Photosynthetica 2023, 61(3):328-341 | DOI: 10.32615/ps.2023.026
Can seedlings of Norway spruce (Picea abies L. H. Karst.) populations withstand changed climate conditions?
- 1 Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001 Zvolen, Slovakia
- 2 Technical University in Zvolen, Faculty of Forestry, T.G. Masaryka 24, 96001 Zvolen, Slovakia
- 3 Technical University in Zvolen, Faculty of Ecology and Environmental Sciences, T.G. Masaryka 24, 96001 Zvolen, Slovakia
- 4 Administration of Tatra National Park, Tatranská Lomnica, 059 60 Vysoké Tatry, Slovakia
A manipulative experiment with two different water regimes was established to identify the variability of physiological responses to environmental changes in 5-year-old Norway spruce provenances in the Western Carpathians. While variations in the growth responses were detected only between treatments, photosynthetic and biochemical parameters were also differently influenced among provenances. Following drought treatment, an obvious shrinkage of tree stems was observed. In most provenances, drought had a negative effect on leaf gas-exchange parameters and kinetics of chlorophyll a fluorescence. Secondary metabolism was not affected so much with notable differences in concentration of sabinene, o-cimene, and (-)-alpha-terpineol monoterpenes. The most suitable indicators of drought stress were abscisic acid and fluorescence parameters. Seedlings from the highest altitude (1,500 m a.s.l.) responded better to stress conditions than the other populations. Such provenance trials may be a valuable tool in assessing the adaptive potential of spruce populations under changing climate.
Additional key words: abscisic acid; drought; monoterpenes; Norway spruce; photosynthesis; provenance.

Received: October 28, 2022; Revised: June 2, 2023; Accepted: June 12, 2023; Prepublished online: July 11, 2023; Published: October 5, 2023 Show citation
| ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Avramova Z.: Transcriptional 'memory' of a stress: transient chromatin and memory (epigenetic) marks at stress-response genes. - Plant J. 83: 149-159, 2015.
Go to original source... - Bates L.S., Waldren R.P., Teare I.D.: Rapid determination of free proline for water-stress studies. - Plant Soil 39: 205-207, 1973.
Go to original source... - Betsch P., Bonal D., Breda N. et al.: Drought effects on water relations in beech: The contribution of exchangeable water reservoirs. - Agr. Meteorol. 151: 531-543, 2011.
Go to original source... - Bigras F.J.: Photosynthetic response of white spruce families to drought stress. - New Forest. 29: 135-148, 2005.
Go to original source... - Bruce T.J.A., Matthes M.C., Napier J.A., Pickett J.A.: Stressful "memories" of plants: evidence and possible mechanisms. - Plant Sci. 173: 603-608, 2007.
Go to original source... - Bussotti F., Gerosa G., Digrado A., Pollastrini M.: Selection of chlorophyll fluorescence parameters as indicators of photosynthetic efficiency in large scale plant ecological studies. - Ecol. Indic. 108: 105686, 2020.
Go to original source... - Bussotti F., Pollastrini M., Holland V., Brüggemann W.: Functional traits and adaptive capacity of European forests to climate change. - Environ. Exp. Bot. 111: 91-113, 2015.
Go to original source... - Critchley C.: Photoinhibition. - In: Raghavendra A. (ed.): Photosynthesis - a comprehensive treatise. Pp. 264-273. Cambridge University Press, Cambridge 2000.
- Čermák P., Kolář T., Žid T. et al.: Norway spruce responses to drought forcing in area affected by forest decline. - For. Syst. 28: e016, 2019.
Go to original source... - Dąbrowski P., Baczewska-Dąbrowska A.H., Kalaji H.M. et al.: Exploration of chlorophyll a fluorescence and plant gas exchange parameters as indicators of drought tolerance in perennial ryegrass. - Sensors-Basel 19: 2736, 2019.
Go to original source... - Daszkowska-Golec A.: The role of abscisic acid in drought stress: How ABA helps plants to cope with drought stress. - In: Hossain M., Wani S., Bhattacharjee S. et al. (ed.): Drought Stress Tolerance in Plants. Vol. 2. Pp. 123-151. Springer, Cham 2016.
Go to original source... - De Ronde J.A., Cress W.A., Krüger G.H.J. et al.: Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. - J. Plant Physiol. 161: 1211-1224, 2004.
Go to original source... - Demmig-Adams B., Adams III W.W.: Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. - New Phytol. 172: 11-21, 2006.
Go to original source... - Epron D., Dreyer E.: Stomatal and non-stomatal limitation of photosynthesis by leaf water deficits in three oak species: a comparison of gas exchange and chlorophyll a fluorescence data - Ann. For. Sci. 47: 435-450, 1990.
