Photosynthetica 2023, 61(1):124-134 | DOI: 10.32615/ps.2023.012

Morphological and physiological responses of two Osmanthus fragrans cultivars to salt stress

C.Y. GUO1, 2, C.J. MENG2, M. YUE1, 3
1 Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, 710069 Xi'an City, Shaanxi Province, China
2 School of Biological and Environmental Engineering, Xi'an University, 710065 Xi'an City, Shaanxi Province, China
3 Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, 710061 Xi'an City, Shaanxi Province, China

We examined the morphological and physiological responses of Osmanthus fragrans 'Yingui' (Yin) and O. fragrans 'Jingui' (Jin) to different NaCl concentrations. NaCl concentrations significantly affected plant height and leaf mass per area. Total biomass decreased by 22.8-41.8% under moderate and high NaCl which inhibited O. fragrans growth. The ratio of root to shoot biomass in Yin was 44.3% higher than that in Jin at high NaCl concentrations which suggested that Yin possesses conservative resource acquisition strategies to resist salt stress. Compared to Yin, Jin showed higher net photosynthesis, stomatal conductance, and intercellular CO2 concentration under high NaCl treatment. Jin exhibited also relatively higher proline, soluble sugar, K+ content, and K+/Na+ under the treatments implying that acquisitive resource acquisition may be the main strategy for salt resistance in Jin. Our results demonstrated that Yin and Jin could be cultivated in saline land in a short time and the two cultivars respond to salinity by different morphological and physiological mechanisms.

Additional key words: gas exchange; leaf dry mass content; membrane permeability; plant biomass; water-use efficiency.

Received: October 18, 2022; Revised: March 22, 2023; Accepted: March 23, 2022; Prepublished online: April 11, 2023; Published: April 13, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
GUO, C.Y., MENG, C.J., & YUE, M. (2023). Morphological and physiological responses of two Osmanthus fragrans cultivars to salt stress. Photosynthetica61(1), 124-134. doi: 10.32615/ps.2023.012
Download citation

