Photosynthetica 2023, 61(4):405-416 | DOI: 10.32615/ps.2023.025
LHCII - a protein like a 'Swiss Army knife' with many mechanisms and functions
- 1 Department of Cell Biology, Institute of Biology and Biochemistry, Maria Curie-Sklodowska University, ul. Akademicka 19, 20-033 Lublin, Poland
- 2 Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, Pl. Marii Curie-Sklodowskiej 1, 20-031 Lublin, Poland
The review highlights the relationship between the molecular organization of the light-harvesting complex of photosystem II (LHCII) and sunlight utilization by higher plants. The molecular form of LHCII switches rapidly and reversibly during diurnal changes of light intensity, from low (ca. 10) to high [ca. 1,000 µmol(photon) m-2 s-1], so the sensitivity of LHCII to light may control the balance between light harvesting and photoprotection state. Our understanding and concept of this mechanism are based on the knowledge of the structure and photophysics of different LHCII molecular forms: monomer, dimer, trimer, and aggregate. It is proposed that LHCII monomers, dimers, and lateral aggregates are fundamental blocks of excess light-dissipation machinery. Trimer is exceptionally well suited to play a physiological role of an antenna complex. A correlation between the LHCII molecular form and the presence of xanthophyll cycle pigment violaxanthin and zeaxanthin in the complex structure is also shown. Moreover, the role of LHCII protein phosphorylation in thylakoid membrane architecture is also discussed. The dual function of LHCII has been studied in the natural thylakoid membranes of chloroplasts, in the artificial lipid-LHCII model membranes, and by suspension of LHCII in a detergent solution.
Additional key words: aggregation; antenna complex; dimer; monomer; photoprotection; thylakoid membrane; trimer; xanthophyll cycle.

Received: March 24, 2023; Revised: May 19, 2023; Accepted: June 7, 2023; Prepublished online: July 13, 2023; Published: December 19, 2023 Show citation
References
- Albanese P., Tamara S., Saracco G. et al.: How paired PSII-LHCII supercomplexes mediate the stacking of plant thylakoid membranes unveiled by structural mass-spectrometry. - Nat. Commun. 11: 1361, 2020.
Go to original source... - Barzda V., Istokovics A., Simidjiev I., Garab G.: Structural flexibility of chiral macroaggregates of light-harvesting chlorophyll a/b pigment-protein complexes. Light-induced reversible structural changes associated with energy dissipation. - Biochemistry 35: 8981-8985, 1996.
Go to original source... - Battersby A.R.: Tetrapyrroles: the pigments of life. - Nat. Prod. Rep. 17: 507-526, 2000.
Go to original source... - Bellafiore S., Barneche F., Peltier G., Rochaix J.-D.: State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. - Nature 433: 892-895, 2005.
Go to original source... - Bethmann S., Melzer M., Schwarz N., Jahns P.: The zeaxanthin epoxidase is degraded along with the D1 protein during photoinhibition of photosystem II. - Plant Direct 3: e00185, 2019.
Go to original source... - Borisova-Mubarakshina M.M., Naydov I.A., Vetoshkina D.V. et al.: Photosynthetic antenna size regulation as an essential mechanism of higher plants acclimation to biotic and abiotic factors: The role of the chloroplast plastoquinone pool and hydrogen peroxide. - In: Carmona E.C., Ortiz A.C., Canas R.Q., Musarella C.M. (ed.): Vegetation Index and Dynamics. IntechOpen, Rijeka 2022.
Go to original source... - Brugnoli E., Björkman O.: Growth of cotton under continuous salinity stress: influence on allocation pattern, stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy. - Planta 187: 335-347, 1992.
Go to original source... - Chow W.S., Anderson J.M., Hope A.B.: Variable stoichiometries of photosystem II to photosystem I reaction centers. - Photosynth. Res. 17: 277-281, 1988.
Go to original source... - Crepin A., Cunill-Semanat E., Kuthanová Trsková E. et al.: Antenna protein clustering in vitro unveiled by fluorescence correlation spectroscopy. - Int. J. Mol. Sci. 22: 2969, 2021.
