloroplast membrane and stromal proteins, chloroplast ROS scavenging, efficient retrograde signalling, and differential gene and metabolite abundance are the key attributes of optimal photosynthesis in tolerant species. This review throws light into the comparative mechanism of chloroplast and photosynthetic response to salinity in sensitive and tolerant plant species.
Additional key words: halophytes; photosynthetic rate; plastid; salt stress; sensitivity; tolerance.

Received: October 30, 2022; Revised: December 18, 2022; Accepted: January 6, 2023; Prepublished online: March 14, 2023; Published: April 13, 2023 Show citation
| ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Abideen Z., Koyro H.-W., Huchzermeyer B. et al.: Phragmites karka plants adopt different strategies to regulate photosynthesis and ion flux in saline and water deficit conditions. -Plant Biosyst. 155: 524-534, 2021.
Go to original source... - Acosta-Motos J.R., Ortuño M.F., Bernal-Vicente A. et al.: Plant responses to salt stress: adaptive mechanisms. - Agronomy 7: 18, 2017.
Go to original source... - Ahmad N., Michoux F., Nixon P.J.: Investigating the production of foreign membrane proteins in tobacco chloroplasts: expression of an algal plastid terminal oxidase. - PLoS ONE 7: e41722, 2012.
Go to original source... - Ahmad P., Ahanger M.A., Alyemeni M.N. et al.: Mitigation of sodium chloride toxicity in Solanum lycopersicum L. by supplementation of jasmonic acid and nitric oxide. - J. Plant Interact. 13: 64-72, 2018.
Go to original source... - Ahmad R., Lim C.J., Kwon S.-Y.: Glycine betaine: A versatile compound with great potential for gene pyramiding to improve crop plant performance against environmental stresses. - Plant Biotechnol. Rep. 7: 49-57, 2013.
Go to original source... - Akhter M.S., Noreen S., Mahmood S. et al.: Influence of salinity stress on PSII in barley (Hordeum vulgare L.) genotypes, probed by chlorophyll-a fluorescence. - J. King Saud Univ. Sci. 33: 101239, 2021.
Go to original source... - Alkhatib R., Abdo N., Mheidat M.: Photosynthetic and ultrastructural properties of eggplant (Solanum melongena) under salinity stress. - Horticulturae 7: 181, 2021.
Go to original source... - Allakhverdiev S.I., Kinoshita M., Inaba M. et al.: Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt-induced damage in Synechococcus. - Plant Physiol. 125: 1842-1853, 2001.
Go to original source... - Allakhverdiev S.I., Nishiyama Y., Miyairi S. et al.: Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbA genes in Synechocystis. - Plant Physiol. 130: 1443-1453, 2002.
Go to original source... - Amirbakhtiar N., Ismaili A., Ghaffari M.-R. et al.: Transcriptome analysis of bread wheat leaves in response to salt stress. - PLoS ONE 16: e0254189, 2021.
Go to original source... - Arefian M., Vessal S., Malekzadeh-Shafaroudi S. et al.: Comparative proteomics and gene expression analyses revealed responsive proteins and mechanisms for salt tolerance in chickpea genotypes. - BMC Plant Biol. 19: 300, 2019.
Go to original source... - Asrar H., Hussain T., Hadi S.M.S. et al.: Salinity induced changes in light harvesting and carbon assimilating complexes of Desmostachya bipinnata (L.). Staph. - Environ. Exp. Bot. 135: 86-95, 2017.
Go to original source... - Badawi G.H., Kawano N., Yamauchi Y. et al.: Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. - Physiol. Plantarum 121: 231-238, 2004.
Go to original source... - Bai J., Kang T., Wu H. et al.: Relative contribution of photorespiration and antioxidative mechanisms in Caragana korshinskii under drought conditions across the Loess Plateau. - Funct. Plant Biol. 44: 1111-1123, 2017.
Go to original source... - Balsemão-Pires E., Jaillais Y., Olson B.J.S.C. et al.: The Arabidopsis translocator protein (AtTSPO) is regulated at multiple levels in response to salt stress and perturbations in tetrapyrrole metabolism. - BMC Plant Biol. 11: 108, 2011.
Go to original source... - Barkla B.J., Garibay-Hernández A., Melzer M. et al.: Single cell-type analysis of cellular lipid remodelling in response to salinity in the epidermal bladder cells of the model halophyte Mesembryanthemum crystallinum. - Plant Cell Environ. 41: 2390-2403, 2018.
Go to original source... - Bejaoui F., Salas J.J., Nouairi I. et al.: Changes in chloroplast lipid contents and chloroplast ultrastructure in Sulla carnosa and Sulla coronaria leaves under salt stress. - J. Plant Physiol. 198: 32-38, 2016.
Go to original source... - Benjamin J.J., Lucini L., Jothiramshekar S., Parida A.: Metabolomic insights into the mechanisms underlying tolerance to salinity in different halophytes. - Plant Physiol. Bioch. 135: 528-545, 2019.
Go to original source... - Blankenship R.E.: Early evolution of photosynthesis. - Plant Physiol. 154: 434-438, 2010.
Go to original source... - Böhm J., Messerer M., Müller H.M. et al.: Understanding the molecular basis of salt sequestration in epidermal bladder cells of Chenopodium quinoa. - Curr. Biol. 28: 3075-3085, 2018.
Go to original source... - Bolte S., Marcon E., Jaunario M. et al.: Dynamics of the localization of the plastid terminal oxidase inside the chloroplast. - J. Exp. Bot. 71: 2661-2669, 2020.