Go to original source... - Fleta-Soriano E., Munné-Bosch S.: Stress memory and the inevitable effects of drought: a physiological perspective. - Front. Plant Sci. 7: 143, 2016.
Go to original source... - Godwin J., Farrona S.: Plant epigenetic stress memory induced by drought: a physiological and molecular perspective. - In: Spillane C., McKeown P. (ed.): Plant Epigenetics and Epigenomics. Methods in Molecular Biology. Vol. 2093. Pp. 243-259. Humana, New York 2020.
Go to original source... - Golldack D., Li C., Mohan H., Probst N.: Tolerance to drought and salt stress in plants: unraveling the signalling networks. - Front. Plant Sci. 5: 151, 2014.
Go to original source... - Guidi L., Lo Piccolo E., Landi M.: Chlorophyll fluorescence, photoinhibition and abiotic stress: Does it make any difference the fact to be a C3 or C4 species? - Front. Plant Sci. 10: 174, 2019.
Go to original source... - Gunes A., Inal A., Adak M.S. et al.: Effect of drought stress implemented at pre- or post-anthesis stage on some physiological parameters as screening criteria in chickpea cultivars. - Russ. J. Plant Physiol. 55: 59-67, 2008.
Go to original source... - Haas J.C., Vergara A., Serrano A.R. et al.: Candidate regulators and target genes of drought stress in needles and roots of Norway spruce. - Tree Physiol. 41: 1230-1246, 2021.
Go to original source... - Hartl-Meier C., Zang C., Dittmar C. et al.: Vulnerability of Norway spruce to climate change in mountain forests of the European Alps. - Clim. Res. 60: 119-132, 2014.
Go to original source... - Hayat S., Hayat Q., Alyemeni M.N. et al.: Role of proline under changing environments. - Plant Signal. Behav. 7: 1456-1466, 2012.
Go to original source... - Hlásny T., Mátyás C., Seidl R. et al.: Climate change increases the drought risk in Central European Forests: What are the options for adaptation? - Lesn. Cas. For. J. 60: 5-18, 2014.
Go to original source... - Holopainen J.K., Virjamo V., Ghimire R.P. et al.: climate change effects on secondary compounds of forest trees in the northern hemisphere. - Front. Plant Sci. 9: 1445, 2018.
Go to original source... - Hrivnák M., Krajmerová D., Kurjak D. et al.: Differential associations between nucleotide polymorphisms and physiological traits in Norway spruce (Picea abies Karst.) plants under contrasting water regimes. - Forestry 95: 686-697, 2022.
Go to original source... - Hsu P.-K., Dubeaux G., Takahashi Y., Schroeder J.I.: Signaling mechanisms in abscisic acid-mediated stomatal closure. - Plant J. 105: 307-321, 2021.
Go to original source... - Huang J., Hammerbacher A., Weinhold A. et al.: Eyes on the future - evidence for trade-offs between growth, storage and defense in Norway spruce. - New Phytol. 222: 144-158, 2019.
Go to original source... - Chater C.C.C., Oliver J., Casson S., Gray J.E.: Putting the brakes on: abscisic acid as a central environmental regulator of stomatal development. - New Phytol. 202: 376-391, 2014.
Go to original source... - Chen J., Burke J.J., Xin Z.: Chlorophyll fluorescence analysis revealed essential roles of FtsH11 protease in regulation of the adaptive responses of photosynthetic systems to high temperature. - BMC Plant Biol. 18: 11, 2018.
Go to original source... - Jamnická G., Fleischer P., Konôpková A. et al.: Norway spruce (Picea abies L.) provenances use different physiological strategies to cope with water deficit. - Forests 10: 651, 2019.
Go to original source... - Kalaji H.M., Jajoo A., Oukarroum A. et al.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. - Acta Physiol. Plant. 38: 102, 2016.
Go to original source... - Kivimäenpää M., Riikonen J., Ahonen V. et al.: Sensitivity of Norway spruce physiology and terpenoid emission dynamics to elevated ozone and elevated temperature under open-field exposure. - Environ. Exp. Bot. 90: 32-42, 2013.
Go to original source... - Kmeť J., Ditmarová Ľ., Priwitzer T. et al.: Physiological limits - a possible cause of spruce decline. - Beskydy 3: 55-64, 2010.
- Köcher P., Horna V., Leuschner C.: Environmental control of daily stem growth patterns in five temperate broad-leaved tree species. - Tree Physiol. 32: 1021-1032, 2012.
Go to original source... - Kopaczyk J.M., Warguła J., Jelonek T.: The variability of terpenes in conifers under developmental and environmental stimuli. - Environ. Exp. Bot. 180: 104197, 2020.
Go to original source... - Krasensky J., Jonak C.: Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. -J. Exp. Bot. 63: 1593-1608, 2012.
