Photosynthetica 2023, 61(3):264-274 | DOI: 10.32615/ps.2022.046

Different light-quality colored films affect growth, photosynthesis, chloroplast ultrastructure, and triterpene acid accumulation in Glechoma longituba plants

L.X. ZHANG1, 2, Q.S. CHANG3, Q.S. GUO1, X.G. HOU2, L. LIU1, Z.B. ZHU1, S.D. CHEN1, 2
1 Institute of Chinese Medicinal Materials, Nanjing Agricultural University, 210095 Nanjing, China
2 College of Agriculture, Henan University of Science and Technology, 471000 Luoyang, China
3 College of Horticulture and Plant Protection, Henan University of Science and Technology, 471000 Luoyang, China

To elucidate the adaptive strategies of Glechoma longituba in response to different light-quality colored films, the growth, photosynthesis, chloroplast ultrastructure, and triterpene acid accumulation were analyzed. In this study, four colored films improved electron transport and maintained the function of PSII, and allocated more light energy absorbed for photochemical reactions, thus increasing the photosynthetic capacity and ultimately improving dry mass accumulation. Additionally, blue film (BF) and green film (GF) enhanced photosynthesis by increasing stomatal openness and chlorophyll contents and maintaining chloroplast structural integrity, thereby promoting dry mass and triterpene acid (TA) accumulation of G. longituba. Red film excessively increased starch grains, inhibited photosynthate output and consequently reduced the concentration and yield of ursolic acid (UA). Yellow film decreased stomatal openness and chlorophyll concentrations, which was not conducive to chloroplast development, and also decreased the concentration and yield of UA. In conclusion, the application of BF and GF may represent an effective cultivation practice that can be used to achieve the highest TA yields in plantings of G. longituba.

Additional key words: chlorophyll fluorescence; chloroplast structure; Glechoma; light-response curve; light spectrum; oleanolic acid; ursolic acid.

Received: May 14, 2022; Revised: October 28, 2022; Accepted: November 1, 2022; Prepublished online: November 24, 2022; Published: October 5, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
ZHANG, L.X., CHANG, Q.S., GUO, Q.S., HOU, X.G., LIU, L., ZHU, Z.B., & CHEN, S.D. (2023). Different light-quality colored films affect growth, photosynthesis, chloroplast ultrastructure, and triterpene acid accumulation in Glechoma longituba plants. Photosynthetica61(3), 264-274. doi: 10.32615/ps.2022.046
Download citation