Go to original source... - Bose J., Munns R., Shabala S. et al.: Chloroplast function and ion regulation in plants growing on saline soils: lessons from halophytes. - J. Exp. Bot. 68: 3129-3143, 2017.
Go to original source... - Bose J., Shabala L., Pottosin I. et al.: Kinetics of xylem loading, membrane potential maintenance, and sensitivity of K+-permeable channels to reactive oxygen species: physiological traits that differentiate salinity tolerance between pea and barley. - Plant Cell Environ. 37: 589-600, 2014.
Go to original source... - Boychova Krumova S., Laptenok S.P., Kovács L. et al.: Digalactosyl-diacylglycerol-deficiency lowers the thermal stability of thylakoid membranes. - Photosynth. Res. 105: 229-242, 2010.
Go to original source... - Calderon R.H., García-Cerdán J.G., Malnoë A. et al.: A conserved rubredoxin is necessary for photosystem II accumulation in diverse oxygenic photoautotrophs. - J. Biol. Chem. 288: 26688-26696, 2013.
Go to original source... - Carraretto L., Formentin E., Teardo E. et al.: A thylakoid located two-pore K+ channel controls photosynthetic light utilization in plants. - Science 342: 114-118, 2013.
Go to original source... - Chalbi N., Hessini K., Gandour M. et al.: Are changes in membrane lipids and fatty acid composition related to salt-stress resistance in wild and cultivated barley? - J. Plant Nutr. Soil Sc. 176: 138-147, 2013.
Go to original source... - Chan K.X., Mabbitt P.D., Phua S.Y. et al.: Sensing and signaling of oxidative stress in chloroplasts by inactivation of the SAL1 phosphoadenosine phosphatase. - P. Natl. Acad. Sci. USA 113: E4567-E4576, 2016.
Go to original source... - Chang I.-F., Hsu J.-L., Hsu P.-H. et al.: Comparative phosphoproteomic analysis of microsomal fractions of Arabidopsis thaliana and Oryza sativa subjected to high salinity. - Plant Sci. 185-186: 131-142, 2012.
Go to original source... - Chang L., Guo A., Jin X. et al.: The subunit of glyceraldehyde 3-phosphate dehydrogenase is an important factor for maintaining photosynthesis and plant development under salt stress - based on an integrative analysis of the structural, physiological and proteomic changes in chloroplasts in Thellungiella halophila. - Plant Sci. 236: 223-238, 2015.
Go to original source... - Chen C., Liu H., Wang C. et al.: Metabolomics characterizes metabolic changes of Apocyni Veneti Folium in response to salt stress. - Plant Physiol. Bioch. 144: 187-196, 2019b.
Go to original source... - Chen Q., Wang B., Ding H. et al.: The role of NADP-malic enzyme in plants under stress. - Plant Sci. 281: 206-212, 2019a.
Go to original source... - Chiconato D.A., Costa M.G.S., Balbuena T.S. et al.: Proteomic analysis of young sugarcane plants with contrasting salt tolerance. - Funct. Plant Biol. 48: 588-596, 2021.
Go to original source... - Choi Y.R., Kim I., Kumar M. et al.: Chloroplast localized FIBRILLIN11 is involved in the osmotic stress response during Arabidopsis seed germination. - Biology 10: 368, 2021.
Go to original source... - Crawford T., Lehotai N., Strand Å.: The role of retrograde signals during plant stress responses. - J. Exp. Bot. 69: 2783-2795, 2018.
Go to original source... - Cruz de Carvalho M.H.: Drought stress and reactive oxygen species: production, scavenging and signaling. - Plant Signal. Behav. 3: 156-165, 2014.
- Das P., Majumder A.L.: Transcriptome analysis of grapevine under salinity and identification of key genes responsible for salt tolerance. - Funct. Integr. Genomic. 19: 61-73, 2019.
Go to original source... - Des Marais D.J.: When did photosynthesis emerge on Earth? - Science 289: 1703-1705, 2000.
Go to original source... - Dietz K.J.: Thiol-based peroxidases and ascorbate peroxidases: why plants rely on multiple peroxidase systems in the photosynthesizing chloroplast? - Mol. Cells 39: 20-25, 2016.
Go to original source... - Dogra V., Duan J., Lee K.P. et al.: FtsH2-dependent proteolysis of EXECUTER1 is essential in mediating singlet oxygen triggered retrograde signaling in Arabidopsis thaliana. - Front. Plant Sci. 8: 1145, 2017.
Go to original source... - Duarte B., Sleimi N., Caçador I.: Biophysical and biochemical constraints imposed by salt stress: learning from halophytes. -Front. Plant Sci. 5: 746, 2014.
Go to original source... - Dyall S.D., Brown M.T., Johnson P.J.: Ancient invasions: from endosymbionts to organelles. - Science 304: 253-257, 2004.
Go to original source... - Edreva A.: Generation and scavenging of reactive oxygen species in chloroplasts: A submolecular approach. - Agr. Ecosyst. Environ. 106: 119-133, 2005.
Go to original source... - Estavillo G.M., Crisp P.A., Pornsiriwong W. et al.: Evidence for a SAL1-PAP chloroplast retrograde pathway that functions in drought and high light signaling in Arabidopsis. - Plant Cell 23: 3992-4012, 2011.
Go to original source... - Fan P., Nie L., Jiang P. et al.: Transcriptome analysis of Salicornia europaea under saline conditions revealed the adaptive primary metabolic pathways as early events to facilitate salt adaptation. - PLoS ONE 8: e80595, 2013.
