Photosynthetica 2024, 62(1):16-26 | DOI: 10.32615/ps.2023.039

Exogenous calcium-alleviating effect on sodium salt-induced phytotoxicity associated with changes in photosynthetic characteristics of wheat seedlings

Y. ZHANG1, G.M. LIU1, Z.F. WANG2, A.M. ZHANG1, Y.L. YANG1
College of Life Science, Northwest Normal University, 730070 Lanzhou, China1
College of Bioengineering and Technology, Tianshui Normal University, 741000 Tianshui, China2

To evaluate the Ca-alleviating effect on sodium salt-induced phytotoxicity, wheat (Triticum aestivum L.) cultivar Xihan 3 seedlings were treated with 150 mM NaCl, CaCl2 (0.1, 0.5, and 1 mM), Ca2+-channel blocker LaCl3, and/or Ca2+ chelator, ethylene glycol tetraacetic acid (EGTA) alone or in combination, to investigate seedling growth and photosynthetic characteristics. NaCl (150 mM) exposure alone suppressed a growth of seedling, weakened photosynthetic efficiency and chlorophyll (Chl) fluorescence parameters, reduced photosynthetic pigments, Ca2+ and calmodulin (CaM) contents, and downregulated TaCaM expression in wheat leaves. The opposite changes of these parameters were caused by 0.5 or 1 mM CaCl2 treatments alone. Moreover, 0.5 or 1 mM CaCl2 application effectively alleviated sodium salt-induced changes of these parameters, which was blocked by LaCl3 or EGTA. Therefore, exogenous Ca presence effectively promoted the growth of NaCl-stressed wheat seedlings through the enhancement of photosynthesis and Chl synthesis mediated by the Ca-CaM signal.

Additional key words: calcium; chlorophyll fluorescence parameters; photosynthetic characteristic; photosynthetic pigment; sodium salt stress; Triticum aestivum.

Received: May 4, 2023; Revised: September 19, 2023; Accepted: October 16, 2023; Prepublished online: November 6, 2023; Published: February 22, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
ZHANG, Y., LIU, G.M., WANG, Z.F., ZHANG, A.M., & YANG, Y.L. (2024). Exogenous calcium-alleviating effect on sodium salt-induced phytotoxicity associated with changes in photosynthetic characteristics of wheat seedlings. Photosynthetica62(1), 16-26. doi: 10.32615/ps.2023.039
Download citation

References

  1. Akhter N., Aqeel M., Shahnaz M.M. et al.: Physiological homeostasis for ecological success of Typha (Typha domingensis Pers.) populations in saline soils. - Physiol. Mol. Biol. Plants 27: 687-701, 2021. Go to original source...
  2. Bouché N., Yellin A., Snedden W.A., Fromm H.: Plant-specific calmodulin-binding proteins. - Annu. Rev. Plant Biol. 56: 435-466, 2005. Go to original source...
  3. Chang X., Sun J., Liu L. et al.: Transcriptome analysis of differentially expressed genes in wild jujube seedlings under salt stress. - J. Am. Soc. Hortic. Sci. 145: 174-185, 2020. Go to original source...
  4. Cha-um S., Singh H.P., Samphumphuang T., Kirdmanee C.: Calcium-alleviated salt tolerance in indica rice (Oryza sativa L. spp. indica): physiological and morphological changes. - Aust. J. Crop Sci. 6: 176-182, 2012.
  5. Che Y.H., Yao T.T., Wang H.R. et al.: Potassium ion regulates hormone, Ca2+ and H2O2 signal transduction and antioxidant activities to improve salt stress resistance in tobacco. - Plant Physiol. Biochem. 186: 40-51, 2022. Go to original source...
  6. Chen H.-J., Lin Z.-W., Huang G.-J., Lin Y.-H.: Sweet potato calmodulin SPCAM is involved in salt stress-mediated leaf senescence, H2O2 elevation and senescence-associated gene expression. - J. Plant Physiol. 169: 1892-1902, 2012. Go to original source...
