Photosynthetica 2023, 61(3):318-327 | DOI: 10.32615/ps.2023.023

Influence of nitrogen and phosphorus additions on parameters of photosynthesis and chlorophyll fluorescence in Cyclocarya paliurus seedlings

X.L. YUE1, X.F. LIU1, S.Z. FANG1, 2
1 College of Forestry, Nanjing Forestry University, Nanjing, China
2 Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China

Cyclocarya paliurus has been traditionally used as a functional food in China. A hydroponic experiment was conducted to determine the effects of N and P additions on photosynthesis and chlorophyll fluorescence (ChlF) of C. paliurus seedlings. N and P additions significantly altered photosynthesis and ChlF in the seedlings, but responses of these parameters to the N and P concentrations varied at different developmental stages. The greatest net photosynthetic rate (PN) and actual photochemical efficiency of PSII (ФPSII) occurred in the treatment of 150.0 mg(N) L-1 and 25.0 mg(P) L-1 addition, whereas the highest maximum quantum yield of PSII (Fv/Fm) and water-use efficiency (WUE) were recorded with 150.0 mg(N) L-1 and 15.0 mg(P) L-1 on the 60th day after treatment. Significantly positive correlations of PN with leaf relative chlorophyll content, transpiration rate, WUE, Fv/Fm, and ΦPSII, as well as the ФPSII with the Fv/Fm, were found. Our results indicated that an optimal addition of N and P nutrients depends on their coupling effects on the photosynthetic capacity and PSII photochemistry.

Additional key words: chlorophyll; net photosynthetic rate; nitrogen-phosphorus interaction; PSII photochemistry; water-use efficiency; wheel wingnut.

Received: February 13, 2023; Revised: May 2, 2023; Accepted: May 26, 2023; Prepublished online: June 19, 2023; Published: October 5, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
YUE, X.L., LIU, X.F., & FANG, S.Z. (2023). Influence of nitrogen and phosphorus additions on parameters of photosynthesis and chlorophyll fluorescence in Cyclocarya paliurus seedlings. Photosynthetica61(3), 318-327. doi: 10.32615/ps.2023.023
Download citation

References

  1. Aerts R., Chapin III F.S.: The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. - Adv. Ecol. Res. 30: 1-67, 1999. Go to original source...
  2. Akdemir B., Saglam C., Belliturk K. et al.: Effect of spatial variability on fertiliser requirement of olive orchard cultivated for oil production. - J. Environ. Prot. Ecol. 19: 319-329, 2018.
  3. Ali J., Bakht J., Shafi M. et al.: Uptake nitrogen as affected by various combinations of nitrogen and phosphorus. - Asian J. Plant Sci. 1: 367-369, 2002. Go to original source...
  4. Amiour N., Imbaud S., Clément G. et al.: The use of metabolomics integrated with transcriptomic and proteomic studies for identifying key steps involved in the control of nitrogen metabolism in crops such as maize. - J. Exp. Bot. 63: 5017-5033, 2012. Go to original source...
  5. Baker N.R.: Chlorophyll fluorescence: a probe of photosynthesis in vivo. - Annu. Rev. Plant Biol. 59: 89-113, 2008. Go to original source...
  6. Baker N.R., Rosenqvist E.: Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. - J. Exp. Bot. 55: 1607-1621, 2004. Go to original source...
  7. Bilger W., Johnsen T., Schreiber U.: UV-excited chlorophyll fluorescence as a tool for the assessment of UV-protection by the epidermis of plants. - J. Exp. Bot. 52: 2007-2014, 2001. Go to original source...
  8. Bode S., Quentmeier C.C., Liao P.N. et al.: On the regulation of photosynthesis by excitonic interactions between carotenoids and chlorophylls. - PNAS 106: 12311-12316, 2009. Go to original source...