Go to original source... - Lawlor D.W.: Limitation to photosynthesis in water-stressed leaves: stomata vs. metabolism and the role of ATP. - Ann. Bot.-London 89: 871-885, 2002.
Go to original source... - Longerberger P.S., Smith C.W., Duke S.E., McMichael B.L.: Evaluation of chlorophyll fluorescence as a tool for the identification of drought tolerance in upland cotton. - Euphytica 166: 25-33, 2009.
Go to original source... - Madmony A., Tognetti R., Zamponi L. et al.: Monoterpene responses to interacting effects of drought stress and infection by the fungus Heterobasidion parviporum in two clones of Norway spruce (Picea abies). - Environ. Exp. Bot. 152: 137-148, 2018.
Go to original source... - Malnoë A.: Photoinhibition or photoprotection of photosynthesis? Update on the (newly termed) sustained quenching component qH. - Environ. Exp. Bot. 154: 123-133, 2018.
- Marešová J., Húdoková H., Sarvašová L. et al.: Dynamics of internal isoprenoid metabolites in young Picea abies (Norway spruce) shoots during drought stress conditions in springtime. - Phytochemistry 203: 113414, 2022.
Go to original source... - Miron M.S., Sumalan R.L.: Physiological responses of Norway spruce (Picea abies [L.] Karst) seedlings to drought and overheating stress conditions. - J. Hortic. For. Biotechnol. 19: 146-151, 2015.
- Mukarram M., Choudhary S., Kurjak D. et al.: Drought: Sensing, signalling, effects and tolerance in higher plants. - Physiol. Plantarum 172: 1291-1300, 2021.
Go to original source... - Mukarram M., Khan M.M.A., Kujak D. et al.: Silicon nanoparticles (SiNPs) restore photosynthesis and essential oil content by upgrading enzymatic antioxidant metabolism in lemongrass (Cymbopogon flexuosus) under salt stress. - Front. Plant. Sci. 14: 1116769, 2023.
Go to original source... - Mukarram M., Khan M.M.A., Zehra A. et al.: Suffer or survive: Decoding salt-sensitivity of lemongrass and its implication on essential oil productivity. - Front. Plant. Sci. 13: 903954, 2022.
Go to original source... - Mullin M., Klutsch J.G., Cale J.A. et al.: Primary and secondary metabolite profiles of lodgepole pine trees change with elevation, but not with latitude. - J. Chem. Ecol. 47: 280-293, 2021.
Go to original source... - Munemasa S., Hauser F., Park J. et al.: Mechanisms of abscisic acid-mediated control of stomatal aperture. - Curr. Opin. Plant Biol. 28: 154-162, 2015.
Go to original source... - Murchie E.H., Niyogi K.K.: Manipulation of photoprotection to improve plant photosynthesis. - Plant Physiol. 155: 86-92, 2011.
Go to original source... - Oberhuber W., Hammerle A., Kofler W.: Tree water status and growth of saplings and mature Norway spruce (Picea abies) at a dry distribution limit. - Front. Plant Sci. 6: 703, 2015a.
Go to original source... - Oberhuber W., Kofler W., Schuster R., Wieser G.: Environmental effects on stem water deficit in co-occurring conifers exposed to soil dryness. - Int. J. Biometeorol. 59: 417-426, 2015b.
Go to original source... - Offenthaler I., Hietz P., Richter H.: Wood diameter indicates diurnal and long-term patterns of xylem water potential in Norway spruce. - Trees-Struct. Funct. 15: 215-221, 2001.
Go to original source... - Pashkovskiy P.P., Vankova R., Zlobin I.E. et al.: Comparative analysis of abscisic acid levels and expression of abscisic acid-related genes in Scots pine and Norway spruce seedlings under water deficit. - Plant Physiol. Bioch. 140: 105-112, 2019.
Go to original source... - Perreca E., Eberl F., Santoro M.V. et al.: Effect of drought and methyl jasmonate treatment on primary and secondary isoprenoid metabolites derived from the MEP pathway in the white spruce Picea glauca. - Int. J. Mol. Sci. 23: 3838, 2022.
Go to original source... - Petrik P., Petek-Petrik A., Kurjak D. et al.: Interannual adjustments in stomatal and leaf morphological traits of European beech (Fagus sylvatica L.) demonstrate its climate change acclimation potential. - Plant Biol. 24: 1287-1296, 2022.
Go to original source... - Pukacki P.M., Kamińska-Rożek E.: Effect of drought stress on chlorophyll a fluorescence and electrical admittance of shoots in Norway spruce seedlings. - Trees-Struct. Funct. 19: 539-544, 2005.
Go to original source... - Rehschuh R., Mette T., Menzel A., Buras A.: Soil properties affect the drought susceptibility of Norway spruce. - Dendrochronologia 45: 81-89, 2017.