References

  1. Arena C., Tsonev T., Doneva D. et al.: The effect of light quality on growth, photosynthesis, leaf anatomy and volatile isoprenoids of a monoterpene-emitting herbaceous species (Solanum lycopersicum L.) and an isoprene-emitting tree (Platanus orientalis L.). - Environ. Exp. Bot. 130: 122-132, 2016. Go to original source...
  2. Bian Z., Yang Q., Li T. et al.: Study of the beneficial effects of green light on lettuce grown under short-term continuous red and blue light-emitting diodes. - Physiol. Plantarum 164: 226-240, 2018. Go to original source...
  3. Ceulemans R., van Praet L., Jiang X.N.: Effects of CO2 enrichment, leaf position and clone on stomatal index and epidermal cell density in poplar (Populus). - New Phytol. 131: 99-107, 1995. Go to original source...
  4. Chen M., Chory J., Fankhauser C.: Light signal transduction in higher plants. - Annu. Rev. Genet. 38: 87-117, 2004. Go to original source...
  5. Chen X.L., Yang Q.C., Song W.P. et al.: Growth and nutritional properties of lettuce affected by different alternating intervals of red and blue LED irradiation. - Sci. Hortic.-Amsterdam 223: 44-52, 2017. Go to original source...
  6. D±browski P., Baczewska A.H., Pawlu¶kiewicz B. et al.: Prompt chlorophyll a fluorescence as a rapid tool for diagnostic changes in PSII structure inhibited by salt stress in Perennial ryegrass. - J. Photoch. Photobio. B 157: 22-31, 2016. Go to original source...
  7. Demmig-Adams B., Adams III W.W., Barker D.H. et al.: Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. - Physiol. Plantarum 98: 253-264, 1996. Go to original source...
  8. Esmaeilizadeh M., Malekzadeh Shamsabad M.R., Roosta H.R. et al.: Manipulation of light spectrum can improve the performance of photosynthetic apparatus of strawberry plants growing under salt and alkalinity stress. - PLoS ONE 16: e261585, 2021. Go to original source...
  9. Gao S., Liu X.N., Liu Y. et al.: [Response characteristics of green onion (Allium fistulosum L.) to LED light quality under artificial climate chamber.] - Sci. Agr. Sin. 53: 2919-2928, 2020. [In Chinese]
  10. He B., Chen Y., Zhang H. et al.: The effect of colored plastic films on the photosynthetic characteristics and content of active ingredients of Dysosma versipellis. - Hortic. Environ. Biotech. 59: 519-528, 2018. Go to original source...
  11. Heo J., Lee C., Chakrabarty D., Paek K.: Growth responses of marigold and salvia bedding plants as affected by monochromic or mixture radiation provided by a light-emitting diode (LED). - Plant Growth Regul. 38: 225-230, 2002. Go to original source...
  12. Hogewoning S.W., Trouwborst G., Maljaars H. et al.: Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. - J. Exp. Bot. 61: 3107-3117, 2010. Go to original source...
  13. Huché-Thélier L., Crespel L., Le Gourrierec J. et al.: Light signaling and plant responses to blue and UV radiations - Perspectives for applications in horticulture. - Environ. Exp. Bot. 121: 22-38, 2016. Go to original source...
  14. Kalaji H.M., Rastogi A., ®ivèák M. et al.: Prompt chlorophyll fluorescence as a tool for crop phenotyping: an example of barley landraces exposed to various abiotic stress factors. - Photosynthetica 56: 953-961, 2018. Go to original source...
  15. Kalaji H.M., Schansker G., Ladle R.J. et al.: Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. - Photosynth. Res. 122: 121-158, 2014. Go to original source...
  16. Kim J., Song S., Lee I. et al.: Anti-inflammatory activity of constituents from Glechoma hederacea var. longituba. - Bioorg. Med. Chem. Lett. 21: 3483-3487, 2011. Go to original source...
  17. Kim S.-J., Hahn E.-J., Heo J.-W., Paek K.-Y.: Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. - Sci. Hortic.-Amsterdam 101: 143-151, 2004. Go to original source...
  18. Lee S.-J., Ahn J.-K., Khanh T.-D. et al.: Comparison of isoflavone concentrations in soybean (Glycine max (L.) Merrill) sprouts grown under two different light conditions. - J. Agr. Food Chem. 55: 9415-9421, 2007. Go to original source...
  19. Lee S.-W., Seo J.M., Lee M.-K. et al.: Influence of different LED lamps on the production of phenolic compounds in common and Tartary buckwheat sprouts. - Ind. Crop. Prod. 54: 320-326, 2014. Go to original source...
  20. Leng P.S., Su S.C., Wang T.H. et al.: [Effects of light intensity and light quality on photosynthesis, flavonol glycoside and terpene lactone contents of Ginkgo biloba L. seedlings.] - J. Plant Res. Environ. 11: 1-4, 2002. [In Chinese]
  21. Li X.Y., Yin J., Zhan Y.G. et al.: [Effect of different intensity and quality of light on accumulation of triterpenoid in birch (Betula platyphylla Suk.) seedlings.] - Nat. Prod. Res. Dev. 22: 475-478, 2010. [In Chinese]
  22. Li Y., Xin G., Liu C. et al.: Effects of red and blue light on leaf anatomy, CO2 assimilation and the photosynthetic electron transport capacity of sweet pepper (Capsicum annuum L.) seedlings. - BMC Plant Biol. 20: 318, 2020. Go to original source...
  23. Li Z.Q., Chen Q.J., Xin Y.Y. et al.: Analyses of the photosynthetic characteristics, chloroplast ultrastructure, and transcriptome of apple (Malus domestica) grown under red and blue lights. - BMC Plant Biol. 21: 483, 2021. Go to original source...
  24. Lichtenthaler H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. - Method. Enzymol. 148: 350-382, 1987. Go to original source...
  25. Lichtenthaler H.K.: The 1-deoxy-D-xylulose-5-phosphate path­way of isoprenoid biosynthesis in plants. - Annu. Rev. Plant Phys. 50: 47-65, 1999. Go to original source...
  26. Loreto F., Tsonev T., Centritto M.: The impact of blue light on leaf mesophyll conductance. - J. Exp. Bot. 60: 2283-2290, 2009. Go to original source...
