Photosynthetica 2024, 62(1):126-137 | DOI: 10.32615/ps.2024.010
Cold plasma treatment influences the physiological parameters of millet
- Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 15, 400 96 Ústí nad Labem, Czech Republic
In recent years, cold plasma treatment has emerged as a promising method to positively impact early seed growth. This study aimed to investigate the effects of cold plasma treatment on millet seeds with ambient air plasma discharge at pressures of 100 Pa and power ranging from 40 to 250 W. Results indicated that cold plasma treatment significantly increased radicle length by up to 112.5% (250 W) after 48 h and up to 57% (120 W) after 72 h compared to nontreated plants. The study also found that cold plasma treatment influenced electron transport during the primary phase of photosynthesis, with the effect varying with the power of discharge. However, high levels of discharge resulted in a significantly higher chlorophyll synthesis. These results suggest that cold plasma treatment may be used to reduce plant stress and improve growing properties.
Additional key words: cold plasma treatment; electron transport; millet; photosynthesis efficiency.
Received: October 31, 2023; Revised: January 22, 2024; Accepted: January 24, 2024; Published: February 22, 2024 Show citation
Supplementary files
| Download file | Perner_3079_supplement.docx File size: 53.58 kB |
References
- Apel K., Hirt H.: Reactive oxygen species: metabolism, oxidative stress, and signal transduction. - Annu. Rev. Plant Biol. 55: 373-399, 2004.
Go to original source... - Arpagaus C., Rossi A., von Rohr P.R.: Short-time plasma surface modification of HDPE powder in a Plasma Downer Reactor - process, wettability improvement and ageing effects. - Appl. Surf. Sci. 252: 1581-1595, 2005.
Go to original source... - Atkinson N.J., Urwin P.E.: The interaction of plant biotic and abiotic stresses: from genes to the field. - J. Exp. Bot. 63: 3523-3543, 2012.
Go to original source... - Auer Malinská H., Vaněk M., Nebeská D. et al.: Plant priming changes physiological properties and lignin content in Miscanthus × giganteus. - Ind. Crop. Prod. 174: 114185, 2021.
Go to original source... - Bafoil M., Le Ru A., Merbahi N. et al.: New insights of low-temperature plasma effects on germination of three genotypes of Arabidopsis thaliana seeds under osmotic and saline stresses. - Sci. Rep.-UK 9: 8649, 2019.
Go to original source... - Baker N.R.: Chlorophyll fluorescence: a probe of photosynthesis in vivo. - Annu. Rev. Plant Biol. 59: 89-113, 2008.
Go to original source... - Bès A., Koo M., Phan T.L. et al.: Oxygen plasma etching of hydrocarbon-like polymers: Part II experimental validation. -2 Plasma Process. Polym. 15: e1800037, 2018.
Go to original source... - Bormashenko E., Grynyov R., Bormashenko Y., Drori E.: Cold radiofrequency plasma treatment modifies wettability and germination speed of plant seeds. - Sci. Rep.-UK 2: 741, 2012.
Go to original source... - Brestic M., Zivcak M.: PSII fluorescence techniques for measurement of drought and high temperature stress signal in crop plants: Protocols and applications. - In: Rout G., Das A. (ed.): Molecular Stress Physiology of Plants. Pp. 87-131. Springer, India 2013.
Go to original source... - Bussotti F., Gerosa G., Digrado A., Pollastrini M.: Selection of chlorophyll fluorescence parameters as indicators of photosynthetic efficiency in large scale plant ecological studies. - Ecol. Indic. 108: 105686, 2020.
Go to original source... - Chen F.F.: Introduction to Plasma Physics and Controlled Fusion. Pp. 490. Springer, Cham 2016.
Go to original source... - Dasan B.G., Boyaci I.H., Mutlu M.: Inactivation of aflatoxigenic fungi (Aspergillus spp.) on granular food model, maize, in an atmospheric pressure fluidized bed plasma system. - Food Control 70: 1-8, 2016.
