Photosynthetica 2024, 62(1):44-57 | DOI: 10.32615/ps.2024.005

Phosphorus-deficiency stress in cucumber (Cucumis sativus L.) plants: early detection based on chosen physiological parameters and statistical analyses

L. SIECZKO1, K. KOWALCZYK2, J. GAJC-WOLSKA2, W. KOWALCZYK3, P. DˇBROWSKI4, W. BORUCKI5, M. JANASZEK-MAŃKOWSKA6, J.L. PRZYBYŁ2, J. MOJSKI7, H.M. KALAJI8
1 Department of Biometry, Institute of Agriculture, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska Street, 02-776 Warsaw, Poland
2 Department of Vegetable and Medicinal Plants, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska Street, 02-776 Warsaw, Poland
3 The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3 Street, 96-100 Skierniewice, Poland
4 Department of Environmental Management, Institute of Environmental Engineering, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska Street, 02-776 Warsaw, Poland
5 Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska Street, 02-776 Warsaw, Poland
6 Department of Fundamentals of Engineering and Power Engineering, Institute of Mechanical Engineering, Warsaw University of Life Sciences-SGGW, 164 Nowoursynowska Street, 02-787 Warsaw, Poland
7 Foundation Zielona Infrastruktura, Wiatraki 3E Street, 21-400 Łuków, Poland
8 Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska Street, 02-776 Warsaw, Poland

Enhancing plant productivity and mitigating the impact of environmental stressors require a thorough understanding of phytomonitoring and physiological features indicative of plant health. This study delves into the response of cucumber plants to phosphorus deficiency employing diverse tools to identify key indicators and unravel the underlying mechanisms. Under phosphorus deficiency, a rapid response in older leaves was observed through the analysis of chlorophyll and carotenoid content. Molecular-level changes in photosynthetic performance were found to be age-dependent, as revealed by multidimensional statistical methods, highlighting the interconnectedness of examined features with the experimental setup timing. This can assist in understanding the long-term fluctuations in traits linked to phosphorus deficiency, facilitating early detection of stress.

Additional key words: chlorophyll fluorescence; confocal microscopy; greenhouse cucumber; leaf area index; multivariate statistical analyses; photosynthetic pigment.

Received: August 9, 2023; Revised: January 3, 2024; Accepted: January 12, 2024; Prepublished online: January 26, 2024; Published: February 22, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
SIECZKO, L., KOWALCZYK, K., GAJC-WOLSKA, J., KOWALCZYK, W., DˇBROWSKI, P., BORUCKI, W., ... KALAJI, H.M. (2024). Phosphorus-deficiency stress in cucumber (Cucumis sativus L.) plants: early detection based on chosen physiological parameters and statistical analyses. Photosynthetica62(1), 44-57. doi: 10.32615/ps.2024.005
Download citation