  7. Dashtebani F., Hajiboland R., Aliasgharzad N.: Characterization of salt-tolerance mechanisms in mycorrhizal (Claroideoglomus etunicatum) halophytic grass, Puccinellia distans. - Acta Physiol. Plant. 36: 1713-1726, 2014. Go to original source...
  8. Dayod M., Tyerman S.D., Leigh R.A., Gilliham M.: Calcium storage in plants and the implications for calcium biofortification. - Protoplasma 247: 215-231, 2010. Go to original source...
  9. dos Santos Araújo G., de Souza Miranda R., Mesquita R.O. et al.: Nitrogen assimilation pathways and ionic homeostasis are crucial for photosynthetic apparatus efficiency in salt-tolerant sunflower genotypes. - Plant Growth Regul. 86: 375-388, 2018.
  10. Dugasa M.T., Cao F., Ibrahim W., Wu F.: Differences in physiological and biochemical characteristics in response to single and combined drought and salinity stresses between wheat genotypes differing in salt tolerance. - Physiol. Plantarum 165: 134-143, 2019. Go to original source...
  11. Frukh A., Siddiqi T.O., Khan M.I.R., Ahmad A.: Modulation in growth, biochemical attributes and proteome profile of rice cultivars under salt stress. - Plant Physiol. Biochem. 146: 55-70, 2020. Go to original source...
  12. Ganesan V., Thomas G.: Salicylic acid response in rice: influence of salicylic acid on H2O2 accumulation and oxidative stress. - Plant Sci. 160: 1095-1106, 2001. Go to original source...
  13. Gu J.F., Zhou Z.X., Li Z.K. et al.: Rice (Oryza sativa L.) with reduced chlorophyll content exhibit higher photosynthetic rate and efficiency, improved canopy light distribution, and greater yields than normally pigmented plants. - Field Crop. Res. 200: 58-70, 2017. Go to original source...
  14. Guo H.X., Dong Q., Li S.M. et al.: Effects of exogenous calcium on growth, chlorophyll fluorescence characteristics and antioxidant system of Fraxinus malacophylla seedlings. - Plant Physiol. Biochem. 201: 107860, 2023. Go to original source...
  15. Han F., Sun M., He W. et al.: Ameliorating effects of exogenous Ca2+ on foxtail millet seedlings under salt stress. - Funct. Plant Biol. 46: 407-416, 2019. Go to original source...
  16. Han W., Xu X.W., Li L. et al.: Chlorophyll a fluorescence responses of Haloxylon ammodendron seedlings subjected to progressive saline stress in the Tarim desert highway ecological shelterbelt. - Photosynthetica 48: 635-640, 2010. Go to original source...
  17. Han X.Z., Tohge T., Lalor P. et al.: Phytochrome A and B regulate primary metabolism in Arabidopsis leaves in response to light. - Front. Plant Sci. 8: 1394, 2017. Go to original source...
  18. Hochmal A.K., Schulze S., Trompelt K., Hippler M.: Calcium-dependent regulation of photosynthesis. - BBA-Bioenergetics 1847: 993-1003, 2015. Go to original source...
  19. Hörtensteiner S., Kräutler B.: Chlorophyll breakdown in higher plants. - BBA-Bioenergetics 1807: 977-988, 2011. Go to original source...
  20. Hu C.-H., Zheng Y., Tong C.-L., Zhang D.-J.: Effects of exogenous melatonin on plant growth, root hormones and photosynthetic characteristics of trifoliate orange subjected to salt stress. - Plant Growth Regul. 97: 551-558, 2022. Go to original source...
  21. Hu T., Chen K., Hu L.X. et al.: H2O2 and Ca2+-based signaling and associated ion accumulation, antioxidant systems and secondary metabolism orchestrate the response to NaCl stress in perennial ryegrass. - Sci. Rep.-UK 6: 36396, 2016. Go to original source...
  22. Huang L.Y., Li Z.Z., Pan S.B. et al.: Ameliorating effects of exogenous Ca on the photosynthetic physiology of honeysuckle (Lonicera japonica) under salt stress. - Funct. Plant Biol. 46: 1103-1113, 2019. Go to original source...