Go to original source... - Feng Z.T., Deng Y.Q., Fan H. et al.: Effects of NaCl stress on growth and photosynthetic characteristics of Ulmus pumila L. seedlings in sand culture. - Photosynthetica 52: 313-320, 2014.
Go to original source... - Fernández-García N., Olmos E., Bardisi E. et al.: Intrinsic water use efficiency controls the adaptation to high salinity in a semi-arid adapted plant, henna (Lawsonia inermis L.). - J. Plant Physiol. 171: 64-75, 2014.
Go to original source... - Finazzi G., Petroutsos D., Tomizioli M. et al.: Ions channels/transporters and chloroplast regulation. - Cell Calcium 58: 86-97, 2015.
Go to original source... - Franzisky B.L., Geilfus C.M., Romo-Pérez M.L. et al.: Acclimatisation of guard cell metabolism to long-term salinity. - Plant Cell Environ. 44: 870-884, 2021.
Go to original source... - Fristedt R., Willig A., Granath P. et al.: Phosphorylation of photosystem II controls functional macroscopic folding of photosynthetic membranes in Arabidopsis. - Plant Cell 21: 3950-3964, 2009.
Go to original source... - Gao H.J., Yang H.Y., Bai J.P. et al.: Ultrastructural and physiological responses of potato (Solanum tuberosum L.) plantlets to gradient saline stress. - Front. Plant Sci. 5: 787, 2015.
Go to original source... - Garg A.K., Kim J.K., Owens T.G. et al.: Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. - P. Natl. Acad. Sci. USA 99: 15898-15903, 2002.
Go to original source... - Garg R., Shankar R., Thakkar B. et al.: Transcriptome analyses reveal genotype- and developmental stage-specific molecular responses to drought and salinity stresses in chickpea. - Sci. Rep.-UK 6: 19228, 2016.
Go to original source... - Ghasemi K.M., Shariati M.: [Effect of salt stress on PSII efficiency of Dunaliella bardawil under light and dark conditions.] - J. Cell Tissue 3: 141-151, 2012. [In Persian]
- Gigolashvili T., Geier M., Ashykhmina N. et al.: The Arabidopsis thylakoid ADP/ATP carrier TAAC has an additional role in supplying plastidic phosphoadenosine 5'-phosphosulfate to the cytosol. - Plant Cell 24: 4187-4204, 2012.
Go to original source... - Gong D.H., Wang G.Z., Si W.T. et al.: Effects of salt stress on photosynthetic pigments and activity of ribulose-1,5-bisphosphate carboxylase/oxygenase in Kalidium foliatum. - Russ. J. Plant Physiol. 65: 98-103, 2018.
Go to original source... - Gong W., Xu F., Sun J. et al.: iTRAQ-based comparative proteomic analysis of seedling leaves of two upland cotton genotypes differing in salt tolerance. - Front. Plant Sci. 8: 2113, 2017.
Go to original source... - Govindjee G., Govindjee R.: The absorption of light in photosynthesis. - Sci. Am. 231: 68-87, 1974.
Go to original source... - Grabsztunowicz M., Koskela M.M., Mulo P.: Post-translational modifications in regulation of chloroplast function: recent advances. - Front. Plant Sci. 8: 240, 2017.
Go to original source... - Guo J., Shi Q., Xiong Y., Yin Y. et al.: [Effects of salt-alkaline mixed stress on growth and photosynthetic characteristics of Taxodium hybrid 'Zhongshanshan 406'.] - J. Nanjing Forest. Univ. 43: 61-68, 2019a. [In Chinese]
- Guo Q., Liu L., Barkla B.J.: Membrane lipid remodeling in response to salinity. - Int. J. Mol. Sci. 20: 4264, 2019b.
Go to original source... - Guo X., Wu Y., Wang Y. et al.: OsMSRA4.1 and OsMSRB1.1, two rice plastidial methionine sulfoxide reductases, are involved in abiotic stress responses. - Planta 230: 227-238, 2009.
Go to original source... - Hamed K.B., Youssef N.B., Ranieri A. et al.: Changes in content and fatty acid profiles of total lipids and sulfolipids in the halophyte Crithmum maritimum under salt stress. - J. Plant Physiol. 162: 599-602, 2005.
Go to original source... - Hasanuzzaman M., Alam M.M., Rahman A. et al.: Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (Oryza sativa L.) varieties. - BioMed Res. Int. 2014: 757219, 2014.
Go to original source... - Hassani A., Azapagic A., Shokri N.: Predicting long-term dynamics of soil salinity and sodicity on a global scale. - P. Natl. Acad. Sci. USA 117: 33017-33027, 2020.
Go to original source... - He C., Yang A., Zhang W. et al.: Improved salt tolerance of transgenic wheat by introducing betA gene for glycine betaine synthesis. - Plant Cell Tiss. Org. Cult. 101: 65-78, 2010.
Go to original source... - Hiyane R., Hiyane S., Tang A.C., Boyer J.S.: Sucrose feeding reverses shade-induced kernel losses in maize. - Ann. Bot.-London 106: 395-403, 2010.
Go to original source... - Hoshida H., Tanaka Y., Hibino T. et al.: Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase. - Plant Mol. Biol. 43: 103-111, 2000.
Go to original source... - Huan L., Xie X., Zheng Z. et al.: Positive correlation between PSI response and oxidative pentose phosphate pathway activity during salt stress in an intertidal macroalga. - Plant Cell Physiol. 55: 1395-1403, 2014.