Go to original source... - Dhayal M., Lee S.-Y., Park S.-U.: Using low-pressure plasma for Carthamus tinctorium L. seed surface modification. - Vacuum 80: 499-506, 2006.
Go to original source... - Dobrin D., Magureanu M., Mandache N.B., Ionita M.D.: The effect of non-thermal plasma treatment on wheat germination and early growth. - Innov. Food Sci. Emerg. Technol. 29: 255-260, 2015.
Go to original source... - Ehlbeck J., Schnabel U., Polak M. et al.: Low temperature atmospheric pressure plasma sources for microbial decontamination. - J. Phys. D. Appl. Phys. 44: 013002, 2011.
Go to original source... - Fahad S., Bajwa A.A., Nazir U. et al.: Crop production under drought and heat stress: Plant responses and management options. - Front. Plant Sci. 8: 1147, 2017.
Go to original source... - Ferrero F.: Wettability measurements on plasma treated synthetic fabrics by capillary rise method. - Polym. Test. 22: 571-578, 2003.
Go to original source... - Foyer C.H., Noctor G.: Ascorbate and glutathione: the heart of the redox hub. - Plant Physiol. 155: 2-18, 2011.
Go to original source... - Fridovich I.: Oxygen toxicity: a radical explanation. - J. Exp. Biol. 201: 1203-1209, 1998.
Go to original source... - Gierczik K., Vukušić T., Kovács L. et al.: Plasma-activated water to improve the stress tolerance of barley. - Plasma Process. Polym. 17: 1900123, 2020.
Go to original source... - Godic A., Poljšak B., Adamic M., Dahmane R.: The role of antioxidants in skin cancer prevention and treatment. - Oxid. Med. Cell. Longev. 2014: 860479, 2014.
Go to original source... - İlik E., Durmuş Ç., Akan T.: Investigation on optical properties of atmospheric pressure plasma jets of N2 gas. - Adyu J. Sci. 10: 326-338, 2020.
- Jadoon S., Karim S., Asad M.H.H.B. et al.: Anti-aging potential of phytoextract loaded-pharmaceutical creams for human skin cell longetivity. - Oxid. Med. Cell. Longev. 2015: 709628, 2015.
Go to original source... - Jiang J., Lu Y., Li J. et al.: Effect of seed treatment by cold plasma on the resistance of tomato to Ralstonia solanacearum (bacterial wilt). - PLoS ONE 9: e97753, 2014.
Go to original source... - Kabir A.H., Rahman M.M., Das U. et al.: Reduction of cadmium toxicity in wheat through plasma technology. - PLoS ONE 14: e0214509, 2019.
Go to original source... - Leti L.I., Gerber I.C., Mihaila I. et al.: The modulatory effects of non-thermal plasma on seed's morphology, germination and genetics - a review. - Plants-Basel 11: 2181, 2022.
Go to original source... - Li L., Jiang J., Li J. et al.: Effects of cold plasma treatment on seed germination and seedling growth of soybean. - Sci. Rep.-UK 41: 5859, 2014.
- Lichtenthaler H.K.: Vegetation stress: an introduction to the stress concept in plants. - J. Plant Physiol. 148: 4-14, 1996.
Go to original source... - Lichtenthaler H.K., Burkart S.: Photosynthesis and high light stress. - Bulg. J. Plant Physiol. 25: 3-16, 1999.
- Lin S.-P., Khumsupan D., Chou Y.-J. et al.: Applications of atmospheric cold plasma in agricultural, medical, and bioprocessing industries. - Appl. Microbiol. Biot. 106: 7737-7750, 2022.
Go to original source... - Malinská H., Pidlisnyuk V., Nebeská D. et al.: Physiological response of Miscanthus × giganteus to plant growth regulators in nutritionally poor soil. - Plants-Basel 9: 194, 2020.
