Photosynthetica 2024, 62(1):71-78 | DOI: 10.32615/ps.2024.009
Effect of cryptochrome 1 deficiency and spectral composition of light on photosynthetic processes in A. thaliana under high-intensity light exposure
- 1 Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, 142290 Moscow Region, Russia
- 2 K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
- 3 Faculty of Engineering and Natural Sciences, Bahçeşehir University, Istanbul, Turkey
The role of cryptochrome 1 in photosynthetic processes and pro-/antioxidant balance in the Arabidopsis thaliana plants was studied. Wild type (WT) and hy4 mutant deficient in cryptochrome 1 grown for 20 d under red (RL, 660 nm) and blue (BL, 460 nm) light at an RL:BL = 4:1 ratio were kept for 3 d in different lights: RL:BL = 4:1, RL:BL:GL = 4:1:0.3 (GL - green light, 550 nm), and BL, then were exposed to high irradiance (4 h). Activity of PSII and the rate of photosynthesis in WT and hy4 decreased under the high irradiance in all spectral variants but under BL stronger decrease in the activity was found in the hy4 mutant than in WT. We assumed that lowered resistance of photosynthetic apparatus in the hy4 mutant may be associated with the low activity of the main antioxidant enzymes and reduced content of low-molecular-mass antioxidants in the mutant compared to the WT.
Additional key words: Arabidopsis thaliana; cryptochrome; high-intensity light; photosynthesis; pro-, antioxidant balance.

Received: October 21, 2023; Revised: December 28, 2023; Accepted: January 24, 2024; Prepublished online: February 5, 2024; Published: February 22, 2024 Show citation
| ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Ahmad M., Cashmore A.R.: HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. - Nature 366: 162-166, 1993.
Go to original source... - Allakhverdiev S.I., Kreslavski V.D., Zharmukhamedov S.K. et al.: Chlorophylls d and f and their role in primary photosynthetic processes of cyanobacteria. - Biochemistry-Moscow 81: 201-212, 2016.
Go to original source... - Balakhnina T.I., Nadezhkina E.S.: Effect of selenium on growth and antioxidant capacity of Triticum aestivum L. during development of lead-induced oxidative stress. - Russ. J. Plant Physiol. 64: 215-223, 2017.
Go to original source... - Carvalho R.F., Campos M.L., Azevedo R.A.: The role of phytochrome in stress tolerance. - J. Integr. Plant Biol. 53: 920-929, 2011.
Go to original source... - Chaves I., Pokorny R., Byrdin M. et al.: The cryptochromes: blue light photoreceptors in plants and animals. - Annu. Rev. Plant Biol. 62: 335-364, 2011.
Go to original source... - D'Amico-Damião V., Carvalho R.F.: Cryptochrome-related abiotic stress responses in plants. - Front. Plant Sci. 9: 1897, 2018.
Go to original source... - Fantini E., Sulli M., Zhang L. et al.: Pivotal roles of cryptochromes 1a and 2 in tomato development and physiology. - Plant Physiol. 179: 732-748, 2019.
Go to original source... - Folta K.M., Maruhnich S.A.: Green light: a signal to slow down or stop. - J. Exp. Bot. 58: 3099-3111, 2007.
Go to original source... - Goltsev V.N., Kalaji H.M., Paunov M. et al.: Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. - Russ. J. Plant Physiol. 63: 869-893, 2016.
Go to original source... - Havaux M., Kloppstech K.: The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants. - Planta 213: 953-966, 2001.
Go to original source... - Khudyakova A.Yu., Kreslavski V.D., Shmarev A.N. et al.: Effect of deficiency of cryptochromes 1 and 2 on photosynthetic activity and pro-/antioxidant balance in Arabidopsis thaliana leaves under the action of UV-B. - Russ. J. Plant Physiol. 69: 39, 2022.
Go to original source... - Kleine T., Kindgren P., Benedict C. et al.: Genome-wide gene expression analysis reveals a critical role for CRYPTOCHROME1 in the response of Arabidopsis to high irradiance. - Plant Physiol. 144: 1391-1406, 2007.
Go to original source... - Kong S.-G., Okajima K.: Diverse photoreceptors and light responses in plants. - J. Plant Res. 129: 111-114, 2016.
Go to original source... - Kreslavski V., Khudyakova A., Kosobryukhov A. et al.: Impact of additional green light and deficit in cryptochrome 1 on photosynthetic activity and pro-/antioxidant balance in Arabidopsis thaliana. - Photosynthetica 61: 215-224, 2023.
Go to original source... - Kreslavski V.D., Carpentier R., Klimov V.V., Allakhverdiev S.I.: Transduction mechanisms of photoreceptor signals in plant cells. - J. Photoch. Photobio. C 10: 63-80, 2009.