Go to original source... - Hussain S., Zhang J.H., Zhong C. et al.: Effects of salt stress on rice growth, development characteristics, and the regulating ways: A review. - J. Integr. Agr. 16: 2357-2374, 2017.
Go to original source... - Ibata H., Nagatani A., Mochizuki N.: CHLH/GUN5 function in tetrapyrrole metabolism is correlated with plastid signaling but not ABA responses in guard cells. - Front. Plant Sci. 7: 1650, 2016.
Go to original source... - Iqbal M., Athar H.U.R., Ibrahim M. et al.: Leaf proteome analysis signified that photosynthesis and antioxidants are key indicators of salinity tolerance in canola (Brassica napus L.). - Pak. J. Bot. 51: 1955-1968, 2019.
Go to original source... - Ishiguro S., Kawai-Oda A., Ueda K. et al.: The DEFECTIVE IN ANTHER DEHISCENCE1 gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. - Plant Cell 13: 2191-2209, 2001.
Go to original source... - Jayakannan M., Bose J., Babourina O. et al.: Salicylic acid in plant salinity stress signalling and tolerance. - Plant Growth Regul. 76: 25-40, 2015.
Go to original source... - Jia H., Shao M., He Y. et al.: Proteome dynamics and physiological responses to short-term salt stress in Brassica napus leaves. - PLoS ONE 10: e0144808, 2015.
Go to original source... - Jin S., Daniell H.: Expression of γ-tocopherol methyltransferase in chloroplasts results in massive proliferation of the inner envelope membrane and decreases susceptibility to salt and metal-induced oxidative stresses by reducing reactive oxygen species. - Plant Biotechnol. J. 12: 1274-1285, 2014.
Go to original source... - Kabeya Y., Miyagishima S.Y.: Chloroplast DNA replication is regulated by the redox state independently of chloroplast division in Chlamydomonas reinhardtii. - Plant Physiol. 161: 2102-2112, 2013.
Go to original source... - Kan X., Ren J., Chen T. et al.: Effects of salinity on photosynthesis in maize probed by prompt fluorescence, delayed fluorescence and P700 signals. - Environ. Exp. Bot. 140: 56-64, 2017.
Go to original source... - Khan H.A., Siddique K.H.M., Munir R. et al.: Salt sensitivity in chickpea: Growth, photosynthesis, seed yield components and tissue ion regulation in contrasting genotypes. - J. Plant Physiol. 182: 1-12, 2015.
Go to original source... - Khurana N., Chauhan H., Khurana P.: Characterization of a chloroplast localized wheat membrane protein (TaRCI) and its role in heat, drought and salinity stress tolerance in Arabidopsis thaliana. - Plant Gene 4: 45-54, 2015.
Go to original source... - Kim Y.H., Lim S., Yang K.S. et al.: Expression of Arabidopsis NDPK2 increases antioxidant enzyme activities and enhances tolerance to multiple environmental stresses in transgenic sweetpotato plants. - Mol. Breeding 24: 233-244, 2009.
Go to original source... - Krasensky J., Broyart C., Rabanal F.A., Jonak C.: The redox-sensitive chloroplast trehalose-6-phosphate phosphatase AtTPPD regulates salt stress tolerance. - Antioxid. Redox Sign. 21: 1289-1304, 2014.
Go to original source... - Krieger-Liszkay A., Feilke K.: The dual role of the plastid terminal oxidase PTOX: between a protective and a pro-oxidant function. - Front. Plant Sci. 6: 1147, 2016.
Go to original source... - Kumari A., Parida A.K.: Metabolomics and network analysis reveal the potential metabolites and biological pathways involved in salinity tolerance of the halophyte Salvadora persica. - Environ. Exp. Bot. 148: 85-99, 2018.
Go to original source... - Kumutha D., Sairam R.K., Ezhilmathi K. et al.: Effect of waterlogging on carbohydrate metabolism in pigeon pea (Cajanus cajan L.): Upregulation of sucrose synthase and alcohol dehydrogenase. - Plant Sci. 175: 706-716, 2008.
Go to original source... - Kunz H.-H., Gierth M., Herdean A. et al.: Plastidial transporters KEA1, -2, and -3 are essential for chloroplast osmoregulation, integrity, and pH regulation in Arabidopsis. - P. Natl. Acad. Sci. USA 111: 7480-7485, 2014.
Go to original source... - Lande N.V., Barua P., Gayen D. et al.: Proteomic dissection of the chloroplast: moving beyond photosynthesis. - J. Proteomics 212: 103542, 2020.
Go to original source... - Latijnhouwers M., Xu X.M., Møller S.G.: Arabidopsis stromal 70-kDa heat shock proteins are essential for chloroplast development. - Planta 232: 567-578, 2010.
Go to original source... - Le Martret B., Poage M., Shiel K. et al.: Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. - Plant Biotechnol. J. 9: 661-673, 2011.
Go to original source... - Leister D., Wang L., Kleine T.: Organellar gene expression and acclimation of plants to environmental stress. - Front. Plant Sci. 8: 387, 2017.
Go to original source... - Lekklar C., Suriya-Arunroj D., Pongpanich M. et al.: Comparative genomic analysis of rice with contrasting photosynthesis and grain production under salt stress. - Genes-Basel 10: 562-582, 2019.
Go to original source... - Li J., Cui G., Hu G. et al.: Proteome dynamics and physiological responses to short-term salt stress in Leymus chinensis leaves. - PLoS ONE 12: e0183615, 2017a.
Go to original source... - Li P., Li Y.J., Zhang F.J. et al.: The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. - Plant J. 89: 85-103, 2017b.