Go to original source... - Maxwell K., Johnson G.N.: Chlorophyll fluorescence - a practical guide. - J. Exp. Bot. 51: 659-668, 2000.
Go to original source... - Mildažienė V., Aleknavičiūtė V., Žūkienė R. et al.: Treatment of common sunflower (Helianthus annus L.) seeds with radio-frequency electromagnetic field and cold plasma induces changes in seed phytohormone balance, seedling development and leaf protein expression. - Sci. Rep.-UK 9: 6437, 2019.
Go to original source... - Mildaziene V., Ivankov A., Sera B., Baniulis D.: Biochemical and physiological plant processes affected by seed treatment with non-thermal plasma. - Plants-Basel 11: 856, 2022.
Go to original source... - Miller G., Suzuki N., Ciftci-Yilmaz S., Mittler R.: Reactive oxygen species homeostasis and signalling during drought and salinity stresses. - Plant Cell Environ. 33: 453-467, 2010.
Go to original source... - Mittler R.: Oxidative stress, antioxidants and stress tolerance. - Trends Plant Sci. 7: 405-410, 2002.
Go to original source... - Mittler R., Blumwald E.: Genetic engineering for modern agriculture: challenges and perspectives. - Annu. Rev. Plant Biol. 61: 443-462, 2010.
Go to original source... - Moustakas M., Sperdouli I., Kouna T. et al.: Exogenous proline induces soluble sugar accumulation and alleviates drought stress effects on photosystem II functioning of Arabidopsis thaliana leaves. - Plant Growth Regul. 65: 315-325, 2011.
Go to original source... - Murchie E.H., Lawson T.: Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. - J. Exp. Bot. 64: 3983-3998, 2013.
Go to original source... - Nakai K., Tsuruta D.: What are reactive oxygen species, free radicals, and oxidative stress in skin diseases? - Int. J. Mol. Sci. 22: 10799, 2021.
Go to original source... - Pańka D., Jeske M., Łukanowski A. et al.: Can cold plasma be used for boosting plant growth and plant protection in sustainable plant production? - Agronomy 12: 841, 2022.
Go to original source... - Randeniya L.K., de Groot G.J.J.B.: Non-thermal plasma treatment of agricultural seeds for stimulation of germination, removal of surface contamination and other benefits: a review. - Plasma Process. Polym. 12: 608-623, 2015.
Go to original source... - Ranieri P., Sponsel N., Kizer J. et al.: Plasma agriculture: Review from the perspective of the plant and its ecosystem. - Plasma Process. Polym. 18: 2000162, 2021.
Go to original source... - Scholtz V., Šerá B., Khun J. et al.: Effects of nonthermal plasma on wheat grains and products. - J. Food Quality 2019: 7917825, 2019.
Go to original source... - Šerá B., Gajdová I., Šerý M., Špatenka P.: New physicochemical treatment method of poppy seeds for agriculture and food industries. - Plasma Sci. Technol. 15: 935, 2013.
Go to original source... - Šerá B., Špatenka P., Šerý M. et al.: Influence of plasma treatment on wheat and oat germination and early growth. - IEEE Trans. Plasma Sci. 38: 2963-2968, 2010.
Go to original source... - Shelar A., Nile S.H., Singh A.V. et al.: Recent advances in nano-enabled seed treatment strategies for sustainable agriculture: challenges, risk assessment, and future perspectives. - Nano-Micro Lett. 15: 54, 2023.
Go to original source... - Shelar A., Singh A.V., Dietrich P. et al.: Emerging cold plasma treatment and machine learning prospects for seed priming: a step towards sustainable food production. - RSC Adv. 12: 10467-10488, 2022.
Go to original source... - Shelar A., Singh A.V., Maharjan R.S. et al.: Sustainable agriculture through multidisciplinary seed nanopriming: prospects of opportunities and challenges. - Cells 10: 2428, 2021.