Go to original source... - Dall'Osto L., Holt N.E., Kaligotla S. et al.: Zeaxanthin protects plant photosynthesis by modulating chlorophyll triplet yield in specific light-harvesting antenna subunits. - J. Biol. Chem. 287: 41820-41834, 2012.
Go to original source... - Dekker J.P., Boekema E.J.: Supramolecular organization of thylakoid membrane proteins in green plants. - BBA-Bioenergetics 1706: 12-39, 2005.
Go to original source... - Dekker J.P., van Roon H., Boekema E.J.: Heptameric association of light-harvesting complex II trimers in partially solubilized photosystem II membranes. - FEBS Lett. 449: 211-214, 1999.
Go to original source... - Demmig-Adams B., Stewart J.J., López-Pozo M. et al.: Zeaxanthin, a molecule for photoprotection in many different environments. - Molecules 25: 5825, 2020.
Go to original source... - Dogutan D.K., Nocera D.G.: Artificial photosynthesis at efficiencies greatly exceeding that of natural photosynthesis. -Acc. Chem. Res. 52: 3143-3148, 2019.
Go to original source... - Duffy C.D.P., Ruban A.V., Barford W.: Theoretical investigation of the role of strongly coupled chlorophyll dimers in photoprotection of LHCII. - J. Phys. Chem. B 112: 12508-12515, 2008.
Go to original source... - Garab G., Cseh Z., Kovács L. et al.: Light-induced trimer to monomer transition in the main light-harvesting antenna complex of plants: Thermo-optic mechanism. - Biochemistry 41: 15121-15129, 2002.
Go to original source... - Gotoh E., Suetsugu N., Higa T et al.: Palisade cell shape affects the light-induced chloroplast movements and leaf photosynthesis. - Sci. Rep.-UK 8: 1472, 2018.
Go to original source... - Grinzato A., Albanese P., Marotta R. et al.: High-light versus low-light: effects on paired photosystem II supercomplex structural rearrangement in pea plants. - Int. J. Mol. Sci. 21: 8643, 2020.
Go to original source... - Gruszecki W.I.: Carotenoid orientation: role in membrane stabilization. - In: Krinsky N.I., Mayne S.T., Sies H. (ed.): Carotenoids in Health and Disease. Pp. 151-163. CRC Press, New York 2004.
Go to original source... - Gruszecki W.I., Gospodarek M., Grudzinski W. et al.: Light-induced change of configuration of the LHCII-bound xanthophyll (tentatively assigned to violaxanthin): a resonance Raman study. - J. Phys. Chem. B 113: 2506-2512, 2009b.
Go to original source... - Gruszecki W.I., Grudzinski W., Banaszek-Glos A. et al.: Xanthophyll pigments in light-harvesting complex II in monomolecular layers: localisation, energy transfer and orientation. - BBA-Bioenergetics 1412: 173-183, 1999a.
Go to original source... - Gruszecki W.I., Grudzinski W., Gospodarek M. et al.: Xanthophyll-induced aggregation of LHCII as a switch between light-harvesting and energy dissipation systems. - BBA-Bioenergetics 1757: 1504-1511, 2006.
Go to original source... - Gruszecki W.I., Grudzinski W., Matula M. et al.: Light-induced excitation quenching and structural transition in light-harvesting complex II. - Photosynth. Res. 59: 175-185, 1999b.
Go to original source... - Gruszecki W.I., Janik E., Luchowski R. et al.: Supramolecular organization of the main photosynthetic antenna complex LHCII: a monomolecular layer study. - Langmuir 25: 9384-9391, 2009a.
Go to original source... - Gruszecki W.I., Kernen P., Krupa Z., Strasser R.J.: Involvement of xanthophyll pigments in regulation of light-driven excitation quenching in light-harvesting complex of Photosystem II. - BBA-Bioenergetics 1188: 235-242, 1994.
Go to original source... - Gruszecki W.I., Matula M., Ko-chi N. et al.: Cis-trans-isomerization of violaxanthin in LHC II: violaxanthin isomerization cycle within the violaxanthin cycle. - BBA-Bioenergetics 1319: 267-274, 1997b.