Go to original source... - Li Y., Liu P., Takano T., Liu S.: A chloroplast-localized rubredoxin family protein gene from Puccinellia tenuiflora (PutRUB) increases NaCl and NaHCO3 tolerance by decreasing H2O2 accumulation. - Int. J. Mol. Sci. 17: 804, 2016.
Go to original source... - Li Y.F., Zheng Y., Vemireddy L.R. et al.: Comparative transcriptome and translatome analysis in contrasting rice genotypes reveals differential mRNA translation in salt-tolerant Pokkali under salt stress. - BMC Genomics 19: 935, 2018.
Go to original source... - Lin H., Wu L.: Effects of salt stress on root plasma membrane characteristics of salt-tolerant and salt-sensitive buffalograss clones. - Environ. Exp. Bot. 36: 239-254, 1996.
Go to original source... - Liu A., Xiao Z., Wang Z. et al.: Galactolipid and phospholipid profile and proteome alterations in soybean leaves at the onset of salt stress. - Front. Plant Sci. 12: 644408, 2021.
Go to original source... - Liu C.W., Hsu Y.K., Cheng Y.H. et al.: Proteomic analysis of salt-responsive ubiquitin-related proteins in rice roots. - Rapid Commun. Mass Spectrom. 26: 1649-1660, 2012.
Go to original source... - Liu D., Hou L., Li W.C. et al.: COR15B expression is affected by chloroplast functionality and its role in response to salt stress in Arabidopsis thaliana. - Biol. Plantarum 58: 667-675, 2014.
Go to original source... - Liu X.S., Feng S.J., Wang M.Q. et al.: OsNHAD is a chloroplast membrane-located transporter required for resistance to salt stress in rice (Oryza sativa). - Plant Sci. 291: 110359, 2020.
Go to original source... - Loll B., Kern J., Saenger W. et al.: Lipids in photosystem II: Interactions with protein and cofactors. - BBA-Bioenergetics 1767: 509-519, 2007.
Go to original source... - Longstreth D.J., Nobel P.S.: Salinity effects of leaf anatomy: consequences for photosynthesis. - Plant Physiol. 63: 700-703, 1979.
Go to original source... - Luo X., Wu J., Li Y. et al.: Synergistic effects of GhSOD1 and GhCAT1 overexpression in cotton chloroplasts on enhancing tolerance to methyl viologen and salt stresses. - PLoS ONE 8: e54002, 2013.
Go to original source... - Lv X., Chen S., Wang Y.: Advances in understanding the physiological and molecular responses of sugar beet to salt stress. - Front. Plant Sci. 10: 1431, 2019.
Go to original source... - Machado R.M.A., Serralheiro R.P.: Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. - Horticulturae 3: 30, 2017.
Go to original source... - Magdy M., Mansour F., van Hasselt P.R., Kuiper P.J.C.: Plasma membrane lipid alterations induced by NaCl in winter wheat roots. - Physiol. Plantarum 92: 473-478, 1994.
Go to original source... - Martinis J., Glauser G., Valimareanu S., Kessler F.: A chloroplast ABC1-like kinase regulates vitamin E metabolism in Arabidopsis. - Plant Physiol. 162: 652-662, 2013.
Go to original source... - Marusig D., Tombesi S.: Abscisic acid mediates drought and salt stress responses in Vitis vinifera - A review. - Int. J. Mol. Sci. 21: 8648, 2020.
Go to original source... - Morley S.A., Nielsen B.L.: Chloroplast DNA copy number changes during plant development in organelle DNA polymerase mutants. - Front. Plant Sci. 7: 57, 2016.
Go to original source... - Müller M., Kunz H.-H., Schroeder J.I. et al.: Decreased capacity for sodium export out of Arabidopsis chloroplasts impairs salt tolerance, photosynthesis and plant performance. - Plant J. 78: 646-658, 2014.
Go to original source... - Munns R., Passioura J.B., Colmer T.D., Byrt C.S.: Osmotic adjustment and energy limitations to plant growth in saline soil. - New Phytol. 225: 1091-1096, 2020.
Go to original source... - Nadeem M., Li J., Yahya M. et al.: Grain legumes and fear of salt stress: Focus on mechanisms and management strategies. - Int. J. Mol. Sci. 20: 799, 2019.
Go to original source... - Nagashima A., Hanaoka M., Shikanai T. et al.: The multiple-stress responsive plastid sigma factor, SIG5, directs activation of the psbD blue light-responsive promoter (BLRP) in Arabidopsis thaliana. - Plant Cell Physiol. 45: 357-368, 2004.
Go to original source... - Nassar R.M.A., Kamel H.A., Ghoniem A.E. et al.: Physiological and anatomical mechanisms in wheat to cope with salt stress induced by seawater. - Plants-Basel 9: 237, 2020.
Go to original source... - Navarro A., Bañón S., Olmos E., Sánchez-Blanco M.J.: Effects of sodium chloride on water potential components, hydraulic conductivity, gas exchange and leaf ultrastructure of Arbutus unedo plants. - Plant Sci. 172: 473-480, 2007.
Go to original source... - Nawaz G., Kang H.: Chloroplast- or mitochondria-targeted DEAD-box RNA helicases play essential roles in organellar RNA metabolism and abiotic stress responses. - Front. Plant Sci. 8: 871, 2017.
Go to original source... - Neelam S., Subramanyam R.: Alteration of photochemistry and protein degradation of photosystem II from Chlamydomonas reinhardtii under high salt grown cells. - J. Photoch. Photobio. B 124: 63-70, 2013.