  23. Hussain S., Zhang J.-H., Zhong C. et al.: Effects of salt stress on rice growth, development characteristics, and the regulating ways: a review. - J. Integr. Agr. 16: 2357-2374, 2017. Go to original source...
  24. Hussain T., Li J.S., Feng X.H. et al.: Salinity induced alterations in photosynthetic and oxidative regulation are ameliorated as a function of salt secretion. - J. Plant Res. 134: 779-796, 2021. Go to original source...
  25. Jones R.G.W., Lunt O.R.: The function of calcium in plant. - Bot. Rev. 33: 407-426, 1967. Go to original source...
  26. Jusovic M., Velitchkova M.Y., Misheva S.P. et al.: Photosynthetic responses of a wheat mutant (Rht-B1c) with altered DELLA proteins to salt stress. - J. Plant Growth Regul. 37: 645-656, 2018. Go to original source...
  27. Kafi M.: The effects of salinity and light on photosynthesis, respiration and chlorophyll fluorescence in salt-tolerant and salt-sensitive wheat (Triticum aestivum L.) cultivars. - J. Agr. Sci. Tech. 11: 535-547, 2009.
  28. Kang J., Zhao W., Zheng Y. et al.: Calcium chloride improves photosynthesis and water status in the C4 succulent xerophyte Haloxylon ammodendron under water deficit. - Plant Growth Regul. 82: 467-478, 2017. Go to original source...
  29. Legocka J., Sobieszczuk-Nowicka E.: Calcium variously mediates the effect of cytokinin on chlorophyll and LHCPII accumulation during greening in barley leaves and cucumber cotyledons. - Acta Biol. Cracov. Bot. 56: 27-34, 2014. Go to original source...
  30. León A.P., Frezza D., Logegaray V.R. et al.: Calcium chloride dip and postharvest behavior of butter head lettuce minimally processed. - Acta Hortic. 875: 191-204, 2009. Go to original source...
  31. Li H.R., Li H.L., Wang H.G. et al.: [Further study on the method of leaf area calculation in winter wheat.] - J. Triticeae Crop. 38: 455-459, 2018b. [In Chinese]
  32. Li Q., Lv L.R., Teng Y.J. et al.: Apoplastic hydrogen peroxide and superoxide anion exhibited different regulatory functions in salt-induced oxidative stress in wheat leaves. - Biol. Plantarum 62: 750-762, 2018a. Go to original source...
  33. Li Y.Q., Zhang H.D., Dong F.Y. et al.: Multiple roles of wheat calmodulin genes during stress treatment and TaCAM2-D as a positive regulator in response to drought and salt tolerance. - Int. J. Biol. Macromol. 220: 985-997, 2022. Go to original source...
  34. Lionetti D., Agapie T.: How calcium affects oxygen formation. - Nature 513: 495-496, 2014. Go to original source...
  35. Lu C.M., Jiang G.M., Wang B.S., Kuang T.Y.: Photosystem II photochemistry and photosynthetic pigment composition in salt-adapted halophyte Artimisia anethifolia grown under outdoor conditions. - J. Plant Physiol. 160: 403-408, 2003. Go to original source...
  36. Lu T., Yu H., Li Q. et al.: Improving plant growth and alleviating photosynthetic inhibition and oxidative stress from low-light stress with exogenous GR24 in tomato (Solanum lycopersicum L.) seedlings. - Front. Plant Sci. 10: 490, 2019. Go to original source...
  37. Ma Y., Wang P., Zhou T. et al.: Role of Ca2+ in phenolic compound metabolism of barley (Hordeum vulgare L.) sprouts under NaCl stress. - J. Sci. Food Agr. 99: 5176-5186, 2019. Go to original source...
  38. Miao L.-F., Li D.-D., Yang F., Tan Z.-H.: Sex-specific responses of Populus deltoids to combined salinity and calcium under waterlogging conditions. - Biol. Plantarum 64: 753-763, 2020. Go to original source...
  39. Mukhopadhyay R., Sarkar B., Jat H.S. et al.: Soil salinity under climate change: Challenges for sustainable agriculture and food security. - J. Environ. Manage. 280: 111736, 2021. Go to original source...