  9. Broetto F., Duarte H.M., Lüttge U.: Responses of chlorophyll fluorescence parameters of the facultative halophyte and C3-CAM intermediate species Mesembryanthemum crystallinum to salinity and high irradiance stress. - J. Plant Physiol. 164: 904-912, 2007. Go to original source...
  10. Calatayud A., Roca D., Martínez P.F.: Spatial-temporal variations in rose leaves under water stress conditions studied by chlorophyll fluorescence imaging. - Plant Physiol. Biochem. 44: 564-573, 2006. Go to original source...
  11. Chen C.-C., Huang M.-Y., Lin K.-H. et al.: The effects of nitrogen application on the growth, photosynthesis, and antioxidant activity of Amaranthus viridis. - Photosynthetica 60: 420-429, 2022. Go to original source...
  12. Chen Y.H., Liu L., Guo Q.S. et al.: Effects of different water management options and fertilizer supply on photosynthesis, fluorescence parameters and water use efficiency of Prunella vulgaris seedlings. - Biol. Res. 49:12, 2016. Go to original source...
  13. Croce R., van Amerongen H.: Light-harvesting in photosystem I. -Photosynth. Res. 116: 153-166, 2013. Go to original source...
  14. Curci P.L., Cigliano R.A., Zuluaga D.L. et al.: Transcriptomic response of durum wheat to nitrogen starvation. - Sci. Rep.-UK 7: 1176, 2017. Go to original source...
  15. DaMatta F.M., Loos R.A., Silva E.A., Loureiro M.E.: Limitations to photosynthesis in Coffea canephora as a result of nitrogen and water availability. - J. Plant Physiol. 159: 975-981, 2002. Go to original source...
  16. de Groot C.C., Marcelis L.F.M., van den Boogaard R. et al.: Interaction of nitrogen and phosphorus nutrition in determining growth. - Plant Soil 248: 257-268, 2003. Go to original source...
  17. Deng B., Li Y., Xu D. et al.: Nitrogen availability alters flavonoid accumulation in Cyclocarya paliurus via the effects on the internal carbon/nitrogen balance. - Sci. Rep.-UK 9: 2370, 2019. Go to original source...
  18. Ebenhöh O., Fucile G., Finazzi G. et al.: Short-term acclimation of the photosynthetic electron transfer chain to changing light: a mathematical model. - Philos. T. Roy. Soc. B 369: 20130223, 2014. Go to original source...
  19. Elser J.J., Bracken M.E.S., Cleland E.E. et al.: Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. - Ecol. Lett. 10: 1135-1142, 2007. Go to original source...
  20. Fang S.Z., Wang J.Y., Wei Z.Y., Zhu Z.X.: Methods of break seed dormancy in Cyclocarya paliurus (Batal) Iljinskaja. - Sci. Hortic.-Amsterdam 110: 305-309, 2006. Go to original source...
  21. Fang S.Z., Yang W.X., Chu X.L. et al.: Provenance and temporal variation in selected flavonoids in leaves of Cyclocarya paliurus. - Food Chem. 124: 1382-1386, 2011. Go to original source...
  22. Fu W., Li P., Wu Y.: Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce. -Sci. Hortic.-Amsterdam 135: 45-51, 2012. Go to original source...
  23. Gan H., Jiao Y., Jia J. et al.: Phosphorus and nitrogen physiology of two contrasting poplar genotypes when exposed to phosphorus and/or nitrogen starvation. - Tree Physiol. 36: 22-38, 2016. Go to original source...
  24. Gorbe E., Calatayud A.: Applications of chlorophyll fluorescence imaging technique in horticultural research: a review. - Sci. Hortic.-Amsterdam 138: 24-35, 2012. Go to original source...
  25. Gregoriou K., Pontikis K., Vemmos S.: Effects of reduced irradiance on leaf morphology, photosynthetic capacity, and fruit yield in olive (Olea europaea L.). - Photosynthetica 45: 172-181, 2007. Go to original source...