Go to original source... - Noctor G., Foyer C.H.: Intracellular redox compartmentation and ROS-related communication in regulation and signaling. -Plant Physiol. 171: 1581-1592, 2016.
Go to original source... - Oi T., Enomoto S., Nakao T. et al.: Three-dimensional ultrastructural change of chloroplasts in rice mesophyll cells responding to salt stress. - Ann. Bot.-London 125: 833-840, 2020.
Go to original source... - Omidbakhshfard M.A., Omranian N., Ahmadi F.S. et al.: Effect of salt stress on genes encoding translation-associated proteins in Arabidopsis thaliana. - Plant Signal. Behav. 7: 1095-1102, 2012.
Go to original source... - Omoto E., Iwasaki Y., Miyake H. et al.: Salinity induces membrane structure and lipid changes in maize mesophyll and bundle sheath chloroplasts. - Physiol. Plantarum 157: 13-23, 2016.
Go to original source... - Omoto E., Nagao H., Taniguchi M., Miyake H.: Localization of reactive oxygen species and change of antioxidant capacities in mesophyll and bundle sheath chloroplasts of maize under salinity. - Physiol. Plantarum 149: 1-12, 2013.
Go to original source... - Ouertani N.R., Arasappan D., Abid G. et al.: Transcriptomic analysis of salt-stress-responsive genes in barley roots and leaves. - Int. J. Mol. Sci. 22: 8155, 2021.
Go to original source... - Park H.J., Kim W.-Y., Yun D.-J.: A new insight of salt stress signaling in plant. - Mol. Cells 39: 447-459, 2016.
Go to original source... - Pastuszak J., Dziurka M., Hornyák M. et al.: Physiological and biochemical parameters of salinity resistance of three durum wheat genotypes. - Int. J. Mol. Sci. 23: 8397, 2022.
Go to original source... - Patra B., Ray S., Richter A., Majumder A.L.: Enhanced salt tolerance of transgenic tobacco plants by co-expression of PcINO1 and McIMT1 is accompanied by increased level of myo-inositol and methylated inositol. - Protoplasma 245: 143-152, 2010.
Go to original source... - Peharec ©tefaniæ P., Koffler T., Adler G., Bar-Zvi D.: Chloroplasts of salt-grown Arabidopsis seedlings are impaired in structure, genome copy number and transcript levels. - PLoS ONE 8: e82548, 2013.
Go to original source... - Pornsiriwong W., Estavillo G.M., Chan K.X. et al.: A chloroplast retrograde signal, 3'-phosphoadenosine 5'-phosphate, acts as a secondary messenger in abscisic acid signaling in stomatal closure and germination. - eLife 6: e23361, 2017.
Go to original source... - Qin X., Yin Y., Zhao J. et al.: Metabolomic and transcriptomic analysis of Lycium chinese and L. ruthenicum under salinity stress. - BMC Plant Biol. 22: 8, 2022.
Go to original source... - Rabhi M., Castagna A., Remorini D. et al.: Photosynthetic responses to salinity in two obligate halophytes: Sesuvium portulacastrum and Tecticornia indica. - S. Afr. J. Bot. 79: 39-47, 2012.
Go to original source... - Ramani B., Zorn H., Papenbrock J.: Quantification and fatty acid profiles of sulfolipids in two halophytes and a glycophyte grown under different salt concentrations. - Z. Naturforsch. C 59: 835-842, 2004.
Go to original source... - Ramel F., Birtic S., Cuiné S. et al.: Chemical quenching of singlet oxygen by carotenoids in plants. - Plant Physiol. 158: 1267-1278, 2012.
Go to original source... - Razzaque S., Elias S.M., Haque T. et al.: Gene expression analysis associated with salt stress in a reciprocally crossed rice population. - Sci. Rep.-UK 9: 8249, 2019.
Go to original source... - Reddy S.P., Jogeswar G., Rasineni G.K. et al.: Proline over-accumulation alleviates salt stress and protects photosynthetic and antioxidant enzyme activities in transgenic sorghum [Sorghum bicolor (L.) Moench]. - Plant Physiol. Bioch. 94: 104-113, 2015.
Go to original source... - Robinson S.P., Downton W.J.: Potassium, sodium, and chloride content of isolated intact chloroplasts in relation to ionic compartmentation in leaves. - Arch. Biochem. Biophys. 228: 197-206, 1984.
Go to original source... - Robles P., Navarro-Cartagena S., Ferrández-Ayela A. et al.: The characterization of Arabidopsis mterf6 mutants reveals a new role for mTERF6 in tolerance to abiotic stress. - Int. J. Mol. Sci. 19: 2388, 2018.
Go to original source... - Robles P., Quesada V.: Transcriptional and post-transcriptional regulation of organellar gene expression (OGE) and its roles in plant salt tolerance. - Int. J. Mol. Sci. 20: 1056, 2019.
Go to original source... - Romero-Aranda R., Moya J.L., Tadeo F.R. et al.: Physiological and anatomical disturbances induced by chloride salts in sensitive and tolerant citrus: Beneficial and detrimental effects of cations. - Plant Cell Environ. 21: 1243-1253, 1998.
Go to original source... - Sakamoto A., Murata N.: The role of glycine betaine in the protection of plants from stress: Clues from transgenic plants. - Plant Cell Environ. 25: 163-171, 2002.
Go to original source... - Sathee L., Jagadhesan B., Pandesha P.H. et al.: Genome editing targets for improving nutrient use efficiency and nutrient stress adaptation. - Front. Genet. 13: 900897, 2022.
