Photosynthetica 2023, 61(4):473-482 | DOI: 10.32615/ps.2023.042

Monitoring the photosynthetic activity at single-cell level in Haematococcus lacustris

P.P. PATIL1, K. NAGY2, Á. ÁBRAHÁM2, 3, I. VASS1, M. SZABÓ1, 4
1 Institute of Plant Biology, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
2 Institute of Biophysics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
3 Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, 6720 Szeged, Hungary
4 Climate Change Cluster, University of Technology Sydney, Ultimo NSW 2007, Australia

Haematococcus lacustris is an important species of green algae because it produces the high-value carotenoid astaxanthin. Astaxanthin production is enhanced by various stress conditions causing the transformation of green vegetative cells to red cells with high amounts of astaxanthin, which plays various photoprotective and antioxidant roles. Although intensive research has been conducted to reveal the regulation of astaxanthin production, the photosynthetic capacity of the various cell forms is unresolved at the single-cell level. In this work, we characterized the photosynthetic and morphological changes of Haematococcus cells, using a combination of microfluidic tools and microscopic chlorophyll fluorescence imaging. We found marked but reversible changes in the variable chlorophyll fluorescence signatures upon the transformation of green cells to red cells, and we propose that the photosynthetic activity as revealed by single-cell chlorophyll fluorescence kinetics serves as a useful phenotypic marker of the different cell forms of Haematococcus.

Additional key words: chlorophyll fluorescence; Haematococcus lacustris; photoprotection; photosynthesis; photosystem II.

Received: October 6, 2023; Revised: November 22, 2023; Accepted: November 27, 2023; Prepublished online: December 18, 2023; Published: December 19, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
PATIL, P.P., NAGY, K., ÁBRAHÁM, Á., VASS, I., & SZABÓ, M. (2023). Monitoring the photosynthetic activity at single-cell level in Haematococcus lacustris . Photosynthetica61(SPECIAL ISSUE 2023-2), 473-482. doi: 10.32615/ps.2023.042
Download citation