  26. Güsewell S.: N:P ratios in terrestrial plants: variation and functional significance. - New Phytol. 164: 243-266, 2004. Go to original source...
  27. Hall S.R., Smith V.H., Lytle D.A., Leibold M.A.: Constraints on primary producer N:P stoichiometry along N:P supply ratio gradients. - Ecology 86: 1894-1904, 2005. Go to original source...
  28. Hamerlynck E.P., O'Connor R.C.: Photochemical performance of reproductive structures in Great Basin bunchgrasses in response to soil-water availability. - AoB Plants 14: plab076, 2022. Go to original source...
  29. Hernández I., Munné-Bosch S.: Linking phosphorus availability with photo-oxidative stress in plants. - J. Exp. Bot. 66: 2889-2900, 2015. Go to original source...
  30. Hura T., Grzesiak S., Hura K. et al.: Physiological and biochemical tools useful in drought-tolerance detection in genotypes of winter triticale: Accumulation of ferulic acid correlates with drought tolerance. - Ann. Bot.-London 100: 767-775, 2007. Go to original source...
  31. Jagtap V., Bhargava S., Streb P., Feierabend J.: Comparative effect of water, heat and light stresses on photosynthetic reactions in Sorghum bicolor (L.) Moench. - J. Exp. Bot. 49: 1715-1721, 1998. Go to original source...
  32. Jeon M.-W., Ali M.B., Hahn E.-J., Paek K.-Y.: Photosynthetic pigments, morphology and leaf gas exchange during ex vitro acclimatization of micropropagated CAM Doritaenopsis plantlets under relative humidity and air temperature. - Environ. Exp. Bot. 55: 183-194, 2006. Go to original source...
  33. Kong D.-X., Li Y.-Q., Wang M.-L. et al.: Effects of light intensity on leaf photosynthetic characteristics, chloroplast structure, and alkaloid content of Mahonia bodinieri (Gagnep.) Laferr. -Acta Physiol. Plant. 38: 120, 2016. Go to original source...
  34. Lapointe B.E.: Phosphorus- and nitrogen-limited photosynthesis and growth of Gracilaria tikvahiae (Rhodophyceae) in the Florida Keys: an experimental field study. - Mar. Biol. 93: 561-568, 1987. Go to original source...
  35. Li S., Yang W., Yang T. et al.: Effects of cadmium stress on leaf chlorophyll fluorescence and photosynthesis of Elsholtzia argyi - a cadmium accumulating plant. - Int. J. Phytoremediat. 17: 85-92, 2015. Go to original source...
  36. Li Y., Ren B., Ding L. et al.: Does chloroplast size influence photosynthetic nitrogen use efficiency? - PLoS ONE 8: e62036, 2013. Go to original source...
  37. Lin J., Wang Y., Sun S. et al.: Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition. - Sci. Total Environ. 576: 234-241, 2017. Go to original source...
  38. Liu Y., Cao Y.N., Fang S.Z. et al.: Antidiabetic effects of Cyclocarya paliurus leaves depends on the contents of antihyperglycemic flavonoids and antihyperlipidemic triterpenoids. - Molecules 23: 1042, 2018. Go to original source...
  39. Luo J., Qin J., He F. et al.: Net fluxes of ammonium and nitrate in association with H+ fluxes in fine roots of Populus popularis. -Planta 237: 919-931, 2013. Go to original source...
  40. Luo J., Shi W., Li H. et al.: The conserved salt-responsive genes in the roots of Populus × canescens and Arabidopsis thaliana. - Environ. Exp. Bot. 129: 48-56, 2016. Go to original source...
  41. Marschner P.: Marschner's Mineral Nutrition of Higher Plants. 3rd Edition. Pp. 672. Academic Press, London 2011.
  42. Massacci A., Nabiev S.M., Pietrosanti L. et al.: Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging. - Plant Physiol. Biochem. 46: 189-195, 2008. Go to original source...