Go to original source... - Shibusawa K., Funatsu M.: Radiative characteristics of N2 first positive band in visible and near-infrared regions for microwave-discharged nitrogen plasma. - T. Jpn. Soc. Aeronaut. S. 62: 86-92, 2019.
Go to original source... - Sidik M.A.B., Buntat Z., Nawawi Z. et al.: Effects of cold plasma treatment on the growth rate of corn and eggplant plants. - In: 2018 International Conference on Electrical Engineering and Computer Science (ICECOS), Pangkal, Indonesia. Pp. 441-446. IEEE, 2018.
Go to original source... - Sivachandiran L., Khacef A.: Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: combined effect of seed and water treatment. - RSC Adv. 7: 1822-1832, 2017.
Go to original source... - Stirbet A., Govindjee: Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise. - Photosynth. Res. 113: 15-61, 2012.
Go to original source... - Stirbet A., Govindjee, Strasser B.J., Strasser R.J.: Chlorophyll a fluorescence induction in higher plants: modelling and numerical simulation. - J. Theor. Biol. 193: 131-151, 1998.
Go to original source... - Strasser R.J., Srivastava A., Govindjee: Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. - Photochem. Photobiol. 61: 32-42, 1995.
Go to original source... - Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 321-362. Springer, Dordrecht 2004.
Go to original source... - Švubová R., Kyzek S., Medvecká V. et al.: Novel insight at the effect of cold atmospheric pressure plasma on the activity of enzymes essential for the germination of pea (Pisum sativum L. cv. Prophet) seeds. - Plasma Chem. Plasma Process. 40: 1221-1240, 2020.
Go to original source... - Švubová R., Slováková L., Holubová L. et al.: Evaluation of the impact of cold atmospheric pressure plasma on soybean seed germination. - Plants-Basel 10: 177, 2021.
Go to original source... - Takahashi S., Badger M.R.: Photoprotection in plants: a new light on photosystem II damage. - Trends Plant Sci. 16: 53-60, 2011.
Go to original source... - Takahashi S., Murata N.: How do environmental stresses accelerate photoinhibition? - Trends Plant Sci. 13: 178-182, 2008.
Go to original source... - Turner M.: Physics of cold plasma. - In: Misra N.N., Schlüter O.K., Cullen P.J. (ed.): Cold Plasma in Food and Agriculture: Fundamentals and Applications. Pp. 17-51. Academic Press, London 2016.
Go to original source... - Volin J.C., Denes F.S., Young R.A., Park S.M.T.: Modification of seed germination performance through cold plasma chemistry technology. - Crop Sci. 40: 1706-1718, 2000.
Go to original source... - Whitehead J.C.: The chemistry of cold plasma. - In: Misra N.N., Schlüter O.K., Cullen P.J.: Cold Plasma in Food and Agriculture: Fundamentals and Applications. Pp. 53-81. Academic Press, London 2016.
Go to original source... - Zahoranová A., Hoppanová L., Šimončicová J. et al.: Effect of cold atmospheric pressure plasma on maize seeds: enhancement of seedlings growth and surface microorganisms inactivation. - Plasma Chem. Plasma Process. 38: 969-988, 2018.
Go to original source... - Zarco-Tejada P.J., González-Dugo V., Berni J.A.J.: Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. - Remote Sens. Environ. 117: 322-337, 2012.
Go to original source... - Zhang R., Sharkey T.D.: Photosynthetic electron transport and proton flux under moderate heat stress. - Photosynth. Res. 100: 29-43, 2009.
Go to original source... - Zukiene R., Nauciene Z., Januskaitiene I. et al.: Dielectric barrier discharge plasma treatment-induced changes in sunflower seed germination, phytohormone balance, and seedling growth. - Appl. Phys. Express 12: 126003, 2019.
Go to original source... - Živčák M., Brestič M., Olšovská K., Slamka P.: Performance index as a sensitive indicator of water stress in Triticum aestivum L. - Plant Soil Environ. 54: 133-139, 2008.
Go to original source...