Supplementary files

Download fileSieczko_3052_supplement.docx

File size: 617.09 kB

References

  1. Adobe Systems Inc.: Adobe® RGB (1998) Color Image Encoding. Version 2005-05. Adobe Systems Incorporated, San Jose 2005. Available at: https://www.adobe.com/digitalimag/pdfs/AdobeRGB1998.pdf.
  2. AOAC: Official Methods of Analysis of AOAC International. 19th Edition. AOAC International, Gaithersburg 2012.
  3. Bayoumi Y., Abd-Alkarim E., El-Ramady H. et al.: Grafting improves fruit yield of cucumber plants grown under combined heat and soil salinity stresses. - Horticulturae 7: 61, 2021. Go to original source...
  4. Borch K., Bouma T.J., Lynch J.P., Brown K.M.: Ethylene: a regulator of root architectural responses to soil phosphorus availability. - Plant Cell Environ. 22: 425-431, 1999. Go to original source...
  5. Cakmak I., Hengeler C., Marschner H.: Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency. - J. Exp. Bot. 45: 1245-1250, 1994. Go to original source...
  6. Cetner M.D., Kalaji H.M., Borucki W., Kowalczyk K.: Phosphorus deficiency affects the I-step of chlorophyll a fluorescence induction curve of radish. - Photosynthetica 58: 671-681, 2020. Go to original source...
  7. CIE: Colorimetry. 3rd Edition. CIE 015:2004. Pp. 79. International Commission on Illumination, 2004. Available at: https://cie.co.at/publications/colorimetry-3rd-edition.
  8. Ciereszko I., Gniazdowska A., Mikulska M., Rychter A.M.: Assimilate translocation in bean plants (Phaseolus vulgaris L.) during phosphate deficiency. - J. Plant Physiol. 149: 343-348, 1996. Go to original source...
  9. Dabu X., Li S., Cai Z. et al.: The effect of potassium on photosynthetic acclimation in cucumber during CO2 enrichment. - Photosynthetica 57: 640-645, 2019. Go to original source...
  10. Daneshgar S., Callegari A., Capodaglio A.G., Vaccari D.: The potential phosphorus crisis: resource conservation and possible escape technologies: a review. - Resources 7: 37, 2018. Go to original source...
  11. Duff S.M.G., Sarath G., Plaxton W.C.: The role of acid phosphatases in plant phosphorus metabolism. - Physiol. Plantarum 90: 791-800, 1994. Go to original source...
  12. Epstein E.: Silicon: its manifold roles in plants. - Ann. Appl. Biol. 155: 155-160, 2009. Go to original source...
  13. Estaji A., Kalaji H.M., Karimi H.R. et al.: How glycine betaine induces tolerance of cucumber plants to salinity stress? - Photosynthetica 57: 753-761, 2019. Go to original source...
  14. Fredeen A.L., Rao I.M., Terry N.: Influence of phosphorus nutrition on growth and carbon partitioning in Glycine max. - Plant. Physiol. 89: 225-230, 1989. Go to original source...
  15. Haushild T., Ciereszko I., Maleszewski S.: Influence of phosphorus deficiency on post-irradiation burst of CO2 from bean (Phaseolus vulgaris L.) leaves. - Photosynthetica 32: 1-9, 1996.
  16. Horaczek T., D±browski P., Kalaji H.M. et al.: JIP-test as a tool for early detection of the macronutrients deficiency in Miscanthus plants. - Photosynthetica 58: 507-517, 2020. Go to original source...
  17. Jacob J., Lawlor D.W.: Stomatal and mesophyll limitations of photosynthesis in phosphate deficient sunflower, maize and wheat plants. - J. Exp. Bot. 42: 1003-1011, 1991. Go to original source...
  18. Kamerlin S.C.L., Sharma P.K., Prasad R.B., Warshel A.: Why nature really chose phosphate. - Q. Rev. Biophys. 46: 1-132, 2013. Go to original source...
  19. Kautsky H., Hirsch A.: Neue Versuche zur Kohlensäure­assimilation. - Naturwissenschaften 19: 964, 1931. Go to original source...
  20. Kleczkowski L.A.: Inhibitors of photosynthetic enzymes/carriers and metabolism. - Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 339-367, 1994. Go to original source...
  21. Kondracka A., Rychter A.M.: The role of Pi recycling processes during photosynthesis in phosphate-deficient bean plants. - J. Exp. Bot. 48: 1461-1468, 1997. Go to original source...
  22. Liu B.B., Li M., Li Q.M. et al.: Combined effects of elevated CO2 concentration and drought stress on photosynthetic performance and leaf structure of cucumber (Cucumis sativus L.) seedlings. - Photosynthetica 56: 942-952, 2018. Go to original source...
  23. Marschner P., Rengel Z.: Nutrient availability in soils. - In: Marschner P. (ed.): Marschnerꞌs Mineral Nutrition of Higher Plants. 3rd Edition. Pp. 315-330. Academic Press, Amsterdam 2012. Go to original source...
  24. Mollier A., Pellerin S.: Maize root system growth and development as influenced by phosphorus deficiency. - J. Exp. Bot. 50: 487-497, 1999. Go to original source...
  25. Pagliari P.H., Kaiser D.E., Rosen C.J.: Understanding phosphorus in Minnesota soils. University of Minnesota Extension, 2018. Available at: https://extension.umn.edu/phosphorus-and-potassium/understanding-phosphorus-minnesota-soils.
  26. Papageorgiou G., Govindjee G.: Light-induced changes in the fluorescence yield of chlorophyll a in vivo: I. Anacystis nidulans. - Biophys. J. 8: 1299-1315, 1968. Go to original source...
  27. Raghothama K.G.: Phosphate acquisition. - Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 665-693, 1999. Go to original source...
  28. Raghothama K.G.: Phosphate transport and signaling. - Curr. Opin. Plant Biol. 3: 182-187, 2000. Go to original source...
  29. Rychter A.M., Mikulska M.: The relationship between status and cyanide-resistant respiration in bean roots. - Physiol. Plantarum 79: 663-667, 1990. Go to original source...
  30. Saleque M.A., Abedin M.J., Ahmed Z.U. et al.: Influences of phosphorus deficiency on the uptake of nitrogen, potassium, calcium, magnesium, sulfur, and zinc in lowland rice varieties. - J. Plant Nutr. 24: 1621-1632, 2001. Go to original source...
  31. Schanda J.: Colorimetry: Understanding the CIE System. Pp. 459. John Wiley & Sons, Hoboken 2007. Go to original source...
  32. Sieczko L., D±browski P., Kowalczyk K. et al.: Early detection of phosphorus deficiency stress in cucumber at the cellular level using chlorophyll fluorescence signals. - J. Water Land Dev. 2022: 176-186, 2022. Go to original source...
  33. Silva O.N., Lobato A.K.S., Ávila F.W. et al.: Silicon-induced increase in chlorophyll is modulated by the leaf water potential in two water-deficient tomato cultivars. - Plant Soil Environ. 58: 481-486, 2012. Go to original source...
  34. Taiz L., Zeiger E., Møller I.M., Murphy A.: Plant Physiology and Development. 6th Edition. Pp. 761. Sinauer Associates Inc., Sunderland 2014.
  35. Tseng Y.-C., Chu S.-W.: High spatio-temporal-resolution detection of chlorophyll fluorescence dynamics from a single chloroplast with confocal imaging fluorometer. - Plant Methods 13: 43, 2017. Go to original source...
  36. Usuda H., Shimogawara K.: Phosphate deficiency in maize. I. Leaf phosphate status, growth, photosynthesis and carbon partitioning. - Plant Cell Physiol. 32: 497-504, 1991.
  37. Vance C.P., Uhde-Stone C., Allan D.L.: Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. - New Phytol. 157: 423-447, 2003. Go to original source...
  38. Yan N., Zhang Y.L., Xue H.M. et al.: Changes in plant growth and photosynthetic performance of Zizania latifolia exposed to different phosphorus concentrations under hydroponic condition. - Photosynthetica 53: 630-635, 2015. Go to original source...
  39. Yue X.L., Liu X.F., Fang S.Z.: Influence of nitrogen and phosphorus additions on parameters of photosynthesis and chlorophyll fluorescence in Cyclocarya paliurus seedlings. - Photosynthetica 61: 318-327, 2023. Go to original source...