Go to original source... - Kreslavski V.D., Khudyakova A.Yu., Strokina V.V. et al.: Impact of high irradiance and UV-B on the photosynthetic activity, pro-/antioxidant balance and expression of light-activated genes in Arabidopsis thaliana hy4 mutants grown under blue light. - Plant Physiol. Biochem. 167: 153-162, 2021.
Go to original source... - Kreslavski V.D., Lankin A.V., Vasilyeva G.K. et al.: Effects of polyaromatic hydrocarbons on photosystem II activity in pea leaves. - Plant Physiol. Biochem. 81: 135-142, 2014.
Go to original source... - Kreslavski V.D., Los D.A., Schmitt F.-J. et al.: The impact of the phytochromes on photosynthetic processes. - BBA-Bioenergetics 1859: 400-408, 2018.
Go to original source... - Kreslavski V.D., Strokina V.V., Pashkovskiy P.P. et al.: Deficiencies in phytochromes A and B and cryptochrome 1 affect the resistance of the photosynthetic apparatus to high-intensity light in Solanum lycopersicum. - J. Photoch. Photobio. B 210: 111976, 2020.
Go to original source... - Li L., Tong Y.-X., Lu J.-L. et al.: Morphology, photosynthetic traits, and nutritional quality of lettuce plants as affected by green light substituting proportion of blue and red light. - Front. Plant Sci. 12: 627311, 2021.
Go to original source... - Lichtenthaler H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. - Method. Enzymol. 148: 350-382, 1987.
Go to original source... - Lin C., Todo T.: The cryptochromes. - Genome Biol. 6: 220, 2005.
Go to original source... - Lin C., Yang H., Guo H. et al.: Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. - PNAS 95: 2686-2690, 1998.
Go to original source... - Liu B., Yang Z., Gomez A. et al.: Signaling mechanisms of plant cryptochromes in Arabidopsis thaliana. - J. Plant Res. 129: 137-148, 2016.
Go to original source... - Liu H., Liu B., Zhao C. et al.: The action mechanisms of plant cryptochromes. - Trends Plant Sci. 16: 684-691, 2011.
Go to original source... - Liu J., Lu Y., Hua W., Last R.L.: A new light on photosystem II maintenance in oxygenic photosynthesis. - Front. Plant Sci. 10: 975, 2019.
Go to original source... - Liu M., Pan T., Allakhverdiev S.I. et al.: Crop halophytism: an environmentally sustainable solution for global food security. - Trends Plant Sci. 25: 630-634, 2020.
Go to original source... - Mao J., Zhang Y.-C., Sang Y. et al.: A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. - PNAS 102: 12270-12275, 2005.
Go to original source... - Nakano Y., Asada K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. - Plant Cell Physiol. 22: 867-880, 1981.
- Nishiyama Y., Allakhverdiev S.I., Murata N.: A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. - BBA-Bioenergetics 1757: 742-749, 2006.
Go to original source... - Powles S.B.: Photoinhibition of photosynthesis induced by visible light. - Annu. Rev. Plant Physiol. 35: 15-44, 1984.
Go to original source... - Re R., Pellegrini N., Proteggente A. et al.: Antioxidant activity applying an improved ABTS radical cation decolorization assay. - Free Radical Bio. Med. 26: 1231-1237, 1999.
Go to original source... - Ruban A.V.: Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. - Plant Physiol. 170: 1903-1916, 2016.
Go to original source... - Sellaro R., Crepy M., Trupkin S.A. et al.: Cryptochrome as a sensor of the blue/green ratio of natural radiation in Arabidopsis. - Plant Physiol. 154: 401-409, 2010.
Go to original source... - Simkin A.J., Kapoor L., Doss C.G.P. et al.: The role of photosynthesis related pigments in light harvesting, photoprotection and enhancement of photosynthetic yield in planta. - Photosynth. Res. 152: 23-42, 2022.
Go to original source... - Smith H., Whitelam G.C.: The shade avoidance syndrome: multiple responses mediated by multiple phytochromes. - Plant Cell Environ. 20: 840-844, 1997.
Go to original source... - Stirbet A., Govindjee: On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. - J. Photoch. Photobio. B 104: 236-257, 2011.
Go to original source... - Takahashi S., Badger M.R.: Photoprotection in plants: a new light on photosystem II damage. - Trends Plant Sci. 16: 53-60, 2011.
Go to original source... - Voitsekhovskaja O.V.: Phytochromes and other (photo)receptors of information in plants. - Russ. J. Plant Physiol. 66: 351-364, 2019.
Go to original source... - Walters R.G., Rogers J.J.M., Shephard F., Horton P.: Acclimation of Arabidopsis thaliana to the light environment: the role of photoreceptors. - Planta 209: 517-527, 1999.
Go to original source... - Wang Y., Folta K.M.: Contributions of green light to plant growth and development. - Am. J. Bot. 100: 70-78, 2013.
Go to original source...