Supplementary files

Download fileGuo_2966_supplement.docx

File size: 13.56 kB

References

  1. Acosta-Motos J.R., Diaz-Vivancos P., Álvarez S. et al.: Physiological and biochemical mechanisms of the ornamental Eugenia myrtifolia L. plants for coping with NaCl stress and recovery. - Planta: 242: 829-846, 2015. Go to original source...
  2. Acosta-Motos J.R., Ortuño M.F., Bernal-Vicente A. et al.: Plant responses to salt stress: adaptive mechanisms. - Agronomy 7: 18, 2017. Go to original source...
  3. Adamipour N., Khosh-Khui M., Salehi H., Rho H.: Effect of vermicompost on morphological and physiological performances of pot marigold (Calendula officinalis L.) under salinity conditions. - Adv. Hort. Sci. 33: 345-358, 2019.
  4. Ahanger M.A., Alyemeni M.N., Wijaya L. et al.: Potential of exogenously sourced kinetin in protecting Solanum lycopersicum from NaCl-induced oxidative stress through up-regulation of the antioxidant system, ascorbate-glutathione cycle and glyoxalase system. - PLoS ONE 13: e0202175, 2018. Go to original source...
  5. Ayaz M., Varol N., Yolcu S. et al.: Three (Turkish) olive cultivars display contrasting salt stress-coping mechanisms under high salinity. - Trees 35: 1283-1298, 2021. Go to original source...
  6. Balachowski J.A., Bristiel P.M., Volaire F.A.: Summer dormancy, drought survival and functional resource acquisition strategies in California perennial grasses. - Ann. Bot.-London 118: 357-368, 2016. Go to original source...
  7. Barrs H.D., Weatherley P.E.: A re-examination of relative turgidity technique for estimating water deficits in leaves. - Aust. J. Biol. Sci. 15: 413-428, 1962. Go to original source...
  8. Bates L.S., Waldren R.P., Teare I.D.: Rapid determination of free proline for water-stress studies. - Plant Soil 39: 205-207, 1973. Go to original source...
  9. Blumwald E.: Sodium transport and salt tolerance in plants. - Curr. Opin. Cell Biol. 12: 431-434, 2000. Go to original source...
  10. Chai Y.F., Liu X., Yue M. et al.: Leaf traits in dominant species from different secondary successional stages of deciduous forest on the Loess Plateau of northern China. - Appl. Veg. Sci. 18: 50-63, 2015. Go to original source...
  11. Chaves M.M., Maroco J.P., Pereira J.S.: Understanding plant responses to drought - from genes to the whole plant. - Funct. Plant Biol. 30: 239-264, 2003. Go to original source...
  12. Cheeseman J.M.: Mechanisms of salinity tolerance in plants. - Plant Physiol. 87: 547-550, 1988. Go to original source...
  13. Chen H., Jiang J.G.: Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. - Environ. Rev. 18: 309-319, 2010. Go to original source...
  14. Cornelissen J.H.C., Lavorel S., Garnier E. et al.: A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. - Aust. J. Bot. 51: 335-380, 2003. Go to original source...
  15. Ebell L.F.: Variation in total soluble sugars of conifer tissues with method of analysis. - Phytochemistry 8: 227-233, 1969. Go to original source...
  16. Everard J.D., Gucci R., Kann S.C. et al.: Gas exchange and carbon partitioning in the leaves of celery (Apium graveolens L.) at various levels of root zone salinity. - Plant Physiol. 106: 281-292, 1994. Go to original source...
  17. Fan H.M., Xu M.X., Li B.B. et al.: [Influence of soil physical properties on salt content in soil profile of farmland in Weibei region.] - J. Soil Water Conserv. 31: 198-204, 2017. [In Chinese]
  18. Fernández-García N., Olmos E., Bardisi E. et al.: Intrinsic water use efficiency controls the adaptation to high salinity in a semi-arid adapted plant, henna (Lawsonia inermis L.). - J. Plant Physiol. 171: 64-75, 2014. Go to original source...
  19. Flowers T.J., Colmer T.D.: Salinity tolerance in halophytes. - New Phytol. 179: 945-963, 2008. Go to original source...
  20. Fu J., Hou D., Wang Y. et al.: Identification of floral aromatic volatile compounds in 29 cultivars from four groups of Osmanthus fragrans by gas chromatography-mass spectrometry. - Hortic. Environ. Biotech. 60: 611-623, 2019. Go to original source...
  21. Gama P.B.S., Tanaka K., Eneji A.E. et al.: Salt-induced stress effects on biomass, photosynthetic rate, and reactive oxygen species-scavenging enzyme accumulation in common bean. - J. Plant Nutr. 32: 837-854, 2009. Go to original source...
  22. Garthwaite A.J., von Bothmer R., Colmer T.D.: Salt tolerance in wild Hordeum species is associated with restricted entry of Na+ and Cl- into the shoots. - J. Exp. Bot. 56: 2365-2378, 2005. Go to original source...
  23. Geng X.M., Zhang Y.M., Wang L.G., Yang X.L.: Pretreatment with high-dose gamma irradiation on seeds enhances the tolerance of sweet osmanthus seedlings to salinity stress. - Forests 10: 406, 2019. Go to original source...
  24. Gu M.F., Li N., Shao T.Y. et al.: Accumulation capacity of ions in cabbage (Brassica oleracea L.) supplied with sea water. - Plant Soil Environ. 62: 314-320, 2016. Go to original source...
  25. Guo C.Y., Wang X.Z., Chen L. et al.: Physiological and biochemical responses to saline-alkaline stress in two halophytic grass species with different photosynthetic pathways. - Photosynthetica 53: 128-135, 2015. Go to original source...
  26. Guo J.R., Shan C.D., Zhang Y.F. et al.: Mechanisms of salt tolerance and molecular breeding of salt-tolerant ornamental plants. - Front. Plant Sci. 13: 854116, 2022. Go to original source...
  27. Han Y., Chen W., Yang F. et al.: cDNA-AFLP analysis on two Osmanthus fragrans cultivars with different flower color and molecular characteristics of OfMYB1 gene. - Trees 29: 931-940, 2015. Go to original source...
  28. Hare P.D., Cress W.A.: Metabolic implications of stress-induced proline accumulation in plants. - Plant Growth Regul. 21: 79-102, 1997. Go to original source...
  29. Hasegawa P.M.: Sodium (Na+) homeostasis and salt tolerance of plants. - Environ. Exp. Bot. 92: 19-31, 2013. Go to original source...