Go to original source... - Ruban A.V., Murchie E.H.: Assessing the photoprotective effectiveness of non-photochemical chlorophyll fluorescence quenching: A new approach. - BBA-Bioenergetics 1817: 977-982, 2012.
Go to original source... - Shevela D., Ananyev G., Vatland A.K. et al.: 'Birth defects' of photosystem II make it highly susceptible to photodamage during chloroplast biogenesis. - Physiol. Plantarum 166: 165-180, 2019.
Go to original source... - Schiop S.T., Al Hassan M., Sestras A.F. et al.: Biochemical responses to drought, at the seedling stage, of several Romanian Carpathian populations of Norway spruce (Picea abies L. Karst). - Trees-Struct. Funct. 31: 1479-1490, 2017.
Go to original source... - Schroeder J.I., Kwak J.M., Allen G.J.: Guard cell abscisic acid signalling and engineering drought hardiness in plants. - Nature 410: 327-330, 2001.
Go to original source... - Sousaraei N., Mashayekhi K., Mousavizadeh S.J. et al.: Screening of tomato landraces for drought tolerance based on growth and chlorophyll fluorescence analyses. - Hortic. Environ. Biotech. 62: 521-535, 2021.
Go to original source... - Stefanov M.A., Rashkov G.D., Apostolova E.L.: Assessment of the photosynthetic apparatus functions by chlorophyll fluorescence and P700 absorbance in C3 and C4 plants under physiological conditions and under salt stress. - Int. J. Mol. Sci. 23: 3768, 2022.
Go to original source... - Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 321-362. Springer, Dordrecht 2004.
Go to original source... - Tang A.-C., Kawamitsu I., Kanechi M., Boyer J.S.: Photosynthetic oxygen evolution at low water potential in leaf discs lacking an epidermis. - Ann. Bot.-London 89: 861-870, 2002.
Go to original source... - Tomášková I., Pastierovič F., Krejzková A. et al.: Norway spruce ecotypes distinguished by chlorophyll a fluorescence kinetics. - Acta Physiol. Plant. 43: 24, 2021.
Go to original source... - Tužinský L., Bublinec E., Tužinský M.: Development of soil water regime under spruce stands. - Folia Oecol. 44: 46-53, 2017.
Go to original source... - Urban L., Aarrouf J., Bidel L.P.R.: Assessing the effects of water deficit on photosynthesis using parameters derived from measurements of leaf gas exchange and of chlorophyll a fluorescence. - Front. Plant Sci. 8: 2068, 2017.
Go to original source... - Valentovič P., Luxová M., Kolarovič L., Gašparíková O.: Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars. - Plant Soil Environ. 52: 186-191, 2006.
Go to original source... - Večeřová K., Klem K., Veselá B. et al.: Combined effect of altitude, season and light on the accumulation of extractable terpenes in Norway spruce needles. - Forests 12: 1737, 2021.
Go to original source... - Virjamo V., Julkunen-Tiitto R.: Variation in piperidine alkaloid chemistry of Norway spruce (Picea abies) foliage in diverse geographic origins grown in the same area. - Can. J. Forest Res. 46: 456-460, 2016.
Go to original source... - Wang Z., Li G., Sun H. et al.: Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. - Biol. Open 7: bio035279, 2018.
Go to original source... - Wohlfahrt S., Schmitt V., Wild A.: Investigation on phosphoenol pyruvate carboxylase and proline in damaged and undamaged needles of Picea abies and Abies alba. - Chemosphere 36: 877-881, 1998.
Go to original source... - Wu Q., Wang M., Shen J. et al.: ZmOST1 mediates abscisic acid regulation of guard cell ion channels and drought stress responses. - J. Integr. Plant Biol. 61: 478-491, 2019.
Go to original source... - Yordanov Y., Velikova V., Tsonev T.: Plant responses to drought, acclimation and stress tolerance. - Photosynthetica 38: 171-186, 2000.
Go to original source... - Yu D., Wildhagen H., Tylewicz S. et al.: Abscisic acid signalling mediates biomass trade-off and allocation in poplar. - New Phytol. 223: 1192-1203, 2019.
Go to original source... - Zivcak M., Brestic M., Balatova Z. et al.: Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. - Photosynth. Res. 117: 529-546, 2013.
Go to original source... - Zlobin I.E., Kartashov A.V., Pashkovskiy P.P. et al.: Comparative photosynthetic responses of Norway spruce and Scots pine seedlings to prolonged water deficiency. - J. Photoch. Photobio. B 201: 111659, 2019.
Go to original source... - Zweifel R., Zimmermann L., Newbery D.M.: Modeling tree water deficit from microclimate: an approach to quantifying drought stress. - Tree Physiol. 25: 147-156, 2005.
Go to original source...