  43. Mauromicale G., Ierna A., Marchese M.: Chlorophyll fluorescence and chlorophyll content in field-grown potato as affected by nitrogen supply, genotype, and plant age. - Photosynthetica 44: 76-82, 2006. Go to original source...
  44. Maxwell K., Johnson G.N.: Chlorophyll fluorescence - a practical guide. - J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  45. Midorikawa K., Kuroda M., Terauchi K. et al.: Additional nitrogen fertilization at heading time of rice down-regulates cellulose synthesis in seed endosperm. - PLoS ONE 9: e98738, 2014. Go to original source...
  46. Murchie E.H., Lawson T.: Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. - J. Exp. Bot. 64: 3983-3998, 2013. Go to original source...
  47. Neocleous D., Savvas D.: The effects of phosphorus supply limitation on photosynthesis, biomass production, nutritional quality, and mineral nutrition in lettuce grown in a recirculating nutrient solution. - Sci. Hortic.-Amsterdam 252: 379-387, 2019. Go to original source...
  48. Peñuelas J., Poulter B., Sardans J. et al.: Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. - Nat. Commun. 4: 2934, 2013. Go to original source...
  49. Pinnola A., Dall'Osto L., Gerotto C. et al.: Zeaxanthin binds to light-harvesting complex stress-related protein to enhance nonphotochemical quenching in Physcomitrella patens. - Plant Cell 25: 3519-3534, 2013. Go to original source...
  50. Porcar-Castell A., Tyystjärvi E., Atherton J. et al.: Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. - J. Exp. Bot. 65: 4065-4095, 2014. Go to original source...
  51. Qin J., Yue X.L., Fang S.Z. et al.: Responses of nitrogen metabolism, photosynthetic parameter and growth to nitrogen fertilization in Cyclocarya paliurus. - Forest Ecol. Manag. 502: 119715, 2021. Go to original source...
  52. Qin J., Yue X.L., Fang S.Z. et al.: Nitrogen addition modifies the relative gene expression level and accumulation of carbon-based bioactive substances in Cyclocarya paliurus. - Plant Physiol. Biochem. 188: 70-80, 2022. Go to original source...
  53. Qin J., Yue X.L., Shang X.L., Fang S.Z.: Nitrogen forms alter triterpenoid accumulation and related gene expression in Cyclocarya paliurus (Batalin) Iljinsk. seedlings. - Forests 11: 631, 2020. Go to original source...
  54. Ralph P.J., Gademann R.: Rapid light curves: a powerful tool to assess photosynthetic activity. - Aquat. Bot. 82: 222-237, 2005. Go to original source...
  55. Reed S.C., Seastedt T.R., Mann C.M. et al.: Phosphorus fertilization stimulates nitrogen fixation and increases inorganic nitrogen concentrations in a restored prairie. - Appl. Soil Ecol. 36: 238-242, 2007. Go to original source...
  56. Seastedt T.R., Suding K.N.: Biotic constraints on the invasion of diffuse knapweed (Centaurea diffusa) in North American grasslands. - Oecologia 151: 626-636, 2007. Go to original source...
  57. Shangguan Z.P., Shao M.A., Dyckmans J.: Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat. - Environ. Exp. Bot. 44: 141-149, 2000. Go to original source...
  58. Shi Q., Pang J., Yong J.W.H. et al.: Phosphorus-fertilisation has differential effects on leaf growth and photosynthetic capacity of Arachis hypogaea L. - Plant Soil 447: 99-116, 2020. Go to original source...
  59. Strasser R.J., Srivastava A., Govindjee: Polyphasic chlorophyll a fluorescence transient in plant and cyanobacteria. - Photochem. Photobiol. 61: 32-42, 1995. Go to original source...