Go to original source... - Gruszecki W.I., Matula M., Mysliwa-Kurdziel B. et al.: Effect of xanthophyll pigments on fluorescence of chlorophyll a in LHC II embedded to liposomes. - J. Photoch. Photobio. B 37: 84-90, 1997a.
Go to original source... - Gruszecki W.I., Strzalka K.: Does the xanthophyll cycle take part in the regulation of fluidity of the thylakoid membrane? - BBA-Bioenergetics 1060: 310-314, 1991.
Go to original source... - Gruszecki W.I., Zelent B., Tajmir-Riahi H.-A. et al.: Chlorophyll a-violaxanthin interactions in monolayers at air-water interface and in Langmuir-Blodgett films. - Colloid. Surface. B 19: 117-125, 2000.
Go to original source... - Gruszecki W.I., Zubik M., Luchowski R. et al.: Photoprotective role of the xanthophyll cycle studied by means of modeling of xanthophyll-LHCII interactions. - Chem. Phys. 373: 122-128, 2010.
Go to original source... - Hancock A.M., Son M.J., Nairat M. et al.: Ultrafast energy transfer between lipid-linked chromophores and plant light-harvesting complex II. - Phys. Chem. Chem. Phys. 23: 19511-19524, 2021.
Go to original source... - Holm J.K., Várkonyi Z., Kovács L. et al.: Thermo-optically induced reorganizations in the main light harvesting antenna of plants. II. Indications for the role of LHCII-only macrodomains in thylakoids. - Photosynth. Res. 86: 275-282, 2005.
Go to original source... - Horton P., Ruban A.: Molecular design of the photosystem II light-harvesting antenna: photosynthesis and photoprotection. -J. Exp. Bot. 56: 365-373, 2005.
Go to original source... - Janik E., Bednarska J., Sowinski K. et al.: Light-induced formation of dimeric LHCII. - Photosynth. Res. 132: 265-276, 2017a.
Go to original source... - Janik E., Bednarska J., Zubik M. et al.: Molecular architecture of plant thylakoids under physiological and light stress conditions: a study of lipid-light-harvesting complex II model membranes. - Plant Cell 25: 2155-2170, 2013.
Go to original source... - Janik E., Bednarska J., Zubik M. et al.: Is it beneficial for the major photosynthetic antenna complex of plants to form trimers? - J. Phys. Chem. B 119: 8501-8508, 2015.
Go to original source... - Janik E., Bednarska J., Zubik M. et al.: The xanthophyll cycle pigments, violaxanthin and zeaxanthin, modulate molecular organization of the photosynthetic antenna complex LHCII. - Arch. Biochem. Biophys. 592: 1-9, 2016.
Go to original source... - Janik E., Bednarska J., Zubik M. et al.: A chloroplast "wake up" mechanism: Illumination with weak light activates the photosynthetic antenna function in dark-adapted plants. - J. Plant Physiol. 210: 1-8, 2017b.
Go to original source... - Jennings R.C., Garlaschi F.M., Zucchelli G.: Light-induced fluorescence quenching in the light-harvesting chlorophyll a/b protein complex. - Photosynth. Res. 27: 57-64, 1991.
Go to original source... - Johnson M.P., Goral T.K., Duffy C.D.P. et al.: Photoprotective energy dissipation involves the reorganization of photosystem II light-harvesting complexes in the grana membranes of spinach chloroplasts. - Plant Cell 23: 1468-1479, 2011.
Go to original source... - Kaiser E., Galvis V.C., Armbruster U.: Efficient photosynthesis in dynamic light environments: a chloroplast's perspective. - Biochem. J. 476: 2725-2741, 2019.
Go to original source... - Kasahara M., Kagawa T., Oikawa K. et al.: Chloroplast avoidance movement reduces photodamage in plants. - Nature 420: 829-832, 2002.
Go to original source... - Kim E., Watanabe A., Duffy C.D.P. et al.: Multimeric and monomeric photosystem II supercomplexes represent structural adaptations to low- and high-light conditions. - J. Biol. Chem. 295: 14537-14545, 2020.