  30. Hsiao T.C., Xu L.-K.: Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport. - J. Exp. Bot. 51: 1595-1616, 2000. Go to original source...
  31. Hu Y., Schmidhalter U.: Drought and salinity: a comparison of their effects on mineral nutrition of plants. - J. Plant Nutr. Soil Sc. 168: 541-549, 2010. Go to original source...
  32. Kopittke P.M.: Interactions between Ca, Mg, Na and K: alleviation of toxicity in saline solutions. - Plant Soil 352: 353-362, 2012. Go to original source...
  33. Koyro H.-W.: Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). - Environ. Exp. Bot. 56: 136-146, 2006. Go to original source...
  34. Kumar S.G., Lakshmi A., Madhusudhan K.V. et al.: Photosynthesis parameters in two cultivars of mulberry differing in salt tolerance. - Photosynthetica 36: 611-616, 2000. Go to original source...
  35. Lawlor D.W., Cornic G.: Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. - Plant Cell Environ. 25: 275-294, 2002. Go to original source...
  36. Li J., Pu L., Han M. et al.: Soil salinization research in China: advances and prospects. - J. Geogr. Sci. 24: 943-960, 2014. Go to original source...
  37. Li Y., Li L., Ding W. et al.: Genome-wide identification of Osmanthus fragrans bHLH transcription factors and their expression analysis in response to abiotic stress. - Environ. Exp. Bot. 172: 103990, 2020. Go to original source...
  38. Liao L., Wu J.S., Wu J., You M.Q.: [Effects of drought stress on the growth indexes and physiological biochemical characters in leaves of Osmanthus fragrans seedling.] - J. West China Forest. Sci. 47: 54-58, 2018. [In Chinese]
  39. Liu B.S., Kang C.L., Wang X., Bao G.Z.: Physiological and morphological responses of Leymus chinensis to saline-alkali stress. - Grassl. Sci. 61: 217-226, 2015. Go to original source...
  40. Mansour M.M.F., Hassan F.A.S.: How salt stress-responsive proteins regulate plant adaptation to saline conditions. - Plant Mol. Biol. 108: 175-224, 2022. Go to original source...
  41. Munns R., Tester M.: Mechanisms of salinity tolerance. - Annu. Rev. Plant Biol. 59: 651-681, 2008. Go to original source...
  42. Ouhibi C., Attia H., Rebah F. et al.: Salt stress mitigation by seed priming with UV-C in lettuce plants: growth, antioxidant activity and phenolic compounds. - Plant Physiol. Bioch. 83: 126-133, 2014. Go to original source...
  43. Poorter H., Niinemets Ü., Poorter L. et al.: Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. - New Phytol. 182: 565-588, 2009. Go to original source...
  44. Qian Y.Z., Zhang N., Chen H. et al.: [Comparative study of uptake, translocation and accumulation characters in four varieties of Osmanthus fragrans (Thunb.) Lour. under single stress of Cd, Pb or Cu heavy metal treatment stresses.] - J. Anhui Univ. (Nat. Sci.) 42: 102-108, 2018. [In Chinese]
  45. Saradadevi R., Bramley H., Palta J.A., Siddique K.H.M.: Stomatal behaviour under terminal drought affects post-anthesis water use in wheat. - Funct. Plant Biol. 44: 279-289, 2016. Go to original source...
  46. Shabala S., Wu H., Bose J.: Salt stress sensing and early signalling events in plant roots: current knowledge and hypothesis. - Plant Sci. 241: 109-119, 2015. Go to original source...
  47. Shi D.C., Yin L.J.: [Difference between salt (NaCl) and alkaline (Na2CO3) stresses on Puccinellia tenuiflora plants.] - J. Integr. Plant Biol. 35: 144-149, 1993. [In Chinese]
  48. Soroori S., Danaee E., Hemmati K., Moghadam A.L.: Effect of foliar application of proline on morphological and physiological traits of Calendula officinalis L. under drought stress. - J. Ornam. Plants 11: 13-30, 2021.
  49. Tejera N.A., Soussi M., Lluch C.: Physiological and nutritional indicators of tolerance to salinity in chickpea plants growing under symbiotic conditions. - Environ. Exp. Bot. 58: 17-24, 2005. Go to original source...
  50. Tourneux C., Peltier G.: Effect of water deficit on photosynthetic oxygen exchange measured using 18O2 and mass spectrometry in Solanum tuberosum L. leaf discs. - Planta 195: 570-577, 1995. Go to original source...
  51. Tuna A.L., Kaya C., Ashraf M. et al.: The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress. - Environ. Exp. Bot. 59: 173-178, 2007. Go to original source...
  52. Umar M., Uddin Z., Siddiqui Z.S.: Responses of photosynthetic apparatus in sunflower cultivars to combined drought and salt stress. - Photosynthetica 57: 627-639, 2019. Go to original source...
  53. Vendruscolo E.C.G., Schuster I., Pileggi M. et al.: Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. - J. Plant Physiol. 164: 1367-1376, 2007. Go to original source...
  54. Wang H., Pan Y., Tang X., Huang Z.: Isolation and characterization of melanin from Osmanthus fragrans' seeds. - LWT - Food Sci. Technol. 39: 496-502, 2006. Go to original source...
  55. Wang R.Z., Huang W.W., Chen L. et al.: Anatomical and physiological plasticity in Leymus chinensis (Poaceae) along large-scale longitudinal gradient in northeast China. - PLoS ONE 6: e26209, 2011. Go to original source...
  56. Wei J.F., Hu S.Q., Chen X.P. et al.: [Effects of salt stress on growth, photosynthesis and ion distribution of Osmanthus fragrans.] - J. Zhejiang Agric. Sci. 61: 86-90, 2020. [In Chinese]
  57. Yang X.L., Wang X., Gao S.T. et al.: [Effect of NaCl stress on the leaf ultrastructure of five Osmanthus fragrans varieties.] -Acta Bot. Bor.-Occident. Sin. 38: 1634-1645, 2018. [In Chinese]
  58. Yang Y., Guo Y.: Unraveling salt stress signaling in plants. - J. Integr. Plant Biol. 60: 796-804, 2018. Go to original source...
  59. Zang D.K., Xiang Q.B.: Studies on Osmanthus fragrans cultivars. - J. Nanjing For. Univ. 28: 7-13, 2004.
  60. Zang D.K., Xiang Q.B., Liu Y.L., Hao R.M.: [History of Chinese Osmanthus research, current situation and international registration of Osmanthus cultivars.] - J. Plant Resour. Environ. 12: 49-53, 2003. [In Chinese]