  40. Nomura H., Komori T., Uemura S. et al.: Chloroplast-mediated activation of plant immune signalling in Arabidopsis. - Nat. Commun. 3: 926, 2012. Go to original source...
  41. Ouerghi Z., Cornic G., Roudani M. et al.: Effect of NaCl on photosynthesis of two wheat species (Triticum durum and T. aestivum) differing in their sensitivity to salt stress. - J. Plant Physiol. 156: 335-340, 2000. Go to original source...
  42. Patanè C., Saita A., Sortino O.: Comparative effects of salt and water stress on seed germination and early embryo growth in two cultivars of sweet sorghum. - J. Agron. Crop Sci. 199: 30-37, 2013. Go to original source...
  43. Rasouli F., Kiani-Pouya A., Tahir A. et al.: A comparative analysis of stomatal traits and photosynthetic responses in closely related halophytic and glycophytic species under saline conditions. - Environ. Exp. Bot. 181: 104300, 2021. Go to original source...
  44. Reddy M.P., Vora A.B.: Changes in pigment composition, Hill reaction activity and saccharides metabolism in bajra (Pennisetum typhoides S & H) leaves under NaCl salinity. - Photosynthetica 20: 50-55, 1986.
  45. Ritchie R.J., Sma-Air S., Limsathapornkul N. et al.: Photosynthetic electron transport rate (ETR) in the littoral herb Launaea sarmentosa known as mole crab in Thailand. - Photosynth. Res. 150: 327-341, 2021. Go to original source...
  46. Sankari M., Hridya H., Sneha P. et al.: Implication of salt stress induces changes in pigment production, antioxidant enzyme activity, and qRT-PCR expression of genes involved in the biosynthetic pathway of Bixa orellana L. - Funct. Integr. Genomic. 19: 565-574, 2019. Go to original source...
  47. Schwartz A., Ilan N., Grantz D.A.: Calcium effects on stomatal movement in Commelina communis L.: Use of EGTA to modulate stomatal response to light, KCl and CO2. - Plant Physiol. 87: 583-587, 1988. Go to original source...
  48. Sehar Z., Masood A., Khan N.A.: Nitric oxide reverses glucose-mediated photosynthetic repression in wheat (Triticum aestivum L.) under salt stress. - Environ. Exp. Bot. 161: 277-289, 2019. Go to original source...
  49. Shafi M., Bakht J., Hassan M.J. et al.: Effect of cadmium and salinity stresses on growth and antioxidant enzyme activities of wheat (Triticum aestivum L.). - B. Environ. Contam. Tox. 82: 772-776, 2009. Go to original source...
  50. Sheteiwy M.S., An J.Y., Yin M.Q. et al.: Cold plasma treatment and exogenous salicylic acid priming enhances salinity tolerance of Oryza sativa seedlings. - Protoplasma 256: 79-99, 2019. Go to original source...
  51. Shu S., Yuan L.-Y., Guo S.-R. et al.: Effects of exogenous spermine on chlorophyll fluorescence, antioxidant system and ultrastructure of chloroplasts in Cucumis sativus L. under salt stress. - Plant Physiol. Biochem. 63: 209-216, 2013. Go to original source...
  52. Tabatabaei S., Ehsanzadeh P.: Photosynthetic pigments, ionic and antioxidative behaviour of hulled tetraploid wheat in response to NaCl. - Photosynthetica 54: 340-350, 2016. Go to original source...
  53. Vafadar F., Amooaghaie R., Ehsanzadeh P. et al.: Melatonin and calcium modulate the production of rosmarinic acid, luteolin, and apigenin in Dracocephalum kotschyi under salinity stress. - Phytochemistry 177: 112422, 2020. Go to original source...
  54. Villalobo A., Berchtold M.W.: The role of calmodulin in tumor cell migration, invasiveness, and metastasis. - Int. J. Mol. Sci. 21: 765, 2020. Go to original source...
  55. Wang C., Teng Y.B., Zhu S. et al.: NaCl- and cold-induced stress activate different Ca2+-permeable channels in Arabidopsis thaliana. - Plant Growth Regul. 87: 217-225, 2019a. Go to original source...