Go to original source... - Kirchoff H.: Molecular crowding and order in photosynthetic membranes. - Trends Plant Sci. 13: 201-207, 2008.
Go to original source... - Koller D.: Light-driven leaf movements. - Plant Cell Environ. 13: 615-632, 1990.
Go to original source... - Kromdijk J., Glowacka K., Leonelli L. et al.: Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. - Science 354: 857-861, 2016.
Go to original source... - Latowski D., Kruk J., Burda K. et al.: Kinetics of violaxanthin de-epoxidation by violaxanthin de-epoxidase, a xanthophyll cycle enzyme, is regulated by membrane fluidity in model lipid bilayers. - Eur. J. Biochem. 269: 4656-4665, 2002.
Go to original source... - Liu Z.F., Yan H.C., Wang K.B. et al.: Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. - Nature 428: 287-292, 2004.
Go to original source... - Marshall H.L., Geider R.J., Flynn K.J.: A mechanistic model of photoinhibition. - New Phytol. 145: 347-359, 2000.
Go to original source... - Miloslavina Y., Wehner A., Lambrev P.H. et al.: Far-red fluorescence: a direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching. - FEBS Lett. 582: 3625-3631, 2008.
Go to original source... - Nan G.-N., Zhou X.-Q., Zhang X.-M. et al.: Xanthophyll cycle-related non-photochemical quenching protects Sargassum thunbergii from high light-induced photoinhibition. - Front. Mar. Sci. 9: 1067596, 2022.
Go to original source... - Natali A., Gruber J.M., Dietzel L. et al.: Light-harvesting complexes (LHCs) cluster spontaneously in membrane environment leading to shortening of their excited state lifetimes. - J. Biol. Chem. 291: 16730-16739, 2016.
Go to original source... - Owens T.: Excitation energy transfer between chlorophylls and carotenoids. A proposed molecular mechanism for non-photochemical quenching. - In: Baker N.R., Bowyer J.R. (ed.): Photoinhibition of Photosynthesis: From Molecular Mechanisms to the Field. Pp. 95-110. BIOS Scientific Publishers, Oxford 1994.
- Pagliano C., Nield J., Marsano F. et al.: Proteomic characterization and three-dimensional electron microscopy study of PSII-LHCII supercomplexes from higher plants. - BBA-Bioenergetics 1837: 1454-1462, 2014.
Go to original source... - Perico C., Sparkes I.: Plant organelle dynamics: cytoskeletal control and membrane contact sites. - New Phytol. 220: 381-394, 2018.
Go to original source... - Rintamäki E., Salonen M., Suoranta U.M. et al.: Phosphorylation of light-harvesting complex II and photosystem II core proteins shows different irradiance-dependent regulation in vivo. Application of phosphothreonine antibodies to analysis of thylakoid phosphoproteins. - J. Biol. Chem. 272: 30476-30482, 1997.
Go to original source... - Ruban A.V.: Plants in light. - Commun. Integr. Biol. 2: 50-55, 2009.
Go to original source... - Ruban A.V.: Crops on the fast track for light. - Nature 541: 36-37, 2017.
Go to original source... - Ruban A.V., Calkoen F., Kwa S.L.S. et al.: Characterisation of LHC II in aggregated state by linear and circular dichroism spectroscopy. - BBA-Bioenergetics 1321: 61-70, 1997.
Go to original source... - Ruban A.V., Horton P.: The xanthophyll cycle modulates the kinetics of nonphotochemical energy dissipation in isolated light-harvesting complexes, intact chloroplasts, and leaves of spinach. - Plant Physiol. 119: 531-542, 1999.
Go to original source... - Ruban A.V., Horton P., Robert B.: Resonance Raman spectroscopy of the photosystem II light-harvesting complex of green plants: a comparison of trimeric and aggregated states. - Biochemistry 34: 2333-2337, 1995.
Go to original source... - Ruban A.V., Johnson M.P., Duffy C.D.P.: The photoprotective molecular switch in the photosystem II antenna. - BBA-Bioenergetics 1817: 167-181, 2012.