Go to original source... - Seigneurin-Berny D., Rolland N., Dorne A.-J., Joyard J.: Sulfolipid is a potential candidate for annexin binding to the outer surface of chloroplast. - Biochem. Bioph. Res. Co. 272: 519-524, 2000.
Go to original source... - Sengupta S., Majumder A.L.: Insight into the salt tolerance factors of a wild halophytic rice, Porteresia coarctata: a physiological and proteomic approach. - Planta 229: 911-929, 2009.
Go to original source... - Seo S.Y., Wi S.J., Park K.Y.: Functional switching of NPR1 between chloroplast and nucleus for adaptive response to salt stress. - Sci. Rep.-UK 10: 4339, 2020.
Go to original source... - Shabala S., Chen G., Chen Z.H., Pottosin I.: The energy cost of the tonoplast futile sodium leak. - New Phytol. 225: 1105-1110, 2020.
Go to original source... - Shao N., Duan G.Y., Bock R.: A mediator of singlet oxygen responses in Chlamydomonas reinhardtii and Arabidopsis identified by a luciferase-based genetic screen in algal cells. - Plant Cell 25: 4209-4226, 2013.
Go to original source... - Shu S., Guo S.R., Sun J., Yuan L.Y.: Effects of salt stress on the structure and function of the photosynthetic apparatus in Cucumis sativus and its protection by exogenous putrescine. - Physiol. Plantarum 146: 285-296, 2012.
Go to original source... - Shu S., Yuan Y., Chen J. et al.: The role of putrescine in the regulation of proteins and fatty acids of thylakoid membranes under salt stress. - Sci. Rep.-UK 5: 14390, 2015.
Go to original source... - Simidjiev I., Stoylova S., Amenitsch H. et al.: Self-assembly of large, ordered lamellae from non-bilayer lipids and integral membrane proteins in vitro. - P. Natl. Acad. Sci. USA 97: 1473-1476, 2000.
Go to original source... - Singh B.N., Mishra R.N., Agarwal P.K. et al.: A pea chloroplast translation elongation factor that is regulated by abiotic factors. - Biochem. Bioph. Res. Co. 320: 523-530, 2004.
Go to original source... - Singh J., Singh V., Vineeth T.V. et al.: Differential response of Indian mustard (Brassica juncea L., Czern and Coss) under salinity: photosynthetic traits and gene expression. - Physiol. Mol. Biol. Pla. 25: 71-83, 2019.
Go to original source... - Soltabayeva A., Ongaltay A., Omondi J.O., Srivastava S.: Morphological, physiological and molecular markers for salt-stressed plants. - Plants-Basel 10: 243, 2021.
Go to original source... - Song C.P., Guo Y., Qiu Q. et al.: A probable Na+(K+)/H+ exchanger on the chloroplast envelope functions in pH homeostasis and chloroplast development in Arabidopsis thaliana. - P. Natl. Acad. Sci. USA 101: 10211-10216, 2004.
Go to original source... - Sui N., Han G.: Salt-induced photoinhibition of PSII is alleviated in halophyte Thellungiella halophila by increases of unsaturated fatty acids in membrane lipids. - Acta Physiol. Plant. 36: 983-992, 2014.
Go to original source... - Sun S., Song H., Li J. et al.: Comparative transcriptome analysis reveals gene expression differences between two peach cultivars under saline-alkaline stress. - Hereditas 157: 9, 2020.
Go to original source... - Suo J., Zhao Q., David L. et al.: Salinity response in chloroplasts: insights from gene characterization. - Int. J. Mol. Sci. 18: 1011, 2017.
Go to original source... - Tanou G., Job C., Rajjou L. et al.: Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. - Plant J. 60: 795-804, 2009.
Go to original source... - Thagela P., Yadav R.K., Tripathi K. et al.: Salinity induced changes in the chloroplast proteome of the aquatic pteridophyte Azolla microphylla. - Symbiosis 75: 61-67, 2018.
Go to original source... - Tseng M.J., Liu C.W., Yiu J.C.: Enhanced tolerance to sulfur dioxide and salt stress of transgenic Chinese cabbage plants expressing both superoxide dismutase and catalase in chloroplasts. - Plant Physiol. Bioch. 45: 822-833, 2007.
Go to original source... - Volkov V.: Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes. - Front. Plant Sci. 6: 873, 2015.
Go to original source... - Waditee-Sirisattha R., Kageyama H., Tanaka Y. et al.: Overexpression of halophilic serine hydroxymethyltransferase in fresh water cyanobacterium Synechococcus elongatus PCC7942 results in increased enzyme activities of serine biosynthetic pathways and enhanced salinity tolerance. - Arch. Microbiol. 199: 29-35, 2017.
Go to original source... - Wang C.-Q., Zhao J.-Q., Chen M., Wang B.-S.: [Identification of betacyanin and effects of environmental factors on its accumulation in halophyte Suaeda salsa.] - J. Plant Physiol. Mol. Biol. 32: 195-201, 2006. [In Chinese]
- Wang L., Kim C., Xu X. et al.: Singlet oxygen- and EXECUTER1-mediated signaling is initiated in grana margins and depends on the protease FtsH2. - P. Natl. Acad. Sci. USA 113: E3792-E3800, 2016.
Go to original source... - Wang R.L., Hua C., Zhou F., Zhou Q.C.: Effects of NaCl stress on photochemical activity and thylakoid membrane polypeptide composition of a salt-tolerant and a salt-sensitive rice cultivar. - Photosynthetica 47: 125-127, 2009.