Supplementary files

Download filePatil_3070_supplement.docx

File size: 4.7 MB

References

  1. Baker N.R.: Chlorophyll fluorescence: A probe of photosynthesis in vivo. - Annu. Rev. Plant Biol. 59: 89-113, 2008. Go to original source...
  2. Bashir F., Kovács S., Ábrahám Á. et al.: Viable protoplast formation of the coral endosymbiont alga Symbiodinium spp. in a microfluidics platform. - Lab Chip 22: 2986-2999, 2022. Go to original source...
  3. Borowitzka M.A.: High-value products from microalgae - their development and commercialisation. - J. Appl. Phycol. 25: 743-756, 2013. Go to original source...
  4. Boussiba S.: Carotenogenesis in the green alga Haematococcus pluvialis: Cellular physiology and stress response. - Physiol. Plantarum 108: 111-117, 2000. Go to original source...
  5. Brestic M., Zivcak M.: PSII fluorescence techniques for measurement of drought and high temperature stress signal in crop plants: protocols and applications. - In: Rout G.R., Das A.B. (ed.): Molecular Stress Physiology of Plants. Pp. 87-131. Springer, India 2013. Go to original source...
  6. Chekanov K., Lukyanov A., Boussiba S. et al.: Modulation of photosynthetic activity and photoprotection in Haematococcus pluvialis cells during their conversion into haematocysts and back. - Photosynth. Res. 128: 313-323, 2016. Go to original source...
  7. Cheng X., Qi Z., Burdyny T. et al.: Low pressure supercritical CO2 extraction of astaxanthin from Haematococcus pluvialis demonstrated on a microfluidic chip. - Bioresource Technol. 250: 481-485, 2018. Go to original source...
  8. Deák Z., Sass L., Kiss É. et al., Vass I.: Characterization of wave phenomena in the relaxation of flash-induced chlorophyll fluorescence yield in cyanobacteria. - BBA-Bioenergetics 1837: 1522-1532, 2014. Go to original source...
  9. Fratamico A., Tocquin P., Franck F.: The chlorophyll a fluorescence induction curve in the green microalga Haematococcus pluvialis: further insight into the nature of the P-S-M fluctuation and its relationship with the "low-wave" phenomenon at steady-state. - Photosynth. Res. 128: 271-285, 2016. Go to original source...
  10. Hagen C., Bornman J.F., Braune W.: Reversible lowering of modulated chlorophyll fluorescence after saturating flashes in Haematococcus lacustris (Volvocales) at room temperature. - Physiol. Plantarum 86: 593-599, 1992. Go to original source...
  11. Kakizono T., Kobayashi M., Nagai S.: Effect of carbon/nitrogen ratio on encystment accompanied with astaxanthin formation in a green alga, Haematococcus pluvialis. - J. Ferment. Bioeng. 74: 403-405, 1992. Go to original source...
  12. Kalaji H.M., Schansker G., Ladle R.J. et al.: Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. - Photosynth. Res. 122: 121-158, 2014. Go to original source...
  13. Kobayashi M., Kurimura Y., Kakizono T. et al.: Morphological changes in the life cycle of the green alga Haematococcus pluvialis. - J. Ferment. Bioeng. 84: 94-97, 1997. Go to original source...
  14. Krishna P.S., Morello G., Mamedov F.: Characterization of the transient fluorescence wave phenomenon that occurs during H2 production in Chlamydomonas reinhardtii. - J. Exp. Bot. 70: 6321-6336, 2019. Go to original source...
  15. Kwak H.S., Kim J.Y.H., Sim S.J.: A microreactor system for cultivation of Haematococcus pluvialis and astaxanthin production. - J. Nanosci. Nanotechnol. 15: 1618-1623, 2015. Go to original source...
  16. Larcher W., Neuner G.: Cold-induced sudden reversible lowering of in vivo chlorophyll fluorescence after saturating light pulses: A sensitive marker for chilling susceptibility. - Plant Physiol. 89: 740-742, 1989. Go to original source...
  17. Leu S., Boussiba S.: Advances in the production of high-value products by microalgae. - Ind. Biotechnol. 10: 169-183, 2014. Go to original source...
  18. Mascia F., Girolomoni L., Alcocer M.J.P. et al.: Functional analysis of photosynthetic pigment binding complexes in the green alga Haematococcus pluvialis reveals distribution of astaxanthin in Photosystems. - Sci. Rep.-UK 7: 16319, 2017. Go to original source...
  19. Mohammad Aslam S., Patil P.P., Vass I., Szabó M.: Heat-induced photosynthetic responses of Symbiodiniaceae revealed by flash-induced fluorescence relaxation kinetics. - Front. Mar. Sci. 9: 932355, 2022. Go to original source...
  20. Munekage Y., Hashimoto M., Miyake C. et al.: Cyclic electron flow around photosystem I is essential for photosynthesis. - Nature 429: 579-582, 2004. Go to original source...
  21. Patil P.P., Mohammad Aslam S., Vass I., Szabó M.: Characterization of the wave phenomenon of flash-induced chlorophyll fluorescence in Chlamydomonas reinhardtii. - Photosynth. Res. 152: 235-244, 2022b. Go to original source...
  22. Patil P.P., Vass I., Szabó M.: Characterization of the wave phenomenon in flash-induced fluorescence relaxation and its application to study cyclic electron pathways in microalgae. - Int. J. Mol. Sci. 23: 4927, 2022a. Go to original source...
  23. Ralph P.J., Gademann R.: Rapid light curves: A powerful tool to assess photosynthetic activity. - Aquat. Bot. 82: 222-237, 2005. Go to original source...
  24. Roach T., Fambri A., Ballesteros D.: Humidity and light modulate oxygen-induced viability loss in dehydrated Haematococcus lacustris cells. - Oxygen 2: 503-517, 2022. Go to original source...
  25. Schreiber U.: Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: An overview. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Pp. 279-319. Springer, Dordrecht 2004. Go to original source...
  26. Scibilia L., Girolomoni L., Berteotti S. et al.: Photosynthetic response to nitrogen starvation and high light in Haematococcus pluvialis. - Algal Res. 12: 170-181, 2015. Go to original source...
  27. Shikanai T., Endo T., Hashimoto T. et al.: Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I. - PNAS 95: 9705-9709, 1998. Go to original source...
  28. Sipka G., Magyar M., Mezzetti A. et al.: Light-adapted charge-separated state of photosystem II: structural and functional dynamics of the closed reaction center. - Plant Cell 33: 1286-1302, 2021. Go to original source...
  29. Solovchenko A., Lukyanov A., Vasilieva S., Lobakova E.: Chlorophyll fluorescence as a valuable multitool for microalgal biotechnology. - Biophys. Rev. 14: 973-983, 2022. Go to original source...
  30. Solovchenko A.E.: Recent breakthroughs in the biology of astaxanthin accumulation by microalgal cell. - Photosynth. Res. 125: 437-449, 2015. Go to original source...
  31. Széles E., Kuntam S., Vidal-Meireles A. et al.: Single-cell microfluidics in combination with chlorophyll a fluorescence measurements to assess the lifetime of the Chlamydomonas PSBO protein. - Photosynthetica 61: 417-424, 2023. Go to original source...
  32. Széles E., Nagy K., Ábrahám Á. et al.: Microfluidic platforms designed for morphological and photosynthetic investigations of Chlamydomonas reinhardtii on a single-cell level. - Cells 11: 285, 2022. Go to original source...
  33. Tan S., Cunningham Jr. F.X., Youmans M. et al.: Cytochrome f loss in astaxanthin-accumulating red cells of Haematococcus pluvialis (Chlorophyceae): comparison of photosynthetic activity, photosynthetic enzymes, and thylakoid membrane polypeptides in red and green cells. - J. Phycol. 31: 897-905, 1995. Go to original source...
  34. Tsuyama M., Shibata M., Kawazu T., Kobayashi Y.: An analysis of the mechanism of the low-wave phenomenon of chlorophyll fluorescence. - Photosynth. Res. 81: 67-76, 2004. Go to original source...
  35. Xyländer M., Hagen C.: 'Low-waves' in chlorophyll fluorescence kinetics indicate deprivation of bicarbonate. - Photosynth. Res. 72: 255-262, 2002. Go to original source...
  36. Yamori W., Shikanai T., Makino A.: Photosystem I cyclic electron flow via chloroplast NADH dehydrogenase-like complex performs a physiological role for photosynthesis at low light. - Sci. Rep.-UK 5: 13908, 2015. Go to original source...
  37. Zhang L., Su F., Zhang C. et al.: Changes of photosynthetic behaviors and photoprotection during cell transformation and astaxanthin accumulation in Haematococcus pluvialis grown outdoors in tubular photobioreactors. - Int. J. Mol. Sci. 18: 33, 2017. Go to original source...