  56. Wang Q., Yang S., Wan S.B., Li X.G.: The significance of calcium in photosynthesis. - Int. J. Mol. Sci. 20: 1353, 2019b. Go to original source...
  57. Wu D., Chen C.L., Liu Y.F. et al.: Iso-osmotic calcium nitrate and sodium chloride stresses have differential effects on growth and photosynthetic capacity in tomato. - Sci. Hortic.-Amsterdam 312: 111883, 2023. Go to original source...
  58. Xu D., Wang W., Gao T. et al.: Calcium alleviates decreases in photosynthesis under salt stress by enhancing antioxidant metabolism and adjusting solute accumulation in Calligonum mongolicum. - Conserv. Physiol. 5: cox060, 2017. Go to original source...
  59. Xu Y.L., Zhang Y., Li J.M. et al.: Comparison of antioxidant enzyme activity and gene expression in two new spring wheat cultivars treated with salinity. - Biol. Plantarum 65: 131-144, 2021. Go to original source...
  60. Yan F.Y., Zhang J.Y., Li W.W. et al.: Exogenous melatonin alleviates salt stress by improving leaf photosynthesis in rice seedlings. - Plant Physiol. Biochem. 163: 367-375, 2021. Go to original source...
  61. Yang F., Dong F.-S., Hu F.-H. et al.: Genome-wide identification and expression analysis of the calmodulin-binding transcription activator (CAMTA) gene family in wheat (Triticum aestivum L.). - BMC Genet. 21: 105, 2020. Go to original source...
  62. Yang Y.J., Yu L., Wang L.P., Guo S.R.: Bottle gourd rootstock-grafting promotes photosynthesis by regulating the stomata and non-stomata performances in leaves of watermelon seedlings under NaCl stress. - J. Plant Physiol. 186-187: 50-58, 2015. Go to original source...
  63. Yin Z.P., Lu J.Z., Meng S.D. et al.: Exogenous melatonin improves salt tolerance in tomato by regulating photosynthetic electron flux and the ascorbate-glutathione cycle. - J. Plant Interact. 14: 453-463, 2019. Go to original source...
  64. Yuan L., Shu S., Sun J. et al.: Effects of 24-epibrassinolide on the photosynthetic characteristics, antioxidant system, and chloroplast ultrastructure in Cucumis sativus L. under Ca(NO3)2 stress. - Photosynth. Res. 112: 205-214, 2012. Go to original source...
  65. Zeng H.Q., Xu L.Q., Singh A. et al.: Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses. - Front Plant Sci. 6: 600, 2015. Go to original source...
  66. Zhang J.M., Deng L., Jiang H. et al.: The effects of elevated CO2, elevated O3, elevated temperature, and drought on plant leaf gas exchanges: a global meta-analysis of experimental studies. - Environ. Sci. Pollut. Res. 28: 15274-15289, 2021. Go to original source...
  67. Zhao G.Q., Ma B.L., Ren C.Z.: Growth, gas exchange, chlorophyll fluorescence, and ion content of naked oat in response to salinity. - Crop Sci. 47: 123-131, 2007. Go to original source...
  68. Zhao X., Chen T.T., Feng B.H. et al.: Non-photochemical quenching plays a key role in light acclimation of rice plants differing in leaf color. - Front. Plant Sci. 7: 1968, 2017. Go to original source...
  69. Zhou X.T., Zhao H.L., Cao K. et al.: Beneficial roles of melatonin on redox regulation of photosynthetic electron transport and synthesis of D1 protein in tomato seedlings under salt stress. - Front. Plant Sci. 7: 1823, 2016. Go to original source...
  70. Zhu Y.-F., Wu Y.-X., Hu Y. et al.: Tolerance of two apple rootstocks to short-term salt stress: focus on chlorophyll degradation, photosynthesis, hormone and leaf ultrastructures. - Acta Physiol. Plant. 41: 87, 2019. Go to original source...
  71. Zielinski R.E.: Calmodulin and calmodulin-binding proteins in plants. - Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 697-725, 1998. Go to original source...