  27. Lunde C., Jensen P.E., Haldrup A. et al.: The PSI-H subunit of photosystem I is essential for state transitions in plant photosynthesis. - Nature 408: 613-615, 2000. Go to original source...
  28. Meng L.L., Cao K., Sun Q. et al.: [Effects of different ratios of red light and far red light on growth, photosynthetic characteristics and quality of Mesembryanthemum crystallinum L.] - J. Nucl. Agric. Sci. 36: 0226-0235, 2022. [In Chinese]
  29. Miao L., Zhang Y., Yang X. et al.: Colored light-quality selective plastic films affect anthocyanin content, enzyme activities, and the expression of flavonoid genes in strawberry (Fragaria × ananassa) fruit. - Food Chem. 207: 93-100, 2016. Go to original source...
  30. Miao Y.X., Chen Q.Y., Qu M. et al.: Blue light alleviates 'red light syndrome' by regulating chloroplast ultrastructure, photosynthetic traits and nutrient accumulation in cucumber plants. - Sci. Hortic.-Amsterdam 257: 108680, 2019. Go to original source...
  31. Morfopoulos C., Sperlich D., Peñuelas J. et al.: A model of plant isoprene emission based on available reducing power captures responses to atmospheric CO2. - New Phytol. 203: 125-139, 2014. Go to original source...
  32. Paek K., Hahn E.: Cytokinins, auxins and activated charcoal affect organogenesis and anatomatical characteristics of shoot tip cultures of lisianthus [Eustoma grandiflorum (RAF.) Shinn]. - In Vitro Cell. Dev.-Pl. 36: 128-132, 2000. Go to original source...
  33. Pallozzi E., Tsonev T., Marino G. et al.: Isoprenoid emissions, photosynthesis and mesophyll diffusion conductance in response to blue light. - Environ. Exp. Bot. 95: 50-58, 2013. Go to original source...
  34. Paul M.J., Foyer C.H.: Sink regulation of photosynthesis. - J. Exp. Bot. 52: 1383-1400, 2001. Go to original source...
  35. Pollastri S., Tsonev T., Loreto F.: Isoprene improves photochemical efficiency and enhances heat dissipation in plants at physiological temperatures. - J. Exp. Bot. 65: 1565-1570, 2014. Go to original source...
  36. Sæbø A., Krekling T., Appelgren M.: Light quality affects photosynthesis and leaf anatomy of birch plantlets in vitro. - Plant Cell Tiss. Org. 41: 177-185, 1995. Go to original source...
  37. Smith H.: Phytochromes and light signal perception by plants - an emerging synthesis. - Nature 407: 585-591, 2000. Go to original source...
  38. Stuefer J.F., Huber H.: Differential effects of light quantity and spectral light quality on growth, morphology and development of two stoloniferous Potentilla species. - Oecologia 117: 1-8, 1998. Go to original source...
  39. Tegelberg R., Julkunen-Tiitto R., Aphalo P.J.: Red:far-red light ratio and UV-B radiation: their effects on leaf phenolics and growth of silver birch seedlings. - Plant Cell Environ. 27: 1005-1013, 2004. Go to original source...
  40. van Kooten O., Snel J.F.H.: The use of chlorophyll fluorescence nomenclature in plant stress physiology. - Photosynth. Res. 25: 147-150, 1990. Go to original source...
  41. Wang H.H., Wang Z.Z., Guo W.B.: Comparative determination of ursolic acid and oleanolic acid of Macrocarpium officinalis (Sieb. et Zucc.) Nakai by RP-HPLC. - Ind. Crop. Prod. 28: 328-332, 2008. Go to original source...
  42. Wang J., Lu W., Tong Y., Yang Q.: Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce (Lactuca sativa L.) exposed to different ratios of red light to blue light. - Front. Plant Sci. 7: 250, 2016. Go to original source...
  43. Wang X.Y., Xu X.M., Cui J.: The importance of blue light for leaf area expansion, development of photosynthetic apparatus, and chloroplast ultrastructure of Cucumis sativus grown under weak light. - Photosynthetica 53: 213-222, 2015. Go to original source...
  44. Xie R.J., Zhang X.J., Liu J.P. et al.: [Synergistic effects of shade and drought on the photosynthetic characteristics of Arthraxon hispidus.] - Acta Pratacult. Sin. 26: 64-76, 2017. [In Chinese]
  45. Xu F., Cao S., Shi L. et al.: Blue light irradiation affects anthocyanin content and enzyme activities involved in postharvest strawberry fruit. - J. Agr. Food Chem. 62: 4778-4783, 2014. Go to original source...
  46. Xu Z.Q., Sui D.Z., Xie Y.F., Wang J.: [Comparison of photosynthetic characteristics of two new Triadica sebifera varieties.] - J. Nanjing For. Univ. 45: 93-100, 2021. [In Chinese]
  47. Yan Y., Stoddard F.L., Neugart S. et al.: Responses of flavonoid profile and associated gene expression to solar blue and UV radiation in two accessions of Vicia faba L. from contrasting UV environments. - Photoch. Photobio. Sci. 18: 434-447, 2019. Go to original source...
  48. Yavari N., Tripathi R., Wu B.S. et al.: The effect of light quality on plant physiology, photosynthetic, and stress response in Arabidopsis thaliana leaves. - PLoS ONE 16: e247380, 2021. Go to original source...
  49. Ye Z.-P.: A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa. - Photosynthetica 45: 637-640, 2007. Go to original source...
  50. Zhang H., Tu Y., Kang J. et al.: Blue light dosage affects photosynthesis, chlorophyll, and antioxidant properties of Mesembryanthemum crystallinum. - Photosynthetica 59: 547-556, 2021. Go to original source...
  51. Zhang L.X., Guo Q.S., Chang Q.S. et al.: Chloroplast ultrastructure, photosynthesis and accumulation of secondary metabolites in Glechoma longituba in response to irradiance. -Photosynthetica 53: 144-153, 2015. Go to original source...
  52. Zhang R.H., Xu K., Dong C.X.: [Effect of light quality on photosynthetic characteristics of ginger leaves.] - Sci. Agr. Sin. 41: 3722-3727, 2008. [In Chinese]