Go to original source... - Wang S., Uddin M.I., Tanaka K. et al.: Maintenance of chloroplast structure and function by overexpression of the rice monogalactosyldiacylglycerol synthase gene leads to enhanced salt tolerance in tobacco. - Plant Physiol. 165: 1144-1155, 2014.
Go to original source... - Wang X., Chang L., Wang B. et al.: Comparative proteomics of Thellungiella halophila leaves from plants subjected to salinity reveals the importance of chloroplastic starch and soluble sugars in halophyte salt tolerance. - Mol. Cell. Proteomics 12: 2174-2195, 2013.
Go to original source... - Wang Y., Zeng X., Xu Q. et al.: Metabolite profiling in two contrasting Tibetan hulless barley cultivars revealed the core salt-responsive metabolome and key salt-tolerance biomarkers. - AoB Plants 11: plz021, 2019.
Go to original source... - Wei D., Zhang W., Wang C. et al.: Genetic engineering of the biosynthesis of glycinebetaine leads to alleviate salt-induced potassium efflux and enhances salt tolerance in tomato plants. - Plant Sci. 257: 74-83, 2017.
Go to original source... - Wu D., Cai S., Chen M. et al.: Tissue metabolic responses to salt stress in wild and cultivated barley. - PLoS ONE 8: e55431, 2013.
Go to original source... - Xing Q., Bi G., Cao M. et al.: Comparative transcriptome analysis provides insights into response of Ulva compressa to fluctuating salinity conditions. - J. Phycol. 57: 1295-1308, 2021.
Go to original source... - Xiong J., Sun Y., Yang Q. et al.: Proteomic analysis of early salt stress responsive proteins in alfalfa roots and shoots. - Proteome Sci. 15: 19, 2017.
Go to original source... - Xu T., Lee K., Gu L. et al.: Functional characterization of a plastid-specific ribosomal protein PSRP2 in Arabidopsis thaliana under abiotic stress conditions. - Plant Physiol. Bioch. 73: 405-411, 2013.
Go to original source... - Xu W., Lv H., Zhao M. et al.: Proteomic comparison reveals the contribution of chloroplast to salt tolerance of a wheat introgression line. - Sci. Rep.-UK 6: 32384, 2016.
Go to original source... - Yamane K., Rahman S., Kawasaki M. et al.: Pretreatment with a low concentration of methyl viologen decreases the effects of salt stress on chloroplast ultrastructure in rice leaves (Oryza sativa L.). - Plant Prod. Sci. 7: 435-441, 2015.
Go to original source... - Yan K., He W., Bian L. et al.: Salt adaptability in a halophytic soybean (Glycine soja) involves photosystems coordination. -BMC Plant Biol. 20: 155, 2020.
Go to original source... - Yang Z., Li J.L., Liu L.N. et al.: Photosynthetic regulation under salt stress and salt-tolerance mechanism of sweet sorghum. - Front. Plant Sci. 10: 1722, 2020.
Go to original source... - Ye W., Hu S., Wu L. et al.: White stripe leaf 12 (WSL12), encoding a nucleoside diphosphate kinase 2 (OsNDPK2), regulates chloroplast development and abiotic stress response in rice (Oryza sativa L.). - Mol. Breeding 36: 57, 2016.
Go to original source... - Yokotani N., Higuchi M., Kondou Y. et al.: A novel chloroplast protein, CEST induces tolerance to multiple environmental stresses and reduces photooxidative damage in transgenic Arabidopsis. - J. Exp. Bot. 62: 557-569, 2011.
Go to original source... - Yousuf P.Y., Ahmad A., Aref I.M. et al.: Salt-stress-responsive chloroplast proteins in Brassica juncea genotypes with contrasting salt tolerance and their quantitative PCR analysis. - Protoplasma 253: 1565-1575, 2016.
Go to original source... - Zhai C.Z., Zhao L., Yin L.J. et al.: Two wheat glutathione peroxidase genes whose products are located in chloroplasts improve salt and H2O2 tolerances in Arabidopsis. - PLoS ONE 8: e73989, 2013.
Go to original source... - Zhang J.T., Zhu J.Q., Zhu Q. et al.: Fatty acid desaturase-6 (Fad6) is required for salt tolerance in Arabidopsis thaliana. - Biochem. Bioph. Res. Co. 390: 469-474, 2009.
Go to original source... - Zhang Y., Wei M., Liu A. et al.: Comparative proteomic analysis of two sesame genotypes with contrasting salinity tolerance in response to salt stress. - J. Proteomics 201: 73-83, 2019.
Go to original source... - Zhong M., Wang Y., Zhang Y. et al.: Overexpression of transglutaminase from cucumber in tobacco increases salt tolerance through regulation of photosynthesis. - Int. J. Mol. Sci. 20: 894, 2019.
Go to original source... - Zhu D., Luo F., Zou R. et al.: Integrated physiological and chloroplast proteome analysis of wheat seedling leaves under salt and osmotic stresses. - J. Proteomics 234: 104097, 2021.
Go to original source... - Zhu J., Fan Y., Shabala S. et al.: Understanding mechanisms of salinity tolerance in barley by proteomic and biochemical analysis of near-isogenic lines. - Int. J. Mol. Sci. 21: 1516, 2020.
Go to original source... - Zörb C., Geilfus C.-M., Dietz K.-J.: Salinity and crop yield. - Plant Biol. 21: 31-38, 2019.
Go to original source... - Zörb C., Schmitt S., Mühling K.H.: Proteomic changes in maize roots after short-term adjustment to saline growth conditions. -Proteomics 10: 4441-4449, 2010.
Go to original source...