  60. Sun T., Zhang J., Zhang Q. et al.: Transcriptome and metabolome analyses revealed the response mechanism of apple to different phosphorus stresses. - Plant Physiol. Biochem. 167: 639-650, 2021. Go to original source...
  61. Thomas D.S., Turner D.W.: Banana (Musa sp.) leaf gas exchange and chlorophyll fluorescence in response to soil drought, shading and lamina folding. - Sci. Hortic.-Amsterdam 90: 93-108, 2001. Go to original source...
  62. Tikkanen M., Grieco M., Aro E.-M.: Novel insights into plant light-harvesting complex II phosphorylation and 'state transitions'. - Trends Plant Sci. 16: 126-131, 2011. Go to original source...
  63. Wang J., Hui D., Ren H. et al.: Effects of understory vegetation and litter on plant nitrogen (N), phosphorus (P), N:P ratio and their relationships with growth rate of indigenous seedlings in subtropical plantations. - PLoS ONE 8: e84130, 2013. Go to original source...
  64. Wang L, Deng F., Ren W.-J.: Shading tolerance in rice is related to better light harvesting and use efficiency and grain filling rate during grain filling period. - Field Crop. Res. 180: 54-62, 2015. Go to original source...
  65. Wang T., Han H., Xie B. et al.: Comparative chlorophyll fluorescence and growth responses of two Amaranthus species to increased N supply variability. - Pol. J. Environ. Stud. 31: 3867-3878, 2022a. Go to original source...
  66. Wang Z.K., Chen Z.Y., Leite M.F.A. et al.: Effects of probiotic consortia on plant metabolites are associated with soil indigenous microbiota and fertilization regimes. - Ind. Crop. Prod. 185: 115138, 2022b. Go to original source...
  67. Wei S., Wang X., Shi D. et al.: The mechanisms of low nitrogen induced weakened photosynthesis in summer maize (Zea mays L.) under field conditions. - Plant Physiol. Biochem. 105: 118-128, 2016. Go to original source...
  68. Wu Z., Meng F., Cao L. et al.: Triterpenoids from Cyclocarya paliurus and their inhibitory effect on the secretion of apoliprotein B48 in Caco-2 cells. - Phytochemistry 142: 76-84, 2017. Go to original source...
  69. Xie J., Wang Z., Shen M. et al.: Sulfated modification, characterization and antioxidant activities of polysaccharide from Cyclocarya paliurus. - Food Hydrocoll. 53: 7-15, 2016. Go to original source...
  70. Yu X., Huang J.-X., Wang Y.-B. et al.: [Effect of nitrogen on chlorophyll fluorescence of blade of sugar beet.] - J. Nucl. Agric. Sci. 28: 1918-1923, 2014. [In Chinese]
  71. Zhang S., Jiang H., Zhao H. et al.: Sexually different physiological responses of Populus cathayana to nitrogen and phosphorus deficiencies. - Tree Physiol. 34: 343-354, 2014a. Go to original source...
  72. Zhang Z., Liao H., Lucas W.J.: Molecular mechanisms underlying phosphate sensing, signalling, and adaptation in plants. - J. Integr. Plant Biol. 56: 192-220, 2014b. Go to original source...
  73. Zhao C., Wang Z., Cui R. et al.: Effects of nitrogen application on phytochemical component levels and anticancer and antioxidant activities of Allium fistulosum. - PeerJ 9: e11706, 2021. Go to original source...
  74. Zhou M.M., Quek S.Y., Shang X.L., Fang S.Z.: Geographical variations of triterpenoid contents in Cyclocarya paliurus leaves and their inhibitory effects on Hela cells. - Ind. Crop. Prod. 162: 113314, 2021. Go to original source...
  75. Zhu Q., Kong L.J., Shan Y.Z. et al.: Effect of biochar on grain yield and leaf photosynthetic physiology of soybean cultivars with different phosphorus efficiencies. - J. Integr. Agr. 18: 2242-2254, 2019. Go to original source...