Go to original source... - Ruban A.V., Pascal A., Lee P.J. et al.: Molecular configuration of xanthophyll cycle carotenoids in photosystem II antenna complexes. - J. Biol. Chem. 277: 42937-42942, 2002.
Go to original source... - Sapozhnikov D.I.T., Kransovskaya T.A., Maevskaya A.N.: [Change in the interrelationship of the basic carotenoids of the plastids of green leaves under the action of light.] - Dokl. Akad. Nauk SSSR 113: 465-467, 1957. [In Russian]
- Son M., Moya R., Pinnola A. et al.: Protein-protein interactions induce pH-dependent and zeaxanthin-independent photoprotection in the plant light-harvesting complex, LHCII. - J. Am. Chem. Soc. 143: 17577-17586, 2021.
Go to original source... - Standfuss R., Terwisscha van Scheltinga A.C., Lamborghini M., Kühlbrandt W.: Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution. - EMBO J. 24: 919-928, 2005.
Go to original source... - Su X.D., Ma J., Wei X.P. et al.: Structure and assembly mechanism of plant C2S2M2-type PSII-LHCII supercomplex. -Science 357: 815-820, 2017.
Go to original source... - Tikkanen M., Aro E.-M.: Thylakoid protein phosphorylation in dynamic regulation of photosystem II in higher plants. - BBA-Bioenergetics 1817: 232-238, 2012.
Go to original source... - Trauner D.: Richard Willstatter and the 1915 Nobel Prize in Chemistry. - Angew. Chem. Int. Ed. 54: 11910-11916, 2015.
Go to original source... - Wada M., Kong S.-G.: Actin-mediated movement of chloroplasts. - J. Cell Sci. 131: jcs210310, 2018.
Go to original source... - Welc R., Luchowski R., Grudzinski W. et al.: A key role of xanthophylls that are not embedded in proteins in regulation of the photosynthetic antenna function in plants, revealed by monomolecular layer studies. - J. Phys. Chem. B 120: 13056-13064, 2016.
Go to original source... - Welc R., Luchowski R., Kluczyk D. et al.: Mechanisms shaping the synergism of zeaxanthin and PsbS in photoprotective energy dissipation in the photosynthetic apparatus of plants. -Plant J. 107: 418-433, 2021.
Go to original source... - Willstätter R., Stoll A.: Untersuchungen über Chlorophyll: Methoden und Ergebnisse. Pp. 424. Springer, Berlin-Heidelberg 1913. [In German]
Go to original source... - Wood W.H.J., Johnson M.P.: Modeling the role of LHCII-LHCII, PSII-LHCII, and PSI-LHCII interactions in state transitions. -Biophys. J. 119: 287-299, 2020.
Go to original source... - Woodward R.B., Ayer W.A., Beaton J.M. et al.: The total synthesis of chlorophyll. - J. Am. Chem. Soc. 82: 3800-3802, 1960.
Go to original source... - Wu G.X., Ma L., Sayre R.T., Lee C.-H.: Identification of the optimal light harvesting antenna size for high-light stress mitigation in plants. - Front. Plant Sci. 11: 505, 2020.
Go to original source... - Xu P.Q., Tian L.J., Kloz M., Croce R.: Molecular insights into zeaxanthin-dependent quenching in higher plants. - Sci. Rep.-UK 5: 13679, 2015.
Go to original source... - Yamamoto H.Y., Nakayama T.O.M., Chichester C.O.: Studies on the light and dark interconversion of leaf xanthophylls. - Arch. Biochem. Biophys. 97: 168-173, 1962.
Go to original source... - Zhou J.T., Sekatskii S., Welc R. et al.: The role of xanthophylls in the supramolecular organization of the photosynthetic complex LHCII in lipid membranes studied by high-resolution imaging and nanospectroscopy. - BBA-Bioenergetics 1861: 148117, 2020.
Go to original source... - Zubik M., Luchowski R., Kluczyk D. et al.: Recycling of energy dissipated as heat accounts for high activity of photosystem II. - J. Phys. Chem. Lett. 11: 3242-3248, 2020.
Go to original source...




